
Вiсник Харкiвського нацiонального унiверситету iменi В.Н. Каразiна
Серiя "Математика, прикладна математика i механiка"

УДК 514 № 1030, 2012, с.54–70

Minimal and totally geodesic unit sections of the unit
sphere bundles.

A. Yampolsky
Харкiвський нацiональный унiверситет

механiко-математичний факультет, кафедра геометрiї,
майдан Свободи, 4, 61022, Харкiв, Україна

alexymp@gmail.com
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Introduction
A. Borisenko [1] posed a problem on description of all totally geodesic sub-

manifolds in a (unit) tangent bundle with Sasaki metric over a space of constant
curvature.

A natural class of submanifolds in the (unit) tangent bundle is formed by
(unit) vector fields on the base. H. Gluck and W. Ziller [2] posed a problem to
find "the best organized" unit vector field on spheres and proposed on this role
the field which gives rise to minimal submanifold in the unit tangent bundle with
the Sasaki metric. Later on this meaning of unit vector field was extended the
notion of locally minimal [3] and totally geodesic [4, 5] unit vector field. From
this viewpoint the unit vector fields has been considered by many authors (see,
e.g. [13, 14, 15, 16, 16, 17, 18]).

A natural generalization of tangent vector field is a section of given vector bun-
dle (E , π,B). If B is the Riemannian manifold and E is endowed with a fiberwise
metric and compatible bundle connection, then one can define the Sasaki-type
metric and consider a unit section as a harmonic map [6, 7] or as a locally min-
imal (totally geodesic) unit section of a subbundle E1 ⊂ E formed by the unit
vectors of each fiber. The latter approach is presented in the given paper.

Section 1 contains necessary preparations. In Section 2 we study the simplest
nontrivial case of vector bundle of rank 2 over 2 dimensional Riemannian manifold
in details. We give a local description of the base manifold and the bundle con-
nection for the case when the bundle admits a local unit totally geodesic section
(Theorems 1 and 2). In Section 3 we give some some examples of minimal and
totally geodesic sections of tangent and normal bundles.

The vector bundle, the base manifold and the sections are assumed smooth of
class Cm (m ≥ 2) or analytic, if necessary.

1. The Sasaki-type metric on vector bundle

Let (E , π,B) be a smooth real vector bundle of rank p over a smooth manifold
B of dimension n. A smooth section is a smooth mapping s : B → E such
that π ◦ s = idB. By definition, s(q) ∈ Fq, where Fq is a fiber over q ∈ B
and the fiber Fq is a real p-dimensional vector space. The section could not
exist globally but it is possible to find p linearly independent sections s1, . . . , sp
over a trivializing neighborhood U(u1, . . . , un) ⊂ B. Then, for any ξ ∈ TuB, we
have a decomposition ξ = ξα sα(u). The parameters (u1, . . . , un; ξ1, . . . , ξp) form
a natural local coordinate system in U × F ≈ U × Rp. Any smooth local section
ξ : U → E can be given by

ξ = ξα(u) sα(u),

where ξα : U → R some smooth functions. The image ξ(U) ⊂ E represents the
analog of explicitly given submanifold with respect to natural local coordinate
system. The mail goal of the paper is to study some geometrical properties of the
locally given submanifold ξ(U) in the case when E is endowed with the so-called
Sasaki-type metric and the section ξ is of unit length.
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Take a trivializing neighborhood U ⊂ B. Let (u1, . . . , un; ξ1, . . . , ξp) be the
natural local coordinate system on E . A local frame

∂̃i :=
∂

∂ui
, ∂̃n+α :=

∂

∂ξα

is called natural tangent local coordinate frame over the restriction E|U . Thus, for
any local vector field X̃ on E|U , we have a decomposition

X̃ = X̃i(u, ξ)∂̃i + X̃n+α(u, ξ)∂̃n+α.

At each point (u, ξ) ∈ T(u,ξ)E we have a decomposition T(u,ξ)E = V(u,ξ)E⊕H(u,ξ)E ,
where V(u,ξ)E and H(u,ξ)E are tangent and transversal to the fiber at u = π(u, ξ),
respectively. The V(u,ξ)E is called vertical subspace and H(u,ξ)E is called horizon-
tal subspace at (u, ξ) ∈ E . The horizontal distribution H(u,ξ)E is called bundle
connection. Over each trivializing neighborhood U , the horizontal distribution
can be defined by

H|U =

p⋂
α=1

ker(θα),

where θ1, . . . , θp is a collection of linearly independent smooth linear forms over
π−1(U). The bundle connection is called linear, if the forms θ1, . . . , θp are taken
by

θα = dξα + γαβi(u)ξβdui.

The functions γαβi are called fiber bundle connection coefficients and subject to the
definite transformation law in a pass to the neighboring trivializing neighborhood
(see [19] for details).

Denote by S(B) and X(B) the module of smooth sections of E and Lie algebra
of smooth vector fields on B, respectively. For any ξ ∈ S(B) and any X ∈ X(B),
the section

∇FXξ := Xi

(
∂ξα

∂ui
+ γαβiξ

β

)
sα

is called fiber bundle covariant derivative of the section ξ in a direction of the
tangent vector field X.

The connection map K : T(u,ξ)E → Fu is defined locally by KX̃ = (X̃n+α +

γαβi ξ
βX̃i)sα. The bundle projection differential π∗ : TE → TB acts by π∗X̃ =

X̃i∂i, where ∂i = π∗(∂̃i) = ∂
∂ui

are the vectors of the local coordinate frame over
U . These mappings possess the following easy-to-check properties

kerπ∗ = V(u,ξ), imπ∗ = TuB,
kerK = H(u,ξ), imK = Fu

at each point (u, ξ) ∈ E .
For any X = Xi(u)∂i ∈ X(B), the vector field

Xh(u, ξ) = Xi(u)∂̃i − γαβk(u)Xk(u)ξβ ∂̃n+α
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is in H(u,ξ) and is called horizontal lift of X(u) to T(u,ξ)E . For any η = ηα(u)sα ∈
S(B), the vector field

ηv(u, ξ) = ηα(u)∂̃n+α

is in V(u,ξ) and is called vertical lift of η(u) to T(u,ξ)E .
For any smooth section ξ : B → E , the section differential ξ∗ : TB → TE acts

by ξ∗X = Xh + (∇FXξ)v and hence K(ξ∗X) = ∇FXξ. A fiber-wise metric on E is
a smooth function gF : E → R+ such that the restriction gF |Fu is a positively
definite quadratic form in ξ1, . . . , ξp. A vector bundle is said to be metrized if it
admits a fiber-wise metric. A fiber-wise metric is said to be compatible with the
bundle connection, if

∂X(gF (ξ, η)) = gF (∇FXξ, η) + gF (ξ,∇FXη).

From now on, suppose B is the Riemannian manifold (B, gB) and E is a
metrized vector bundle with the fiber-wise metric gF compatible with the bundle
connection.

Definition 1 Let π : E → B be a smooth vector bundle over the Riemannian
manifold (B, gB) with a fiber-wise metric gF compatible with the bundle connection
∇F . Let X̃, Ỹ be smooth vector fields on E. The Sasaki-type metric gE on E is
defined by the following scalar product

gE(X̃, Ỹ ) = gB(π∗X̃, π∗Ỹ ) + gF (KX̃,KỸ ). (1)

With respect to natural local coordinates on E , the line element of (E , gE)
takes the form

ds̃2
E = ds2

B + |DFξ|2gF , (2)

where ds2
B is the line element of the Riemannian base manifold B and DFξ =

(dξα + γαβiξ
βdui)sα is the covariant differential of the "point" vector ξ ∈ Fu with

respect to the bundle connection.
The horizontal and vertical subspaces are mutually orthogonal with respect

to gE . In terms of lifts,

gE(Xh, Y h) = gB(X,Y ), gE(Xh, ζv) = 0, gE(ηv, ζv) = gF (η, ζ).

A tri-linear mapping RF : X(B)× X(B)×S(B)→ S(B) defined by

RF (X,Y )ξ = ∇FX∇FY ξ −∇FY∇FXξ −∇F[X,Y ]ξ

is called curvature tensor of the bundle connection. The bundle connection is said
to be flat if RF (X,Y )ξ = 0 for all X,Y ∈ X(B), ξ ∈ S(B).

Direct computations give the following formulas (c.f. [9]) .
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Lemma 1 Let X,Y ∈ X(B) and η, ζ ∈ S(B). Then over each trivializing neigh-
borhood the Lie-brackets of combinations of lifts to T(u,ξ)E have the following ex-
pressions

[Xh, Y h] = [X,Y ]h −
(
RF (X,Y )ξ)

)v
, [Xh, ηv] =

(
∇FXη

)v
, [ηv, ζv] = 0.

By using the Koszul formula, it is easy find the Levi-Civita connection for the
Sasaki-type metric on E (c.f. [10]).

Lemma 2 Denote by ∇̃ the Levi-Civita connection of (E , gE). Let X,Y ∈ X(B)
and η, ζ ∈ S(B). Then over each trivializing neighborhood the covariant deriva-
tives of combinations of lifts to T(u,ξ)E have the following expressions

∇̃XhY h =
(
∇BXY

)h − (1
2R
F (X,Y )ξ

)v
, ∇̃ηvY h =

(
1
2R̂
F (ξ, η)Y

)h
,

∇̃Xhηv =
(
∇FXη

)v
+
(

1
2R̂
F (ξ, η)X

)h
, ∇̃ηvζv = 0,

where R̂F : S(B) × S(B) × X(B) → X(B) is defined by gB(R̂F (ξ, η)X,Y ) =
gF (RF (X,Y )ξ, η).

The tensor field R̂F is called formally conjugate to the bundle connection curva-
ture tensor field RF . Lemma 2 implies the following remarks: the fibers of E are
totally geodesic and flat submanifolds of (E , gE); a single fiber normal bundle con-
nection is defined by R̂F ; the horizontal distribution H is non-integrable (except
the case of flat bundle connection) but totally geodesic one.

Lemmas 1 and 2 allows to calculate the curvature tenor of (TE , gE).

Lemma 3 Denote by R̃ a curvature tensor of (E , gE). Then at each point (u, ξ) ∈
E, the R̃ is completely defined by

R̃(ηv, ζv)χv = 0,

R̃(ηv, ζv)Zh =
(
R̂F (η, ζ)Z + 1

4R̂
F (ξ, η)R̂F (ξ, ζ)Z−

1
4R̂
F (ξ, ζ)R̂F (ξ, η)Z

)h
,

R̃(Xh, ζv)χv = −
(

1
2R̂
F (ζ, χ)X + 1

4R̂
F (ξ, ζ)R̂F (ξ, χ)X

)h
,

R̃(Xh, ζv)Zh =
(

1
2R
F (X,Z)ζ + 1

4R
F (R̂F (ξ, ζ)Z,X)ξ

)v
+(

1
2(DXR̂

F )(ξ, ζ)Z
)h
,
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R̃(Xh, Y h)χv =
(
RF (X,Y )χ+ 1

4R
F (R̂F (ξ, χ)Y,X)ξ−

1
4R
F (R̂F (ξ, χ)X,Y )ξ

)v
+

1
2

(
(DXR̂

F )(ξ, χ)Y − (DY R̂
F )(ξ, χ)X

)h
,

R̃(Xh, Y h)Zh =
(
RB(X,Y )Z + 1

4R̂
F (ξ,RF (X,Z)ξ)Y−

1
4R̂
F (ξ,RF (Y,Z)ξ)X + 1

2R̂
F (ξ,RF (X,Y )ξ)Z

)h
+(

1
2(DZR

F )(X,Y )ξ
)v
,

where X,Y, Z ∈ X(B), η, ζ, χ ∈ S(B), RB is the Riemannian curvature tensor of
(B, gB) and

(DXR̂
F )(ξ, η)Z := ∇BX

(
R̂F (ξ, η)Z

)
− R̂F (ξ,∇FXη)Z − R̂F (ξ, η)∇BXZ,

(DZR
F )(X,Y )ξ := ∇FZ

(
RF (X,Y )ξ

)
−RF (∇BZX,Y )ξ −RF (X,∇BZY )ξ.

The proofs of Lemma 1, Lemma 2 and Lemma 3 are the step-by-step analogs of
the proofs of the similar Lemmas for the normal bundle case [1].

Consider a single fiber Fu. At each point ξ ∈ Fu, we have Tξ(Fu0) =
Span(sv1, . . . , s

v
p) and T⊥ξ (Fu) = Span(∂h1 , . . . , ∂

h
n). By using the normal coor-

dinates in a neighborhood of u ∈ B one can get (∂h1 , . . . , ∂
h
n) as the orthonormal

normal bundle frame along Fu. The Ricci equation being applied to a single
(totally geodesic) fiber yields the following corollary.

Corollary 1 Let (E , gE) be a vector bundle with the Sasaki-type metric. Denote
by NF the curvature tensor of normal bundle connection of a single fiber Fu. Then

gF (NF (ηv, ζv)Xh, Y h) = gB(R̂F (η, ζ)X,Y )+

1

4
gB(R̂F (ξ, η)X, R̂F (ξ, ζ)Y )− 1

4
gB(R̂F (ξ, η)Y, R̂F (ξ, ζ)X).

The latter corollary means that the extrinsic geometry of the fibers is defined by
the curvature of the fiber bundle connection.

2. Unit sphere bundle and unit sections.

Denote by E1 ⊂ E a subbundle defined by the equation gF (ξ, ξ) = 1. The
fibers of E1 are unit spheres and π : E1 → B is called a unit sphere bundle over
B. The E1 is a hypersurface in E with the Sasaki-type pull-back metric. At each
point (u, ξ) ∈ E1, the ξv is a unit normal for E1 ⊂ E . Consider a unit section
ξ : B → E1 as a (local) imbedding of the base into (E1, g

E).

Definition 2 Let (E1, g
E) be a unit vector bundle with the Sasaki type metric.

A unit section ξ : B → (E1, g
E) is called minimal (totally geodesic) if ξ(B) is a

minimal (totally geodesic) submanifold.
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For a given unit section ξ, the differential ξ∗ : TB → TE1 acts by

ξ∗X = Xh + (∇FXξ)v.

Define a point-wise linear operator Aξ : TuB → Fu and its conjugate Atξ : Fu →
TuB by

AξX = −∇FXξ, gB(Atξη,X) = gF (AξX, η).

Then the tangent and normal vector fields on ξ(B) can be described as follows:

X̃ ∈ Tξ(B) iff X̃ = Xh − (AξX)v;

Ñ ∈ T⊥ξ(B) iff Ñ = (Atξη)h + ηv (η ⊥ ξ).

By using the standard computations one can prove the following Lemma which is
similar to the one for the unit sections of the unit tangent bundle [8].

Lemma 4 Let ξ be a smooth unit section of a smooth unit vector bundle E1 with
the Sasaki-type metric gE . Denote by Ω̃Ñ the second fundamental form of ξ(B) ⊂
E1(B) with respect to the normal vector field Ñ = (Atξη)h + ηv (η ⊥ ξ). Then for
any X,Y ∈ X(B),

Ω̃Ñ (ξ∗X, ξ∗Y ) =

− 1

2
gF
(
(∇FXAξ)Y + (∇FYAξ)X +Aξ

(
R̂F (ξ, AξX)Y + R̂F (ξ, AξY )X

)
, η
)

where (∇FXAξ)Y = ∇FX(AξY )−Aξ(∇BXY ).

As a consequence, we can easily prove the following statement.

Lemma 5 The submanifold ξ(B) ⊂ (E1, g
E) is totally geodesic if and only if the

section ξ satisfies

(∇FXAξ)Y + (∇FYAξ)X+

Aξ
(
R̂F (ξ, AξX)Y + R̂F (ξ, AξY )X

)
− 2gF (AξX,AξY )ξ = 0 (3)

for any X,Y ∈ X(B).

The equation (3) represents over-definite system of PDEs with respect to the
section ξ and involves the bundle connection of E and the Riemannian connection
of TB. The first question is, if the equation could have a solution? In the next
section we give positive answer to this question.

2.1 A unit circle bundle over a surface.

The simplest non-trivial case for the equation (3) is the case n = dimB = 2
and p = dimF = 2. For this case we will use the terms "a 2-vector bundle over a
surface" and "a unit circle bundle over a surface". In this section we will conduct
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all our calculations over local trivializing chart of the vector bundle π : E → B
without special emphasis.

We begin with the case of flat bundle connection in E . The base Riemannian 2-
manifold, nevertheless, could have zero or non-zero Gaussian curvature, i.e. could
be locally isometric/non-isometric to the Euclidean plane.

Theorem 1 Let π : E → B be 2-vector bundle with flat bundle connection over
a surface B. Let ξ be a unit totally geodesic local section of a unit circle bundle
π : E1 → B with the Sasaki-type metric.

• If B is not locally Euclidean, then ξ is arbitrary parallel unit section;

• If B is locally Euclidean with the Cartesian coordinates (x, y), then ξ makes
the angle θ(x, y) = ax+ by + c with arbitrary parallel unit section.

Proof. Since the bundle connection of E is flat, there is a pair of orthonormal
sections which are parallel with respect to the bundle connection. Denote by s1

and s2 these sections. Then any unit section can be given by

ξ = cos θ s1 + sin θ s1.

Denote ξ⊥ = − sin θ s1 + cos θ s2. Then AξX = −∇FXξ = −X(θ)ξ⊥, ∇FXξ⊥ =
−X(θ)ξ and we have

(∇FXAξ)Y = ∇FX(AξY )−Aξ(∇BXY ) = −∇FX(Y (θ)ξ⊥) + (∇BXY )(θ)ξ⊥ =

−X(Y (θ)ξ⊥ +X(θ)Y (θ)ξ + (∇BXY )(θ)ξ⊥.

By definition, X(Y (θ))− (∇BXY )(θ) = HessBθ (X,Y ) and hence

(∇FXAξ)Y = −HessBθ (X,Y )ξ⊥ +X(θ)Y (θ)ξ = (∇FYAξ)X.

Then, the equation (3) takes the form −2HessBθ (X,Y )ξ⊥ = 0. As a conclusion,
the section ξ is totaly geodesic iff

HessBθ (X,Y ) = XiY k(
∂2θ

∂uiuk
−
B
Γmik

∂θ

∂um
) = 0, (4)

where
B
Γmik mean the Christoffel symbols of the base manifold Riemannian metric.

• If θ = const, then ξ is a parallel local unit section and ξ(B) is totally geodesic
independently on geometry of the base manifold;

• If dθ 6= 0, then ξ(B) is totally geodesic if dθ is a nonzero parallel 1-form
on the base manifold. In other words, B admits a parallel local vector field
(namely, the grad θ). In this case the Gaussian curvature of the base man-
ifold is zero, i.e. B is locally Euclidean. Choose the Cartesian coordinates
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(x, y) on the base manifold. Then the line element of E1 takes the form (see
(2))

ds̃2 = dx2 + dy2 + dθ2

and hence (E1, g
E) is locally Euclidean (while topologically E1 = E2 × S1).

So we have
θ = ax+ by + c

as a solution to the equation (4). Geometrically, we get a linear angle
function between the totally geodesic local unit section ξ and a parallel unit
section.

Consider the case of non-flat bundle connection. Introduce the bi-sectional cur-
vature function of E by

κ =
gF
(
RF (X,Y )ξ, η

)
|X ∧ Y |gB · |ξ ∧ η|gF

,

where X,Y ∈ X(B) and ξ, η ∈ S(B). Up to a sign, it is nothing else but the
Gaussian curvature in the case of E = TM2 and the Gaussian torsion in the case
of normal bundle E = T⊥F 2 of a submanifold in the Riemannian M4. If both
frames are orthonormal, then κ = gF

(
RF (X,Y )ξ, η

)
.

If n ≥ p, then the kernel of Aξ is non-empty by the dimension reasons. Denote

Z = kerAξ ⊂ X(B), I = imAξ ⊂ ξ⊥ ⊂ S(B)

If Zq = TqB for all q ∈ B, then the bundle connection is flat. In general, TqB =
Zq ⊕Z⊥q . In general setting, for each given section ξ we have two complementary
distributions Z and Z⊥ on B. The following statement simplifies Lemma 4.

Lemma 6 Let ξ be a unit local section of a unit circle bundle π : E1 → B over
a surface. Suppose the bundle connection of π : E → B is non-flat. Denote
by (e1, e2) the orthonormal local tangent frame on B such that Z = Span {e1},
Z⊥ = Span {e2}. Then the second fundamental form Ω̃ of ξ(B) ⊂ E1 satisfies

[Ω̃(ei, ej)] =

[
−k1 sin(α/2) 1

2(e1(α)− κ)

1
2(e1(α)− κ) 1

2e2(α) cos(α/2)

]
(5)

where κ is a bi-sectional curvature of E, α/2 is the angle between the unit normal
ñ of a hypersurface ξ(B) ⊂ E1 and the vertical (one-dimensional) subspace and k1

is a geodesic curvature of the field e1.

Proof. Take a unit section η = ξ⊥. Take (e1, e2) as in a hypothesis. Then we
may put

Aξe1 = 0, Aξe2 = −λη.
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Then
ẽ1 = eh1 , ẽ2 =

1√
1 + λ2

(eh2 + ληv) (6)

form the orthonormal tangent frame on ξ(B). A unit normal vector field ñ on
ξ(B) is

ñ =
1√

1 + λ2
(−λeh2 + ηv). (7)

Denote by α/2 the angle between ñ and the vertical distribution. Then

cos(α/2) =
1√

1 + λ2
, sin(α/2) =

λ√
1 + λ2

, λ = tan(α/2)

and hence

ẽ1 = eh1 , ẽ2 = cos(α/2)eh2 + sin(α/2) ηv, ñ = − sin(α/2) eh2 + cos(α/2) ηv.

Define k1 and k2 by ∇Be1e1 = k1e2, ∇Be2e2 = k2e1. Then by Lemma 2,

∇̃ẽ1 ẽ1 = (∇Be1e1)h = k1e
h
2 , ∇̃ẽ1 ẽ2 = 1

2k1 cos(α/2)eh1 + 1
2(e1(α)− κ)ñ,

∇̃ẽ2 ẽ2 = (k1 cos(α/2)− sinακ)eh1 + 1
2e2(α) cos(α/2)ñ+ sin2(α/2)ξv.

Hence
Ω̃(ẽ1, ẽ1) = − sin(α/2)k1, Ω̃(ẽ1, ẽ2) = 1

2(e1(α)− κ),

Ω̃(ẽ2, ẽ2) = cos(α/2) e2(α/2),

which completes the proof.

Corollary 2 Let ξ be a unit section of a unit circle bundle π : E1 → B over a
surface. Suppose the bundle connection of π : E → B is non-flat. Denote by H
the mean curvature of ξ(B) and by ñh the horizontal projection of the unit normal
vector field on ξ(B) ⊂ E1. Then

H̃ = −1

2
d̃iv(ñ) = −1

2
div(ñh).

Proof. Indeed, the equality H̃ = −1
2 d̃iv(ñ) follows from the definitions. As for

the second equality, we have ñh = − sin(α/2)e2 and

∇Be1 ñh = −1
2 cos(α/2)e1(α)e2 + k1 sin(α/2)e1,

∇Be2 ñh = −1
2 cos(α/2)e2(α)e2 − k2 sin(α/2)e1.

Therefore,
Ω̃(ẽ1, ẽ1) = −

〈
∇Be1 ñh, e1

〉
, Ω̃(ẽ2, ẽ2) = −

〈
∇Be2 ñh, e2

〉
and H̃ = −1

2div(ñh).

Now we can prove the main result of the section.
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Theorem 2 Let π : E1 → B be a unit circle bundle with the Sasaki-type metric
over a surface. Suppose the bundle connection of π : E → B is non-flat. Then E1

admits a local totally geodesic unit section if and only if B is locally isometric to

(M2, ds2 = du2 + sin2 α(u)dv2)

and the bi-sectional curvature of E satisfies κ = α̇(u).

Proof. Suppose E1 admits a local totally geodesic section. Since κ 6= 0, the
section is non parallel and hence the surface ξ(B) is not horizontal. Therefore,
there is a trivializing neighborhood U ⊂ B such that α|U 6= 0. Restrict our
considerations to U and choose (e1, e2) as in Lemma 6. Then ξ(U) is totally
geodesic if, particularly,

e2(α) ≡ 0, k1 ≡ 0.

Thus, the trajectories of e1 are geodesics and the angle function α is constant
along e2.

Choose the semi-geodesic coordinate system (u, v) on U such that

∂u = e1, ∂v = f(u, v) e2,

where f(u, v) is some non-zero function. Then

ds2 = du2 + f2dv2.

With respect to these coordinates, the conditions on α take the form

∂vα = 0, ∂uα = κ.

Hence
κ = α̇.

On the other hand,

RF (e1, e2)ξ = (∇Fe2Aξ)e1 − (∇Fe1Aξ)e2 =

−Aξ(∇Be2e1)−∇Fe1(Aξe2) +Aξ(∇Be1e2) = (e1(λ)− k2λ)η.

Since λ = tan(α/2), we have

α̇ =
α̇

2 cos2(α/2)
− tan(α/2)k2.

Since α = α(u), we see that k2 = k2(u). With respect to the chosen coordinate
system

k2 = −∂uf
f
.

Hence, f(u, v) = a(v)h(u) and after the parameter change

ds2 = du2 + h2(u) dv2.
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Thus we have the equation on h(u)

α̇ =
α̇

2 cos2(α/2)
− tan(α/2)(− ḣ

h
),

with a general solution
h(u) = C sinα.

After the parameter v rescaling, we come to

ds2 = du2 + sin2 αdv2.

Conversely, let π : E1 → B is a unit sphere bundle over the Riemanian mani-
fold

(
B, ds2 = du2 + sin2 α(u) dv2

)
with the bi-sectional curvature of the bundle

connection κ = α̇(u). Let us show, that there is a local section ξ which satisfies

∇F∂uξ = 0, ∇F∂vξ = 2 sin2(α/2)η

Take an arbitrary orthonormal sections {s1, s2}. Then

ξ = cos θ s1 + sin θ s2, η = − sin θ s1 + cos θ s2,

where θ is some smooth function. Then〈
∇F∂uξ, η

〉
= ∂uθ + γ2

1|1 = 0,
〈
∇F∂vξ, η

〉
= ∂vθ + γ2

1|2 = 2 sin2(α/2)

or
∂1θ = γ1

2|1, ∂2θ = γ1
2|2 + 2 sin2(α/2).

Then the integrability condition takes the form

∂2γ
1
2|1 − ∂1γ

1
2|2 = 2 sin(α/2) cos(α/2)α̇ = sin(α)α̇.

In the left hand side we have gF
(
RF (∂1, ∂2)s1, s2

)
. By definition,

gF
(
RF (∂1, ∂2)s1, s2

)
sinα

= κ.

Hence, the condition α̇ = κ provides the integrability.

Direct computation implies the following assertion.

Corollary 3 Suppose π : E1 → B is a unit circle bundle over a surface. Suppose
the bundle connection of π : E → B is non-flat and E1 admits a totally geodesic
local section. Then the base manifold Gaussian curvature K and the bi-sectional
bundle curvature κ satisfy

K = κ2 − cotα(u)κ̇. (8)
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Examples.

3.1 The unit tangent bundle.

In this case one can find the totally geodesic section explicitly.

Theorem 3 [11] Let (M2, g) be a Riemannian manifold with a sign -preserving
non-zero Gaussian curvature K. Then M admits a local totally geodesic unit
vector field ξ if and only if there is a local parametrization of M with respect to
which the line element takes the form

ds2 = du2 + sin2 α(u) dv2,

where α(u) is a solution of the differential equation

dα

du
= 1− a+ 1

cosα
.

The corresponding local unit vector field ξ is of the form

ξ = cos(av + ω0) ∂u +
sin(av + ω0)

sinα(u)
∂v,

where a, ω0 = const.

It is worthwhile to mention that Gaussian curvature K of the metric from the
Theorem 3 is

K =
dα

du
= 1− a+ 1

cosα

and after evident reparametrization, the metric takes the form

ds2 =
1

K(α)
dα2 + sin2 αdv2.

The curvature K could be non-zero constant iff a = −1 and K = 1. In this case,
the integral trajectories of the totally geodesic unit vector field ξ are stereogra-
phically equivalent to the pencil of parallel straight lines on the plane [11].

In general, the integral trajectories of the totally geodesic unit vector fields
on M2 are conformally equivalent to the trajectories of the totally geodesic unit
vector field on the plane E2.

3.2 The unit normal bundle

In this case the bi-sectional bundle curvature is the same as the Gaussian
torsion κΓ. In [12] it was proved, that every analytic 2-dimensional metric admits
a local isometric immersion into E4 as analytic surface with prescribed analytic
Gaussian torsion. So, if we take arbitrary monotonic smooth function 0 < α(u) <
π and put κΓ = α̇(u), then there is a surface in E4 with unit normal bundle
satisfying the conditions of Theorem 2. For example, if we take α = c u and
κΓ = α̇ = c, then the Gaussian curvature of the base K = c2 and we get a
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local constant curvature surface with constant Gaussian torsion in E4 with some
local totally geodesic unit section. Observe, that in this case T⊥1 F 2 is a space of
constant curvature c2

4 .
Another surface which satisfies the conditions of Theorem 2 is the Veronese

surface V 2(r) ⊂ S4(R) ⊂ E5 given by

y =

{
1√
3
x1x3,

1√
3
x2x3,

1√
3
x1x2,

1

2
√

3
(x2

1 − x2
2),

1

6
(x2

1 + x2
2 − 2x2

3)

}
,

where x2
1 + x2

2 + x2
3 = r2. This is a surface in a sphere of radius R = r2

3 . The V 2

has constant Gaussian curvature K and constant Gaussian torsion κΓ, namely

K =
3

r4
, κΓ =

6

r4
= 2K.

The necessary condition (8) is fulfilled if K = 1
4 , that is when r = 4

√
12. In this

case
K =

1

4
, κΓ =

1

2
.

By passing to spherical coordinates

x1 = r sin(u/2) cos(v/2), x2 = r sin(u/2) sin(v/2), x3 = r cos(u/2),

the first fundamental form of the Veronese surface takes the form (for r = 4
√

12)

ds2 = du2 + sin2(u/2) dv2.

Evidently, α(u) = u
2 and exactly α̇u = κΓ = 1

2 . Remark that T⊥1 (V 2( 4
√

12) is of
constant sectional curvature 1

16 .

3.3 Minimal unit normal sections

The example below show that there is a minimal but not totaly geodesic global
section of a unit normal bundle of a surface in the Euclidean space.

Propozition 1 The graph of complex curve w = ez admits a global unit normal
vector field which provides a global minimal but not totally geodesic embedding of
the 2-plane into the unit normal bundle of the curve.

Proof.The complex curve w = ez is a surface in E4 given by

~r = {x, y, ex cos y, ex sin y},

The tangent (non-orthonormal) and normal frames are given by

∂x = {1, 0, ex cos y, ex sin y}, ∂y = {0, 1,−ex sin y, ex cos y},

n1 =
1√

1 + e2x
{−ex cos y, ex sin y, 1, 0},
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n2 =
1√

1 + e2x
{−ex sin y,−ex cos y, 0, 1}.

Put ξ = n1 and η = n2. Then the frame

e1 = − 1√
1 + e2x

∂x, e2 =
1√

1 + e2x
∂y,

meets the requirements of the Lemma 6 with

tan(α/2) = λ =
e2x

(1 + e2x)3/2
.

We have
ñh = − λ√

1 + λ2
e2

and then 〈
∇e1 ñh, e1

〉
= 0,

〈
∇e2 ñh, e2

〉
= 0,

that is H̃ = 0.
The Gaussian curvature and Gaussian torsion are of the form

K = −κΓ = −2
e2x

(1 + e2x)3
.

Since α = 2 arctanλ, then

e1(α) = 2
e1(λ)

1 + λ2
= −2

e2x(e2x − 2)

1 + 3e2x + 4e4x + e6x
6= κΓ.

The next example is interesting itself. Consider the tangent bundle TM2 with
the Sasaki metric. It is known that the fibers are totally geodesic and intrinsically
flat submanifolds in TM2. The Corollary 1 implies that the Gaussian torsion κΓ

of a single fiber TxM2 is equal to the Gaussian curvature of the base at x and
hence is constant.

Propozition 2 Denote by TxM2 a fiber of TM2 with Sasaki metric. Let ξ = Xh
x

be a unit normal vector field on TxM
2, where Xx ∈ TxM

2 . Then ξ maps the
fiber into minimal submanifold in the unit normal bundle of the fiber.

Proof.Take a fiber TxM2. Then at each point ξ ∈ TxM
2, the tangent frame

of TxM2 consists of ηvx, ζvx and the normal frame consists of Xh
x , Y

h
x , where

(ηx, ζx, Xx, Yx) ∈ TxM
2. As the fibers are totally geodesic, the curvature ten-

sor of the normal bundle connection of the fiber is defined by the curvature tensor
component of TM2 of the form

g̃(x,ξ)

(
R̃(ηv, ζv)Xh, Y h

)
= gx

(
R(η, ζ)X,Y ).
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Hence, the Gaussian torsion of the fiber is

κΓ(TxM
2) = K(x),

where K(x) is the Gaussian curvature of M2 at x ∈M2.
Let (η, ζ) and (X,Y ) be orthonormal frames in TxM2 oriented in such a way

that
gx
(
R(η, ζ)X,Y )

)
= K(x).

By applying Lemma 2 to the case of tangent bundle, we get

∇̃ηvXh =
1

2

(
R(ξ, η)X

)h
.

Decompose
ξ = ξ1η + ξ2ζ.

As the fiber metric is Euclidean,

ñh = − K(x){−ξ2, ξ1}√
1 +K2(x)((ξ1)2 + (ξ2)2)

.

and hence

−div (ñh) = ∂ξ1Z
1 + ∂ξ2Z

2 =
K3(x)

(1 +K2(x)|ξ|2)3/2
(−ξ2ξ1 + ξ1ξ2) = 0.

So we see, that any unit normal vector field on the fiber TxM2 of the form ξ = Xh
x

is minimal in the unit normal bundle of the fiber.
A single fiber TxM2 ⊂ TM2 does not admit a totally geodesic unit normal

section of its normal bundle if the base manifold have non-zero curvature at the
corresponding point. Indeed, the single has zero Gaussian curvature while the
Gaussian torsion of the fiber is equal to the Gaussian curvature K(x) 6= 0 of the
base manifold at the corresponding point (and hence is constant along the fiber)
and we come to a contradiction with (8).
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