On the intrinsic geometry of a unit vector field*

Yampolsky A.

Abstract

We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K \neq 0,1$. We also found a family ξ_{ω} of vector fields on the hyperbolic 2-plane L^{2} of curvature $-c^{2}$ which generate foliations on $T_{1} L^{2}$ with leaves of constant intrinsic curvature $-c^{2}$ and of constant extrinsic curvature $-\frac{c^{2}}{4}$.

Keywords: Sasaki metric, vector field, sectional curvature, totally geodesic submanifolds.
AMS subject class: Primary 54C40,14E20; Secondary 46E25, 20C20

Introduction

A unit vector field ξ on a Riemannian manifold M is called holonomic if ξ is a field of normals of some family of regular hypersurfaces in M and nonholonomic otherwise. The geometry of non-holonomic unit vector fields has been developed by A.Voss at the end of the 19-th century. The foundations of this theory can be found in [1]. Recently, the geometry of a unit vector field has been considered from another point of view. Namely, let $T_{1} M$ be the unit tangent sphere bundle of M endowed with the Sasaki metric [9]. If ξ is a unit vector field on M, then one may consider ξ as a mapping $\xi: M \rightarrow T_{1} M$ so that the image $\xi(M)$ is a submanifold in $T_{1} M$ with the metric induced from $T_{1} M$. So, one may apply the methods from the study of the geometry of submanifolds to determine geometrical characteristics of a unit vector field. For example, the unit vector field ξ is said to be minimal if $\xi(M)$ is of minimal volume with respect to the induced metric [6]. A number of examples of locally minimal vector unit fields has been found (see $[2,3,7]$). On the other hand, using the geometry of submanifolds, we may find the Riemannian, Ricci or scalar curvature of a unit vector field using the second fundamental form of the submanifold $\xi(M) \in T_{1} M$ found in [11]. In this paper we apply this approach to the simplest case when the base space is 2 -dimensional and hence the submanifold $\xi(M) \in T_{1} M$ is a hypersurface.

[^0]Aknowlegement. The author expresses his thanks to E.Boeckx for valuable remarks and the referee for careful reading and corrections.

1 The results

Let ξ be a given unit vector field. Denote by e_{0} a unit vector field such that $\nabla_{e_{0}} \xi=0$. Denote by e_{1} a unit vector field, orthogonal to e_{0}, such that

$$
\nabla_{e_{1}} \xi=\lambda \eta
$$

where η is a unit vector field, orthogonal to ξ. The function λ is a signed singular value of a linear operator $\nabla \xi: T M \rightarrow \xi^{\perp}$ (acting as $\left.(\nabla \xi) X=\nabla_{X} \xi\right)$. Set

$$
\nabla_{\xi} \xi=k \eta, \quad \nabla_{\eta} \eta=\kappa \xi
$$

The functions k and κ are the signed geodesic curvatures of the integral curves of the fields ξ and η respectively. We prove that $\lambda^{2}=k^{2}+\kappa^{2}$.

Denote the signed geodesic curvatures of the integral curves of the fields e_{0} and e_{1} as μ and σ respectively. Then

$$
\nabla_{e_{0}} e_{0}=\mu e_{1}, \quad \nabla_{e_{1}} e_{1}=\sigma e_{0}
$$

The rientations of the frames (ξ, η) and $\left(e_{0}, e_{1}\right)$ are independent. Set $s=1$ if the orientations are coherent and $s=0$ otherwise.

The following result (Lemma 3.2) is a basic tool for the study.
Let M be a 2-dimensional Riemannian manifold of Gaussian curvature K. The second fundamental form Ω of the submanifold $\xi(M) \subset T_{1} M$ is given by

$$
\Omega=\left[\begin{array}{cc}
-\mu \frac{\lambda}{\sqrt{1+\lambda^{2}}} & (-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}} \\
(-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}} & e_{1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)
\end{array}\right]
$$

Using the formula for the sectional curvature of $T_{1} M^{n}$, we find an expression for the Gaussian curvature of $\xi\left(M^{2}\right)$ (Lemma 3.4).

The Gaussian curvature K_{ξ} of a hypersurface $\xi(M) \in T_{1} M$ is given by

$$
\begin{aligned}
K_{\xi}=\frac{K^{2}}{4}+\frac{K(1-K)}{1+\lambda^{2}} & +(-1)^{s+1} \frac{\lambda}{1+\lambda^{2}} e_{0}(K)+ \\
& \frac{1}{2} \mu e_{1}\left(\frac{1}{1+\lambda^{2}}\right)-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2}
\end{aligned}
$$

where K is the Gaussian curvature of M.
As applications of these Lemmas, we prove the following theorems.
Theorem 3.1 Let M^{2} be a Riemannian manifold of constant Gaussian curvature K. A unit vector field ξ generating a totally geodesic submanifold in $T_{1} M^{2}$ exists if and only if $K=0$ or $K=1$. Moreover,
(a) if $K=0$, then ξ is either a parallel vector field or moving along a family of parallel geodesics with constant angle speed. Geometrically, $\xi\left(M^{2}\right)$ is either M^{2} imbedded isometrically into $M^{2} \times S^{1}$ as a factor or a (helical) flat submanifold in $M^{2} \times S^{1}$;
(b) if $K=1$, then ξ is a vector field on a standard sphere S^{2} which is parallel along the meridians and moving along the parallels with a unit angle speed. Geometrically, $\xi\left(M^{2}\right)$ is a part of totally geodesic $R P^{2}$ locally isometric to sphere S^{2} of radius 2 in $T_{1} S^{2} \stackrel{\text { isom }}{\approx} R P^{3}$.

Theorem 3.3 Let M^{2} be a space of constant Gaussian curvature K. Suppose that ξ is a unit geodesic vector field on M^{2}. Then $\xi\left(M^{2}\right)$ has constant Gaussian curvature in one of the following cases:
(a) $K=-c^{2}<0$ and ξ is a normal vector field for the family of horocycles on the hyperbolic 2-plane L^{2} of curvature $-c^{2}$. In this case, $K_{\xi}=-c^{2}$ and therefore $\xi\left(M^{2}\right)$ is locally isometric the base space;
(b) $K=0$ and ξ is a parallel vector field on M^{2}. In this case $K_{\xi}=0$ and $\xi\left(M^{2}\right)$ is also locally isometric to the base space;
(c) $K=1$ and ξ is any (local) geodesic vector field on the standard sphere S^{2}. In this case, $K_{\xi}=0$.

Theorem 3.4 Let L^{2} be a hyperbolic 2-plane of constant curvature $-c^{2}$. Then $T_{1} L^{2}$ admits a hyperfoliation with leaves of constant intrinsic curvature $-c^{2}$ and of constant extrinsic curvature $-\frac{c^{2}}{4}$. The leaves are generated by unit vector fields making a constant angle with a pencil of parallel geodesics on L^{2}.

2 Basic definitions and preliminary results

Let (M, g) be an $(n+1)$ - dimensional Riemannian manifold with metric g. Let ∇ denote the Levi-Civita connection on M. Then $\nabla_{X} \xi$ is always orthogonal to ξ and hence, $(\nabla \xi) X \stackrel{\text { def }}{=} \nabla_{X} \xi: T_{p} M \rightarrow \xi_{p}^{\perp}$ is a linear operator at each $p \in M$. We define an adjoint operator $(\nabla \xi)^{*} X: \xi_{p}^{\perp} \rightarrow T_{p} M$ by

$$
\left\langle(\nabla \xi)^{*} X, Y\right\rangle_{g}=\left\langle X, \nabla_{Y} \xi\right\rangle_{g} .
$$

Then there is an orthonormal frame $e_{0}, e_{1}, \ldots, e_{n}$ in $T_{p} M$ and an orthonormal frame f_{1}, \ldots, f_{n} in ξ_{p}^{\perp} such that

$$
\begin{equation*}
(\nabla \xi) e_{0}=0, \quad(\nabla \xi) e_{\alpha}=\lambda_{\alpha} f_{\alpha}, \quad(\nabla \xi)^{*} f_{\alpha}=\lambda_{\alpha} e_{\alpha}, \quad \alpha=1, \ldots, n \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are real-valued functions.
Definition 2.1 The orthonormal frames satisfying (1) are called singular frames for the linear operator $(\nabla \xi)$ and the real valued functions $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are called the (signed) singular values of the operator $\nabla \xi$ with respect to the singular frame.

Remark that the sign of the singular value is definied up to the directions of the vectors of the singular frame.

For each $\tilde{X} \in T_{(p, \xi)} T M$ there is a decomposition

$$
\tilde{X}=X_{1}^{h}+X_{2}^{v}
$$

where $(\cdot)^{h}$ and $(\cdot)^{v}$ are the horizontal and vertical lifts of vectors X_{1} and X_{2} from $T_{p} M$ to $T_{(p, \xi)} T M$. The Sasaki metric is defined by the scalar product of the form

$$
\langle\langle\tilde{X}, \tilde{Y}\rangle\rangle=\left\langle X_{1}, Y_{1}\right\rangle+\left\langle X_{2}, Y_{2}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ means the scalar product with respect to metric g.
The following lemma has been proved in [11].
Lemma 2.1 At each point $(p, \xi) \in \xi(M) \subset T M$ the vectors

$$
\left\{\begin{array}{l}
\tilde{e}_{0}=e_{0}^{h} \tag{2}\\
\tilde{e}_{\alpha}=\frac{1}{\sqrt{1+\lambda_{\alpha}^{2}}}\left(e_{\alpha}^{h}+\lambda_{\alpha} f_{\alpha}^{v}\right), \quad \alpha=1, \ldots, n,
\end{array}\right.
$$

form an orthonormal frame in the tangent space of $\xi(M)$ and the vectors

$$
\begin{equation*}
\tilde{n}_{\sigma \mid}=\frac{1}{\sqrt{1+\lambda_{\sigma}^{2}}}\left(-\lambda_{\sigma} e_{\sigma}^{h}+f_{\sigma}^{v}\right), \quad \sigma=1, \ldots, n \tag{3}
\end{equation*}
$$

form an orthonormal frame in the normal space of $\xi(M)$.
Let $R(X, Y) \xi=\left[\nabla_{X}, \nabla_{Y}\right] \xi-\nabla_{[X, Y]} \xi$ be the curvature tensor of M. Introduce the following notation

$$
\begin{equation*}
r(X, Y) \xi=\nabla_{X} \nabla_{Y} \xi-\nabla_{\nabla_{X} Y} \xi \tag{4}
\end{equation*}
$$

Then, evidently,

$$
R(X, Y) \xi=r(X, Y) \xi-r(Y, X) \xi
$$

The following Lemma has also been proved in [11].
Lemma 2.2 The components of second fundamental form of $\xi(M) \subset T_{1} M$ with respect to the frame (3) are given by

$$
\begin{aligned}
\tilde{\Omega}_{\sigma \mid 00}= & \frac{1}{\sqrt{1+\lambda_{\sigma}^{2}}}\left\langle r\left(e_{0}, e_{0}\right) \xi, f_{\sigma}\right\rangle, \\
\tilde{\Omega}_{\sigma \mid \alpha 0}= & \frac{1}{2} \frac{1}{\sqrt{\left(1+\lambda_{\sigma}^{2}\right)\left(1+\lambda_{\alpha}^{2}\right)}}\left[\left\langle r\left(e_{\alpha}, e_{0}\right) \xi+r\left(e_{0}, e_{\alpha}\right) \xi, f_{\sigma}\right\rangle+\right. \\
& \left.\lambda_{\sigma} \lambda_{\alpha}\left\langle R\left(e_{\sigma}, e_{0}\right) \xi, f_{\alpha}\right\rangle\right], \\
\tilde{\Omega}_{\sigma \mid \alpha \beta}= & \frac{1}{2} \frac{1}{\sqrt{\left(1+\lambda_{\sigma}^{2}\right)\left(1+\lambda_{\alpha}^{2}\right)\left(1+\lambda_{\beta}^{2}\right)}}\left[\left\langle r\left(e_{\alpha}, e_{\beta}\right) \xi+r\left(e_{\beta}, e_{\alpha}\right) \xi, f_{\sigma}\right\rangle\right. \\
& \left.+\lambda_{\alpha} \lambda_{\sigma}\left\langle R\left(e_{\sigma}, e_{\beta}\right) \xi, f_{\alpha}\right\rangle+\lambda_{\beta} \lambda_{\sigma}\left\langle R\left(e_{\sigma}, e_{\alpha}\right) \xi, f_{\beta}\right\rangle\right],
\end{aligned}
$$

where $\left\{e_{0}, e_{1}, \ldots, e_{n} ; f_{1}, \ldots, f_{n}\right\}$ is a singular frame of $(\nabla \xi)$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding singular values.

Let $\tilde{\nabla}$ and ∇ be the Levi-Civita connections of the Sasaki metric of $T M$ and the metric of M respectively. The Kowalski formulas [8] give the covariant derivatives of combinations of lifts of vector fields.

Lemma 2.3 (O.Kowalski) Let X and Y be vector fields on M. Then at each point $(p, \xi) \in T M$ we have

$$
\begin{aligned}
& \tilde{\nabla}_{X^{h}} Y^{h}=\left(\nabla_{X} Y\right)^{h}-\frac{1}{2}(R(X, Y) \xi)^{v}, \\
& \tilde{\nabla}_{X^{h}} Y^{v}=\frac{1}{2}(R(\xi, Y) X)^{h}+\left(\nabla_{X} Y\right)^{v}, \\
& \tilde{\nabla}_{X^{v}} Y^{h}=\frac{1}{2}(R(\xi, X) Y)^{h}, \\
& \tilde{\nabla}_{X^{v}} Y^{v}=0,
\end{aligned}
$$

where R is the Riemannian curvature tensor of (M, g).
This basic result allows to find the curvature tensor of $T M$ (see [8]) and the curvature tensor of $T_{1} M$ (see [4]). As a corollary, it is not too hard to find an expression for the sectional curvature of $T_{1} M$. It is well-known that ξ^{v} is a unit normal for $T_{1} M$ as a hypersurface in $T M$. Thus, $\tilde{X}=X_{1}^{h}+X_{2}^{v}$ is tangent to $T_{1} M$ if and only if $\left\langle X_{2}, \xi\right\rangle=0$.

Let $\tilde{X}=X_{1}^{h}+X_{2}^{v}$ and $\tilde{Y}=Y_{1}^{h}+Y_{2}^{v}$, where $X_{2}, Y_{2} \in \xi^{\perp}$, form an orthonormal base of a 2-plane $\tilde{\pi} \subset T_{(p, \xi)} T_{1} M$. Then we have [5]:

$$
\begin{align*}
\tilde{K}(\tilde{\pi})= & \left\langle R\left(X_{1}, Y_{1}\right) Y_{1}, X_{1}\right\rangle-\frac{3}{4}\left\|R\left(X_{1}, Y_{1}\right) \xi\right\|^{2}+ \\
& \frac{1}{4}\left\|R\left(\xi, Y_{2}\right) X_{1}+R\left(\xi, X_{2}\right) Y_{1}\right\|^{2}+\left\|X_{2}\right\|^{2}\left\|Y_{2}\right\|^{2}-\left\langle X_{2}, Y_{2}\right\rangle^{2}+ \tag{5}\\
& 3\left\langle R\left(X_{1}, Y_{1}\right) Y_{2}, X_{2}\right\rangle-\left\langle R\left(\xi, X_{2}\right) X_{1}, R\left(\xi, Y_{2}\right) Y_{1}\right\rangle+ \\
& \left\langle\left(\nabla_{X_{1}} R\right)\left(\xi, Y_{2}\right) Y_{1}, X_{1}\right\rangle+\left\langle\left(\nabla_{Y_{1}} R\right)\left(\xi, X_{2}\right) X_{1}, Y_{1}\right\rangle .
\end{align*}
$$

Combining the results of Lemma 2.1, Lemma 2.2 and (5), we can write an expression for the sectional curvature of $\xi(M)$.

Lemma 2.4 Let \tilde{X} and \tilde{Y} be an ortonormal vectors which span a 2-plane $\tilde{\pi}$ tangent to $\xi(M) \subset T_{1} M$. Denote by $K_{\xi}(\tilde{\pi})$ the sectional curvature $\xi(M)$ with respect to metric, induced by Sasaki metric of $T_{1} M$. Then

$$
\begin{equation*}
K_{\xi}(\tilde{\pi})=\tilde{K}(\tilde{\pi})+\sum_{\sigma}\left(\Omega_{\sigma \mid}(\tilde{X}, \tilde{X}) \Omega_{\sigma \mid}(\tilde{Y}, \tilde{Y})-\Omega_{\sigma \mid}^{2}(\tilde{X}, \tilde{Y})\right) \tag{6}
\end{equation*}
$$

where $\tilde{K}(\tilde{\pi})$ is the sectional curvature of $T_{1} M$ given by (5), $\Omega_{\mid \sigma}$ are the components of the second fundamental form of $\xi(M)$ given by Lemma 2.2 and the vectors are given with respect to the frame (2).

3 The 2-dimensional case

Let M be a 2-dimensional Riemannian manifold. The following proposition gives useful information about the relation between the singular values of the $(\nabla \xi)$ - operator, geometric characteristics of the integral curves of singular frame and the Gaussian curvature of the manifold.

Lemma 3.1 Let ξ be a given smooth unit vector field on M^{2}. Denote by e_{0} a unit vector field on M^{2} such that $\nabla_{e_{0}} \xi=0$. Let η and e_{1} be the unit vector fields on M^{2} such that (ξ, η) and $\left(e_{0}, e_{1}\right)$ form two orthonormal frames on M^{2}. Denote by λ a signed singular value of the operator $(\nabla \xi)$. Then we have

$$
\nabla_{e_{1}} \xi=\lambda \eta
$$

and the following relations hold:
(a) if $k=\left\langle\nabla_{\xi} \xi, \eta\right\rangle$ is a signed geodesic curvature of a ξ-curve and $\kappa=$ $\left\langle\nabla_{\eta} \eta, \xi\right\rangle$ is a signed geodesic curvature of a η-curve, then

$$
\lambda^{2}=k^{2}+\kappa^{2} ;
$$

(b) if K is the Gaussian curvature of M^{2}, then

$$
(-1)^{s} K=e_{0}(\lambda)-\lambda \sigma,
$$

where $\sigma=\left\langle\nabla_{e_{1}} e_{1}, e_{0}\right\rangle$ is a signed geodesic curvature of a e_{1}-curve and $s=\left\{\begin{array}{l}1 \text { if the frames }(\xi, \eta) \text { and }\left(e_{0}, e_{1}\right) \text { have the same orientation, } \\ 0 \text { if the frames }(\xi, \eta) \text { and }\left(e_{0}, e_{1}\right) \text { have an opposite orientation }\end{array}\right.$.

Proof. (a) If (ξ, η) is an orthonormal frame on M^{2}, then

$$
\begin{array}{lll}
\nabla_{\xi} \xi=k \eta, & & \nabla_{\xi} \eta=-k \xi \\
\nabla_{\eta} \xi & =-\kappa \eta, & \nabla_{\eta} \eta=\kappa \xi \tag{7}
\end{array}
$$

Geometrically, the functions k and κ are the signed geodesic curvatures of ξ and η-curves respectively.

In a similar way we get

$$
\begin{array}{ll}
\nabla_{e_{0}} e_{0}=\mu e_{1}, & \nabla_{e_{0}} e_{1}=-\mu e_{0} \tag{8}\\
\nabla_{e_{1}} e_{0}=-\sigma e_{1}, & \nabla_{e_{1}} e_{1}=\sigma e_{0}
\end{array}
$$

where μ and σ are the signed geodesic curvatures of the $e_{0}-$ and e_{1}-curves respectively.

Let ω be an angle function between ξ and e_{0}. Then we have two possible decompositions:

$$
\operatorname{Or}(+)\left\{\begin{array} { l }
{ e _ { 0 } = \operatorname { c o s } \omega \xi + \operatorname { s i n } \omega \eta , } \\
{ e _ { 1 } = - \operatorname { s i n } \omega \xi + \operatorname { c o s } \omega \eta , }
\end{array} \quad \operatorname { O r } (-) \left\{\begin{array}{l}
e_{0}=\cos \omega \xi+\sin \omega \eta \\
e_{1}=\sin \omega \xi-\cos \omega \eta
\end{array}\right.\right.
$$

In the case $\operatorname{Or}(+)$ we have

$$
\begin{aligned}
& \nabla_{e_{0}} \xi=(k \cos \omega-\kappa \sin \omega) \eta, \\
& \nabla_{e_{1}} \xi=-(k \sin \omega+\kappa \cos \omega) \eta
\end{aligned}
$$

and due to the choice of e_{0} and e_{1} we see that

$$
\left\{\begin{aligned}
k \cos \omega-\kappa \sin \omega & =0 \\
k \sin \omega+\kappa \cos \omega & =-\lambda
\end{aligned}\right.
$$

So, for the case of $\operatorname{Or}(+) k=-\lambda \sin \omega, \kappa=-\lambda \cos \omega$.
In a similar way, for the case of $\operatorname{Or}(-) k=\lambda \sin \omega, \kappa=\lambda \cos \omega$. In both cases

$$
\lambda^{2}=k^{2}+\kappa^{2} .
$$

(b) Due to the choice of the frames,

$$
\begin{aligned}
\left\langle R\left(e_{0}, e_{1}\right) \xi, \eta\right\rangle= & \left\langle\nabla_{e_{0}} \nabla_{e_{1}} \xi-\nabla_{e_{1}} \nabla_{e_{0}} \xi-\nabla_{\left.\nabla_{e_{0} e_{1}}-\nabla_{e_{1} e_{0}} \xi, \eta\right\rangle=}\right. \\
& \left\langle\nabla_{e_{0}}(\lambda \eta)-\nabla_{-\mu e_{0}+\sigma e_{1}} \xi, \eta\right\rangle=e_{0}(\lambda)-\lambda \sigma .
\end{aligned}
$$

On the other hand,

$$
\left\langle R\left(e_{0}, e_{1}\right) \xi, \eta\right\rangle=\left\{\begin{array}{l}
-K \text { for the case of } \operatorname{Or}(+) \tag{9}\\
+K \text { for the case of } \operatorname{Or}(-)
\end{array}\right.
$$

Set $s=1$ for the case $\operatorname{Or}(+)$ and $s=0$ for the case $\operatorname{Or}(-)$. Combining the results, we get $(-1)^{s} K=e_{0}(\lambda)-\lambda \sigma$, which completes the proof.

The result of Lemma 2.2 can also be simplified in the following way.
Lemma 3.2 Let M be a 2-dimensional Riemannian manifold of Gaussian curvature K. In terms of Lemma 3.1 the second fundamental form of the submanifold $\xi(M) \subset T_{1} M$ can be presented in two equivalent forms:
(i)

$$
\Omega=\left[\begin{array}{cc}
-\mu \frac{\lambda}{\sqrt{1+\lambda^{2}}} & (-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}} \\
(-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}} & e_{1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)
\end{array}\right]
$$

(ii)

$$
\Omega=\left[\begin{array}{cc}
-\mu \frac{\lambda}{\sqrt{1+\lambda^{2}}} & \frac{1}{2}\left(\sigma \lambda+\frac{1-\lambda^{2}}{1+\lambda^{2}} e_{0}(\lambda)\right) \\
\frac{1}{2}\left(\sigma \lambda+\frac{1-\lambda^{2}}{1+\lambda^{2}} e_{0}(\lambda)\right) & e_{1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)
\end{array}\right]
$$

Proof.

At each point $(p, \xi) \in \xi(M)$ the vectors

$$
\left\{\begin{array}{l}
\tilde{e}_{0}=e_{0}^{h} \\
\tilde{e}_{1}=\frac{1}{\sqrt{1+\lambda^{2}}}\left(e_{1}^{h}+\lambda \eta^{v}\right)
\end{array}\right.
$$

form an orthonormal frame in the tangent space of $\xi(M)$ and

$$
\tilde{n}=\frac{1}{\sqrt{1+\lambda^{2}}}\left(-\lambda e_{1}^{h}+\eta^{v}\right)
$$

is a unit normal for $\xi(M) \subset T_{1} M$.
Thus we see that in a 2-dimensional case the components of Ω take the form

$$
\begin{aligned}
& \Omega_{00}=\frac{1}{\sqrt{1+\lambda^{2}}}\left\langle r\left(e_{0}, e_{0}\right) \xi, \eta\right\rangle, \quad \Omega_{11}=\frac{1}{\left(1+\lambda^{2}\right)^{3 / 2}}\left\langle r\left(e_{1}, e_{1}\right) \xi, \eta\right\rangle, \\
& \Omega_{01}=\frac{1}{2} \frac{1}{1+\lambda^{2}}\left[\left\langle r\left(e_{1}, e_{0}\right) \xi+r\left(e_{0}, e_{1}\right) \xi, \eta\right\rangle+\lambda^{2}\left\langle R\left(e_{1}, e_{0}\right) \xi, \eta\right\rangle\right] .
\end{aligned}
$$

Keeping in mind (4), (8) and (9), we see that

$$
\begin{array}{ll}
\left\langle r\left(e_{0}, e_{0}\right) \xi, \eta\right\rangle=-\mu \lambda, & \left\langle r\left(e_{0}, e_{1}\right) \xi, \eta\right\rangle=e_{0}(\lambda), \\
\left\langle r\left(e_{1}, e_{0}\right) \xi, \eta\right\rangle=\sigma \lambda, & \left\langle r\left(e_{1}, e_{1}\right) \xi, \eta\right\rangle=e_{1}(\lambda), \\
\left\langle R\left(e_{0}, e_{1}\right) \xi, \eta\right\rangle=(-1)^{s} K . &
\end{array}
$$

So we have

$$
\begin{aligned}
& \Omega_{00}=-\mu \frac{\lambda}{\sqrt{1+\lambda^{2}}}, \quad \Omega_{11}=\frac{e_{1}(\lambda)}{\left(1+\lambda^{2}\right)^{3 / 2}}=e_{1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right), \\
& \Omega_{01}=\frac{1}{2\left(1+\lambda^{2}\right)}\left(e_{0}(\lambda)+\lambda \sigma-\lambda^{2}(-1)^{s} K\right)=\left\{\begin{array}{l}
(-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}} \\
\frac{1}{2}\left(\sigma \lambda+\frac{1-\lambda^{2}}{1+\lambda^{2}} e_{0}(\lambda)\right)
\end{array}\right.
\end{aligned}
$$

where Lemma 3.1 (b) has been applied in two ways.

3.1 Totally geodesic vector fields

The main goal of this section is to prove the following theorem.
Theorem 3.1 Let M^{2} be a Riemannian manifold of constant Gaussian curvature K. A unit vector field ξ generating a totally geodesic submanifold in $T_{1} M^{2}$ exists if and only if $K=0$ or $K=1$. Moreover,
a) if $K=0$, then ξ is either a parallel vector field or is moving along a family of parallel geodesics with constant angle speed. Geometrically, $\xi\left(M^{2}\right)$ is either M^{2} imbedded isometrically into $M^{2} \times S^{1}$ as a factor or a (helical) flat submanifold in $M^{2} \times S^{1}$;
b) if $K=1$, then ξ is a vector field on a sphere S^{2} which is parallel along the meridians and moving along the parallels with a unit angle speed. Geometrically, $\xi\left(M^{2}\right)$ is a part of totally geodesic $R P^{2}$ locally isometric to sphere S^{2} of radius 2 in $T_{1} S^{2} \stackrel{\text { isom }}{\approx} R P^{3}$.

The proof will be divided into a series of separate propositions.
Proposition 3.1 Let M^{2} be a Riemannian manifold. Let D be a domain in M^{2} endowed with a semi-geodesic coordinate system such that $d s^{2}=d u^{2}+$ $f^{2} d v^{2}$, where $f(u, v)$ is some non-vanishing function. Denote by $\left(e_{0}, e_{1}\right)$ an orthonormal frame in D and specify $e_{0}=\partial_{u}, e_{1}=f^{-1} \partial_{v}$. If ξ is a unit vector field in D parallel along u-geodesics, then ξ can be written given as

$$
\xi=\cos \omega e_{0}+\sin \omega e_{1},
$$

where $\omega=\omega(v)$ is an angle function and
(a) a singular frame for ξ may be chosen as $\left\{e_{0}, e_{1}, \eta=-\sin \omega e_{0}+\cos \omega e_{1}\right\}$;
(b) a singular value for ξ in this case is $\lambda=e_{1}(\omega)-\sigma$, where σ is a signed geodesic curvature of the e_{1}-curves.

Proof. Indeed, if ξ is parallel along u-geodesics, then evidently the angle function ω between ξ and the u-curves does not depend on u. So this function has the form $\omega=\omega(v)$ and $\xi=\cos \omega e_{0}+\sin \omega e_{1}$. Moreover, since

$$
\begin{array}{ll}
\nabla_{e_{0}} e_{0}=0, & \nabla_{e_{0}} e_{1}=0 \\
\nabla_{e_{1}} e_{0}=\frac{f_{u}}{f} e_{1}, & \nabla_{e_{1}} e_{1}=-\frac{f_{u}}{f} e_{0},
\end{array}
$$

we see that $\sigma=-\frac{f_{u}}{f}$ and $\nabla_{e_{1}} \xi=\left(e_{1}(\omega)-\sigma\right) \eta$, where $\eta=-\sin \omega e_{0}+\cos \omega e_{1}$. Therefore, $\lambda=e_{1}(\omega)-\sigma$ and the proof is complete.

Proposition 3.2 Let M^{2} be a Riemannian manifold of constant negative curvature $K=-r^{-2}<0$. Then there is no totally geodesic unit vector field on M^{2}.

Proof. Suppose ξ is totally geodesic unit vector field on M^{2}. Set $\Omega \equiv 0$ in Lemma 3.2. Then $\lambda \mu \equiv 0$. If $\lambda \equiv 0$ in some domain $D \subset M^{2}$, then ξ is parallel in this domain and hence M^{2} is flat in D, which contradicts the hypothesis. Suppose that $\mu \equiv 0$ at least in some domain $D \subset M^{2}$. This means that e_{0-} curves are geodesics in D and the field ξ is parallel along them. Choose a family of e_{0}-curves and the orthogonal trajectories as a local coordinate net in D. Then the first fundamental form of M^{2} takes the form

$$
d s^{2}=d u^{2}+f^{2} d v^{2},
$$

where $f(u, v)$ is some function. Since M^{2} is of constant curvature $K=-\frac{1}{r^{2}}$, the function f satisfies the equation

$$
f_{u u}-\frac{1}{r^{2}} f=0
$$

The general solution of this equation is

$$
f(u, v)=A(v) \cosh (u / r)+B(v) \sinh (u / r)
$$

There are two possible cases:
(i) $A^{2}(v) \equiv B^{2}(v)$ over the whole domain D;
(ii) $A^{2}(v) \neq B^{2}(v)$ in some subdomain $D^{\prime} \subset D$.

Case (i). In this case, in dependence of the signs of $A(v)$ and $B(v)$,

$$
f(u, v)=A(v) e^{u / r} \quad \text { or } \quad f(u, v)=A(v) e^{-u / r}
$$

Consider the first case (the second case can be reduced to the first one after the parameter change $u \rightarrow-u)$. Making an evident v-parameter change, we reduce the metric to the form

$$
d s^{2}=d u^{2}+r^{2} e^{2 u / r} d v^{2}
$$

Applying Proposition 3.1 for $f=r e^{u / r}$, we get $\lambda=\frac{1}{r}\left(\omega^{\prime} e^{-u / r}+1\right)$. Setting $\Omega_{11} \equiv 0$, we see that $e_{1}(\lambda) \equiv 0$. Hence $\omega^{\prime \prime}=0$, i.e., $\omega=a v+b$. Therefore,

$$
\lambda=\frac{1}{r}\left(a e^{-u / r}+1\right) .
$$

Considering $\Omega_{01} \equiv 0$ (with $s=1$ because of $\operatorname{Or}(+$)-case), we get

$$
-\frac{1}{2 r^{2}}+\frac{\frac{1}{r} e_{0}\left(a e^{-u / r}+1\right)}{1+\frac{1}{r^{2}}\left(e^{-u / r} a+1\right)^{2}}=-\frac{\left(\frac{1}{r^{2}}+1\right)\left(a e^{-u / r}+1\right)^{2}-a^{2} e^{-2 u / r}}{2 r^{2}\left[1+\frac{1}{r^{2}}\left(a e^{-u / r}+1\right)^{2}\right]} \not \equiv 0,
$$

and hence, this case is not possible.
Case (ii). Choose a subdomain $D^{\prime} \subset D$ such that $A^{2}(v)<B^{2}(v)$ or $A^{2}(v)>$ $B^{2}(v)$ over D^{\prime}. Then the function f may be presented respectively in two forms:
(a) $f(u, v)=\sqrt{B^{2}-A^{2}} \sinh (u / r+\theta)$ or
(b) $f(u, v)=\sqrt{A^{2}-B^{2}} \cosh (u / r+\theta)$,
where $\theta(v)$ is some function.
Consider the case (a). After a v-parameter change, the metric in D^{\prime} takes the form

$$
d s^{2}=d u^{2}+r^{2} \sinh ^{2}(u / r+\theta) d v^{2} .
$$

Applying Proposition 3.1 for $f=r \sinh (u / r+\theta)$, we get

$$
\lambda=\frac{\omega^{\prime}}{r \sinh (u / r+\theta)}+\frac{1}{r} \operatorname{coth}(u / r+\theta)
$$

Considering $\Omega_{11} \equiv 0$, we have $e_{1}(\lambda) \equiv 0$ which implies the identity

$$
\omega^{\prime \prime} \sinh (u / r+\theta)-\omega^{\prime} \theta^{\prime} \cosh (u / r+\theta)-\theta^{\prime} \equiv 0 .
$$

From this we get $\omega^{\prime \prime}=0, \quad \theta^{\prime}=0$ and hence $\left\{\begin{array}{c}\theta=\text { const }, \\ \omega=a v+b\end{array} \quad(a, b=\right.$ const $)$. After a parameter change we reduce the metric to the form

$$
d s^{2}=d u^{2}+r^{2} \sinh ^{2}(u / r) d v^{2}
$$

Applying Proposition 3.1 for $f=r \sinh (u / r)$, we get $\lambda=\frac{a+\cosh (u / r)}{r \sinh (u / r)}$. The substitution into Ω_{01} gives

$$
-\frac{1}{2} \frac{\left(\frac{1}{r^{2}}+1\right)[a+\cosh (u / r)]^{2}-a^{2}+1}{r^{2} \sinh ^{2}(u / r)+[a+\cosh (u / r)]^{2}} \not \equiv 0,
$$

which completes the proof for the polar case.
The Cartesian case consideration gives $\omega=a v+b, \quad \lambda=\frac{a+\sinh (u / r)}{r \cosh (u / r)}$ and $\Omega_{01}=-\frac{1}{2} \frac{\left(\frac{1}{r^{2}}+1\right)[a+\sinh (u / r)]^{2}-a^{2}-1}{r^{2} \cosh ^{2}(u / r)+[a+\sinh (u / r)]^{2}} \not \equiv 0$, which completes the proof.

Proposition 3.3 Let M^{2} be a Riemannian manifold of constant positive curvature $K=r^{-2}>0$. Then a totally geodesic unit vector field ξ on M^{2} exists if $r=1$ and ξ is parallel along the meridians of M^{2} locally isometric to S^{2} and moves along the parallels with a unit angle speed. Geometrically, $\xi\left(M^{2}\right)$ is a part of totally geodesic $R P^{2}$ locally isometric to sphere S^{2} of radius 2 in $T_{1} S^{2} \stackrel{\text { isom }}{\approx} R P^{3}$.

Proof. Suppose ξ is totally geodesic unit vector field on M^{2}. The same arguments as in Proposition 3.2 lead to the case $\mu \equiv 0$ at least in some domain $D \subset M^{2}$. So, choose again a family of e_{0}-curves and the orthogonal trajectories as a local coordinate net in D. Then the first fundamental form of M^{2} can be expressed as $d s^{2}=d u^{2}+f^{2} d v^{2}$, where $f(u, v)$ is some function. Since M^{2} is of constant curvature $K=r^{-2}$, the function f satisfies the equation

$$
f_{u u}+\frac{1}{r^{2}} f=0
$$

The general solution of this equation $f(u, v)=A(v) \cos (u / r)+B(v) \sin (u / r)$ may be presented in two forms:
(a) $f(u, v)=\sqrt{A^{2}+B^{2}} \sin (u / r+\theta)$ or
(b) $f(u, v)=\sqrt{A^{2}+B^{2}} \cos (u / r+\theta)$,
where $\theta(v)$ is some function.
Consider first, the case (a). After v-parameter change, the metric in D takes the form

$$
d s^{2}=d u^{2}+r^{2} \sin ^{2}(u / r+\theta) d v^{2} .
$$

Applying Proposition 3.1 for $f=r \sin (u / r+\theta)$, we get

$$
\lambda=\frac{\omega^{\prime}}{r \sin (u / r+\theta)}+\frac{1}{r} \cot (u / r+\theta)
$$

Setting $\Omega_{11} \equiv 0$, we find $e_{1}(\lambda) \equiv 0$ which implies the identity

$$
\omega^{\prime \prime} \sin (u / r+\theta)-\omega^{\prime} \theta^{\prime} \cos (u / r+\theta)+\theta^{\prime} \equiv 0
$$

From this $\omega^{\prime \prime}=0, \quad \theta^{\prime}=0$ and we have again $\left\{\begin{array}{c}\theta=\text { const }, \\ \omega=a v+b\end{array} \quad a, b=\right.$ const. After a suitable u-parameter change, we reduce the metric to the form

$$
d s^{2}=d u^{2}+r^{2} \sin ^{2}(u / r) d v^{2}
$$

Applying Proposition 3.1 for $f=r \sin (u / r)$, we get $\lambda=\frac{a+\cos (u / r)}{r \sin (u / r)}$. Substitution into Ω_{01} gives

$$
\frac{1}{2} \frac{\left(\frac{1}{r^{2}}-1\right)[a+\cos (u / r)]^{2}+a^{2}-1}{r^{2} \sin ^{2}(u / r)+[a+\cos (u / r)]^{2}} \equiv 0,
$$

which is possible only if $r=1$ and $|a|=1$. So, we obtain to the standard sphere metric

$$
d s^{2}=d u^{2}+\sin ^{2} u d v^{2}
$$

and (after the $\pm v+b \rightarrow v$ parameter change) the unit vector field

$$
\xi=\left\{\cos v, \frac{\sin v}{\sin u}\right\} .
$$

This vector field is parallel along the meridians of S^{2} and moves helically along the parallels of S^{2} with unit angle speed.

For the case (b) one can find $\omega=a v+b, \quad \lambda=\frac{a-\sin (u / r)}{r \cos (u / r)}$ and

$$
\Omega_{01}=\frac{1}{2} \frac{\left(\frac{1}{r^{2}}-1\right)[a-\sin (u / r)]^{2}+a^{2}-1}{r^{2} \cos ^{2}(u / r)+[a-\sin (u / r)]^{2}} \equiv 0
$$

which gives $r=1$ and $|a|=1$ as a result. Thus, we have a metric

$$
d s^{2}=d u^{2}+\cos ^{2} u d v^{2}
$$

and a vector field $\xi=\left\{\cos v, \frac{\sin v}{\cos u}\right\}$. It is easy to see that the results of cases (a) and (b) are geometrically equivalent.

Introduce the local coordinates (u, v, ω) on $T_{1} S^{2}$, where ω is the angle between arbitrary unit vector ξ and the coordinate vector field $X_{1}=\{1,0\}$. The first fundamental form of $T_{1} S^{2}$ with respect to these coordinates is [10]

$$
d \tilde{s}^{2}=d u^{2}+d v^{2}+2 \cos u d v d \omega+d \omega^{2}
$$

The local parameterization of the submanifold $\xi\left(S^{2}\right)$, generated by the given field, is $\omega=v$ and the induced metric on $\xi\left(S^{2}\right)$ is

$$
d \tilde{s}^{2}=d u^{2}+2(1+\cos u) d v^{2}=d u^{2}+4 \cos ^{2} u / 2 d v^{2}
$$

Thus, $\xi\left(S^{2}\right)$ is locally isometric to sphere S^{2} of radius 2 . Since $T_{1} S^{2} \stackrel{\text { isom }}{\approx} R P^{3}$ and there are no other totally geodesic submanifolds in $R P^{3}$ except $R P^{2}$, we see that $\xi\left(S^{2}\right)$ is a part of $R P^{2}$. So the proof is complete.

Proposition 3.4 Let M^{2} be a Riemannian manifold of constant zero curvature $K=0$. Then a totally geodesic unit vector field ξ on M^{2} is either parallel or moves along the family of parallel geodesics with constant angle speed. Geometrically, $\xi\left(M^{2}\right)$ is either E^{2} imbedded isometrically into $E^{2} \times S^{1}$ as a factor or a helical flat submanifold in $E^{2} \times S^{1}$.

Proof. Suppose ξ is totally geodesic unit vector field on M^{2}. Set $\Omega \equiv 0$ in Lemma 3.2. Then $\lambda \mu \equiv 0$. If $\lambda \equiv 0$ over some domain $D \subset M^{2}$, then ξ is parallel in this domain.

Suppose $\lambda \not \equiv 0$ in a domain $D \subset M^{2}$. Then $\mu \equiv 0$ on at least a subdomain $D^{\prime} \subset D$. This means that the e_{0}-curves are geodesics in D^{\prime} and the field ξ is parallel along them. Choose a family of e_{0}-curves and the orthogonal trajectories as a local coordinate net in D^{\prime}. Then the first fundamental form of M^{2} takes the form $d s^{2}=d u^{2}+f^{2} d v^{2}$ and since M^{2} is of zero curvature, f satisfies the equation

$$
f_{u u}=0 .
$$

A general solution of this equation is $f(u, v)=A(v) u+B(v)$. There are two possible cases:
(a) $A(v) \neq 0$ in some subdomain $D^{\prime \prime} \subset D^{\prime}$;
(b) $A(v) \equiv 0$ over the whole domain D^{\prime}.

Case(a). The function f may be presented over $D^{\prime \prime}$ in the form

$$
f(u, v)=A(v)(u+\theta)
$$

where $\theta(v)=B(v) / A(v)$. After a v-parameter change, the metric in $D^{\prime \prime}$ takes the form $d s^{2}=d u^{2}+(u+\theta)^{2} d v^{2}$. Applying Proposition 3.1 for $f=u+\theta$, we get $\lambda=\frac{\omega^{\prime}+1}{u+\theta}$. Setting $\Omega_{11} \equiv 0$, we obtain the identity

$$
\omega^{\prime \prime}(u+\theta)-\left(\omega^{\prime}+1\right) \theta^{\prime} \equiv 0
$$

From this we get $\left\{\begin{array}{l}\omega^{\prime \prime}=0 \\ \omega^{\prime}=-1\end{array}\right.$ or $\left\{\begin{array}{l}\omega^{\prime \prime}=0 \\ \theta^{\prime}=0\end{array}\right.$. In the first case, $\lambda=0$ and the field ξ is parallel again. In the second case $\left\{\begin{array}{l}\theta=\text { const }, \\ \omega=a v+b\end{array} \quad a, b=\right.$ const.

Making a parameter change, we reduce the metric to the form

$$
d s^{2}=d u^{2}+u^{2} d v^{2}
$$

Applying Proposition 3.1 with $f(u, v)=u$, we get $\lambda=\frac{a+1}{u}$. The substitution into Ω_{01} gives the condition

$$
-\frac{a+1}{u^{2}+(a+1)^{2}}=0
$$

which is possible only if $a=-1$. But this means that again $\lambda=0$ and hence ξ is a parallel vector field.

Case (b). After a v-parameter change, the metric takes the form

$$
d s^{2}=d u^{2}+d v^{2} .
$$

Applying Proposition 3.1 for $f \equiv 1$, we get $\lambda=\omega^{\prime}$. Setting $\Omega_{11} \equiv 0$, we find $\omega^{\prime \prime} \equiv 0$. This means that $\omega=a v+b$ and ξ is either parallel along the u-lines ($a=0$) or moves along the u-lines helically with constant angle speed.

Let (u, v, ω) be standard coordinates in $E^{2} \times S^{1}$. Then the first fundamental form of $E^{2} \times S^{1}$ is

$$
d \tilde{s}^{2}=d u^{2}+d v^{2}+d \omega^{2} .
$$

If $a=0$, then with respect to these coordinates the local parameterization of $\xi\left(E^{2}\right)$ is $\omega=$ const and $\xi\left(E^{2}\right)$ is nothing else but E^{2} isometrically imbedded into $E^{2} \times S^{1}$. If $a \neq 0$, then the local parameterization of $\xi\left(E^{2}\right)$ is $\omega=a v+b$ and the induced metric is

$$
d \tilde{s}^{2}=d u^{2}+\left(1+a^{2}\right) d v^{2}
$$

which is flat. The imbedding is helical in the sense that this submanifold meets each flat element of the cylinder $p: E^{2} \times S^{1} \rightarrow S^{1}$ under constant angle $\varphi=$ $\arccos \frac{1}{\sqrt{1+a^{2}}}$. So the proof is complete.

3.2 The curvature

The main goal of this section is to obtain an explicit formula for the Gaussian curvature of $\xi\left(M^{2}\right)$ and apply it to some specific cases. The first step is the following lemma.

Lemma 3.3 Let ξ be a unit vector field on a 2-dimensional Riemannian manifold of Gaussian curvature K. In terms of Lemma 3.1, the sectional curvature $K_{T_{1} M}(\xi)$ of $T_{1} M$ along 2-planes tangent to $\xi(M)$ is given by

$$
K_{T_{1} M}(\xi)=\frac{K^{2}}{4}+\frac{K(1-K)}{1+\lambda^{2}}+(-1)^{s+1} \frac{\lambda}{1+\lambda^{2}} e_{0}(K) .
$$

Proof. Let $\tilde{\pi}$ be a 2-plane tangent to $\xi(M)$. Then $\tilde{X}=e_{0}^{h}$ and $\tilde{Y}=\frac{1}{\sqrt{1+\lambda^{2}}}\left(e_{1}^{h}+\right.$ $\lambda \eta^{v}$) form an orthonormal basis of $\tilde{\pi}$. So we may apply (5) setting $X_{1}=e_{0}$, $X_{2}=0, Y_{1}=\frac{1}{\sqrt{1+\lambda^{2}}} e_{1}, Y_{2}=\frac{\lambda}{\sqrt{1+\lambda^{2}}} \eta$.

We get

$$
\begin{aligned}
& \left\langle R\left(X_{1}, Y_{1}\right) Y_{1}, X_{1}\right\rangle=\frac{1}{1+\lambda^{2}}\left\langle R\left(e_{0}, e_{1}\right) e_{1}, e_{0}\right\rangle=\frac{1}{1+\lambda^{2}} K \\
& \left\|R\left(X_{1}, Y_{1}\right) \xi\right\|^{2}=\frac{1}{1+\lambda^{2}}\left\|R\left(e_{0}, e_{1}\right) \xi\right\|^{2}=\frac{1}{1+\lambda^{2}} K^{2} \\
& \left\|R\left(\xi, Y_{2}\right) X_{1}\right\|^{2}=\frac{\lambda^{2}}{1+\lambda^{2}}\left\|R(\xi, \eta) e_{0}\right\|^{2}=\frac{\lambda^{2}}{1+\lambda^{2}} K^{2}, \\
& \left\langle\left(\nabla_{X_{1}} R\right)\left(\xi, Y_{2}\right) Y_{1}, X_{1}\right\rangle=\frac{\lambda}{1+\lambda^{2}}\left\langle\left(\nabla_{e_{0}} R\right)(\xi, \eta) e_{1}, e_{0}\right\rangle=-(-1)^{s} \frac{\lambda}{1+\lambda^{2}} e_{0}(K),
\end{aligned}
$$

where K is the Gaussian curvature of M. Applying directly (5) we obtain

$$
\begin{aligned}
K_{T_{1} M}(\xi) & =\frac{1}{1+\lambda^{2}}\left(K-\frac{3}{4} K^{2}+\frac{\lambda^{2} K^{2}}{4}+(-1)^{s+1} \lambda e_{0}(K)\right) \\
& =\frac{1}{1+\lambda^{2}}\left(K(1-K)+\frac{\left(1+\lambda^{2}\right) K^{2}}{4}+(-1)^{s+1} \lambda e_{0}(K)\right) \\
& =\frac{K^{2}}{4}+\frac{K(1-K)}{1+\lambda^{2}}+(-1)^{s+1} \frac{\lambda}{1+\lambda^{2}} e_{0}(K)
\end{aligned}
$$

Now we have the following.
Lemma 3.4 Let ξ be a unit vector field on a 2-dimensional Riemannian manifold M. In terms of Lemma 3.1, the Gaussian curvature K_{ξ} of the hypersurface $\xi(M) \in T_{1} M$ is given by

$$
\begin{aligned}
K_{\xi}=\frac{K^{2}}{4}+\frac{K(1-K)}{1+\lambda^{2}} & +(-1)^{s+1} \frac{\lambda}{1+\lambda^{2}} e_{0}(K)+ \\
& \frac{1}{2} \mu e_{1}\left(\frac{1}{1+\lambda^{2}}\right)-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2}
\end{aligned}
$$

where K is the Gaussian curvature of M.
Proof. In our case, one can easily reduce the formula (6) to the form

$$
K_{\xi}=K_{T_{1} M}(\xi)+\operatorname{det} \Omega
$$

Applying Lemma 3.2, we see that

$$
\begin{aligned}
\operatorname{det} \Omega= & -\mu \frac{\lambda}{\sqrt{1+\lambda^{2}}} e_{1}\left(\frac{\lambda}{\sqrt{1+\lambda^{2}}}\right)-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2}= \\
& -\frac{1}{2} \mu e_{1}\left(\frac{\lambda^{2}}{1+\lambda^{2}}\right)-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2}= \\
& \frac{1}{2} \mu e_{1}\left(\frac{1}{1+\lambda^{2}}\right)-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2} .
\end{aligned}
$$

Combining this result with Lemma 3.3, we get what was claimed.
As an application of Lemma 3.4 we prove the following theorems.
Theorem 3.2 Let M^{2} be a 2-dimensional Riemannian manifold of Gaussian curvature K. Suppose that ξ is a unit geodesic vector field on M^{2}. Then the submanifold $\xi\left(M^{2}\right) \subset T_{1} M^{2}$ has non-positive extrinsic curvature.

Proof. By definition, the extrinsic curvature of a submanifold is the difference between the sectional curvature of the submanifold and the sectional curvature of ambient space along the planes, tangent to the submanifold. In our case, this is $\operatorname{det} \Omega$. If ξ is a geodesic vector field, then we may choose $e_{0}=\xi$ and then $\mu=k=0$. Therefore, for the extrinsic curvature we get

$$
-\left((-1)^{s+1} \frac{K}{2}+\frac{e_{0}(\lambda)}{1+\lambda^{2}}\right)^{2} \leq 0
$$

Theorem 3.3 Let M^{2} be a space of constant Gaussian curvature K. Suppose that ξ is a unit geodesic vector field on M^{2}. Then $\xi\left(M^{2}\right)$ has constant Gaussian curvature in one of the following cases:
(a) $K=-c^{2}<0$ and ξ is a normal vector field for the family of horocycles on the hyperbolic 2-plane L^{2}. In this case $K_{\xi}=-c^{2}$ and therefore $\xi\left(L^{2}\right)$ is locally isometric to L^{2};
(b) $K=0$ and ξ is a parallel vector field on M^{2}. In this case $K_{\xi}=0$ and $\xi\left(M^{2}\right)$ is also locally isometric to M^{2};
(c) $K=1$ and ξ is any (local) geodesic vector field on the standard sphere S^{2}. In this case $K_{\xi}=0$.

Proof.

Since ξ is geodesic, we may set $e_{0}=\xi, e_{1}=\eta, s=1$. Taking into account (7) and (8), we see that $\lambda=-\kappa=-\sigma$. Lemma 3.1 (b) gives $-K=-e_{0}(\sigma)+\sigma^{2}$. So the result of Lemma 3.4 takes the form

$$
\begin{aligned}
K_{\xi}= & \frac{K^{2}}{4}+\frac{K(1-K)}{1+\sigma^{2}}-\left(\frac{K}{2}-\frac{e_{0}(\sigma)}{1+\sigma^{2}}\right)^{2}= \\
& \frac{K^{2}}{4}+\frac{K(1-K)}{1+\sigma^{2}}-\left(\frac{K}{2}-\frac{K+\sigma^{2}}{1+\sigma^{2}}\right)^{2}= \\
& \frac{K(1-K)}{1+\sigma^{2}}+\frac{K\left(K+\sigma^{2}\right)}{1+\sigma^{2}}-\left(\frac{K+\sigma^{2}}{1+\sigma^{2}}\right)^{2}= \\
& K-\left(\frac{K+\sigma^{2}}{1+\sigma^{2}}\right)^{2} .
\end{aligned}
$$

Suppose that K_{ξ} is constant. Then the following cases should be considered:
(a) $\sigma=$ const $\neq 0$. This means that the orthogonal trajectories of the field ξ consist of curves of constant curvature. With respect to this natural coordinate system, the metric of M^{2} takes the form $d s^{2}=d u^{2}+f^{2} d v^{2}$. Set $\sigma=-c$. Then the function f should satisfy the equation

$$
\frac{f_{u}}{f}=c
$$

the general solution of which is $f(u, v)=A(v) e^{c u}$. After v-parameter change we obtain metric of the form

$$
d s^{2}=d u^{2}+e^{2 c u} d v^{2}
$$

So, the manifold M^{2} is locally isometric to the hyperbolic 2-plane L^{2} of curvature $-c^{2}$ and the field ξ is a geodesic field of (internal or external) normals to the family of horocycles.
(b) $\sigma=0$. Then evidently ξ is a parallel vector field and therefore the manifold M^{2} is locally Euclidean which implies $K_{\xi}=0$.
(c) σ is not constant. Then K_{ξ} is constant if $K=1$ only. So, M^{2} is contained in a standard sphere S^{2} and the curvature of $\xi\left(S^{2}\right)$ does not depend on σ. Thus, the field ξ is any (local) geodesic vector field. Evidently, $K_{\xi}=0$ for this case.

The case (a) of the Theorem 3.3 has an interesting generalization of the following kind.

Theorem 3.4 Let L^{2} be a hyperbolic 2-plane of curvature $-c^{2}$. Then $T_{1} L^{2}$ admits a hyperfoliation with leaves of constant intrinsic curvature $-c^{2}$ and of constant extrinsic curvature $-\frac{c^{2}}{4}$. The leaves are generated by unit vector fields making a constant angle with a pencil of parallel geodesics on L^{2}.
Proof. Consider L^{2} with metric $d s^{2}=d u^{2}+e^{2 c u} d v^{2}$ and a family of vector fields

$$
\xi_{\omega}=\cos \omega X_{1}+\sin \omega X_{2} \quad(\omega=\text { const })
$$

where $X_{1}=\{1,0\}, \quad X_{2}=\left\{0, e^{-c u}\right\}$ are the unit vector fields.
Since $\nabla_{X_{1}} \xi_{\omega}=0$, we may set $e_{0}=X_{1}, \quad e_{1}=X_{2}$ end therefore we have $\sigma=-c, \quad \lambda=c$. Then, setting $K=-c^{2}$ and $\lambda=c$ in Lemma 3.4, we get

$$
K_{\xi}=-c^{2}
$$

The extrinsic curvature of $\xi\left(L^{2}\right)$ is also constant since

$$
\operatorname{det} \Omega=-\frac{1}{4} c^{2}
$$

Now fix a point P_{∞} at infinity boundary of L^{2} and draw a pencil of parallel geodesics from P_{∞} through each point of L^{2}. Define a family of submanifolds $\xi_{\omega}\left(L^{2}\right)$ for this pencil. Evidently, through each point $(p, \zeta) \in T_{1} L^{2}$ there passes only one submanifold of this family. Thus, a family of submanifods ξ_{ω} form a
hyperfoliation on $T_{1} L^{2}$ of constant intrinsic curvature $-c^{2}$ and constant extrinsic curvature $-\frac{c^{2}}{4}$.

Geometrically, $\xi_{\omega}\left(L^{2}\right)$ is a family of coordinate hypersurfaces $\omega=$ const in $T_{1} L^{2}$. Indeed, let (u, v, ω) form a natural local coordinate system on $T_{1} L^{2}$. Then the metric of $T_{1} L^{2}$ has the form

$$
d s^{2}=d u^{2}+2 e^{2 u} d v^{2}+2 d v d \omega+d \omega^{2} .
$$

With respect to these coordinates, the coordinate hypersurface $\omega=$ const is nothing else but $\xi_{\omega}\left(L^{2}\right)$ and the induced metric is

$$
d s^{2}=d u^{2}+2 e^{2 c u} d v^{2}
$$

Evidently, its Gaussian curvature is constant and equal to $-c^{2}$.

References

[1] Aminov Yu. The geometry of vector fields.//Gordon\&Breach Publ., 2000.
[2] Boeckx E., Vanhecke L. Harmonic and minimal radial vector fields.// Acta Math. Hungar. 90(2001), 317-331.
[3] Boeckx E., Vanhecke L. Harmonic and minimal vector fields on tangent and unit tangent bundles.// Differential Geom. Appl. 13 (2000), 77-93.
[4] Boeckx E., Vanhecke L. Characteristic reflections on unit tangent sphere bundle.// Houston J. Math. 23(1997), 427-448.
[5] Borisenko A., Yampolsky A. The sectional curvature of the Sasaki metric of $T_{1} M^{n}$.//Ukr. Geom. Sb. 30 (1987), 10-17. (Engl. transl.: J. Sov. Math. 51(1990), No 5, 2503-2508).
[6] Gluck H., Ziller W. On the volume of a unit vector field on the three-sphere. // Comm. Math. Helv. 61 (1986), 177-192.
[7] González-Dávila J.C., Vanhecke L. Examples of minimal unit vector fields.// Ann Global Anal. Geom. 18 (2000), 385-404.
[8] Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold.// J. Reine Angew. Math. 250(1971), 124-129.
[9] Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds. // Tôhoku Math. J. 10 (1958), 338-354.
[10] Klingenberg W, Sasaki S. Tangent sphere bundle of a $2-$ sphere.// Tôhoku Math. J. 27 (1975), 45-57.
[11] Yampolsky A. On the mean curvature of a unit vector field.// Math. Publ. Debrecen, 2002, to appear.

Department of Geometry,
Faculty of Mechanics and Mathematics, Kharkiv National University,
Svobody Sq. 4,
61077, Kharkiv,
Ukraine.
e-mail: yamp@univer.kharkov.ua

[^0]: *Comment. Mat. Univ. Carolinae 43, 2 (2002), 299-317.

