Transverse totally geodesic submanifolds of the tangent bundle.^{*}

Mohamed Tahar Kadaoui ABBASSI Alexander YAMPOLSKY

July 14, 2002

Abstract

It is well-known that if ξ is a smooth vector field on a given Riemannian manifold M^n then ξ naturally defines a submanifold $\xi(M^n)$ transverse to the fibers of the tangent bundle TM^n with Sasaki metric. In this paper, we are interested in transverse totally geodesic submanifolds of the tangent bundle. We show that a transverse submanifold N^l of TM^n $(1 \le l \le n)$ can be realized locally as the image of a submanifold F^l of M^n under some vector field ξ defined along F^l . For such images $\xi(F^l)$, the conditions to be totally geodesic are presented. We show that these conditions are not so rigid as in the case of l = n, and we treat several special cases (ξ of constant length, ξ normal to F^l , M^n of constant curvature, M^n a Lie group and ξ a left invariant vector field).

Keywords: Sasaki metric, vector field along submanifolds, totally geodesic submanifolds in the tangent bundle.

AMS subject class: Primary 53B25, 53C42; Secondary 22E15, 53B20, 53B21, 53C12, 53C25, 53M10.

Introduction.

Let (M^n, g) be a Riemannian manifold and (TM^n, g_s) its tangent bundle equipped with the Sasaki metric [12]. Let ξ be a given smooth vector field on M^n . Then ξ naturally defines a mapping $\xi : M^n \to TM^n$ such that the submanifold $\xi(M^n) \subset TM^n$ is transverse to the fibers. This fact allows to ascribe to the vector field ξ some geometrical characteristics from the geometry of submanifolds. We say that the vector field ξ is minimal, totally umbilic or totally geodesic if $\xi(M^n)$ possesses the same property. In a similar way we can say about the sectional, Ricci or scalar curvature of a vector field. For the case of a unit vector field this approach has been proposed

^{*}Math. Publ. Debrecen 64/1-2 (2004), 129-154

by H.Gluck and W.Ziller [6]. They proved that the Hopf vector field h on three-sphere S^3 is one with globally minimal volume, i.e. $h(S^3)$ is a globally minimal submanifold in the unit tangent bundle T_1S^3 . Corresponding local consideration leads to the notion of the mean curvature of a unit vector field and a number of examples of locally minimal unit vector fields were found based on a preprint version of [5] (see [1, 2, 7] and references). In a different way, the second author found examples of unit vector fields of constant mean curvature [18] and completely described the totally geodesic unit vector fields on 2-dimensional manifolds of constant curvature [19]. The energy of a mapping $\xi : M^n \to T_1 M^n$ can also be ascribed to the vector field ξ and we can say about the energy of a unit vector field (see [17, 4, 15] and references).

In contrast to unit vector fields, there are few results (both of local or global aspects) on the geometry of general vector fields treated as submanifolds in the *tangent bundle*. It is known [10] that if ξ is the zero vector field, then $\xi(M^n)$ is totally geodesic in TM^n . Walczak P. [14] treated the case when ξ is a non-zero vector field on M^n and proved that if ξ is a parallel vector field on M^n , then $\xi(M^n)$ is totally geodesic in TM^n . Moreover, if ξ is of constant length, then $\xi(M^n)$ is totally geodesic in TM^n if and only if ξ is a parallel vector field on M^n . The latter condition is rather burdensome. The basic manifold M^n should be a metrical product $M^{n-k} \times E^k$ $(k \ge 1)$, where E^k is a Euclidean (flat) factor.

Remark that $\xi(M^n)$ has maximal dimension among submanifolds in the tangent bundle, transverse to the fibers. In this paper, we study submanifolds N^l of TM^n with $l \leq n$ which are transverse to the fibers. We show in section 2 that any transverse submanifold N^l of TM^n can be realized locally as the image of a submanifold F^l of M^n under some vector field ξ defined along F^l . We also investigate some cases when the image can be globally realized. Mainly, we are interested in submanifolds among this class which are totally geodesic. In this way, we get a chain of inclusions:

$$\xi(F^l) \subset \xi(M^n) \subset TM^n.$$

In comparison with the case when ξ is defined over the whole M^n or, at least, over a domain $D^n \subset M^n$ as in [14], the picture becomes different, because $\xi(F^l)$ can be totally geodesic in TM^n while $\xi(M^n)$ is not. Our considerations include also the case when the vector field is defined only on F^l , so that ξ defines a "direct" embedding $\xi: F^l \to TM^n$.

For l = 1 we get nothing else but a vector field along a curve in M^n which generates a geodesic in TM^n . Sasaki S. [12] described geodesic lines in TM^n in terms of vector fields along curves in M^n and found the differential equations on the curve and the corresponding vector field. Moreover, in the case when M^n is of constant curvature, Sato K. [13] explicitly described the curves and the vector fields. Evidently, our approach takes an intermediate position between the above mentioned considerations for l = 1 and l = n.

Necessary and sufficient conditions on $\xi(F^l)$ to be totally geodesic, that we make explicit in section 3 (Proposition 3.1), have a clearer geometrical meaning if we suppose that ξ is of constant length along F^l (Theorem 3.2) or is a normal vector field along F^l (Theorem 3.3). Indeed, an application of Theorem 3.3 to the specific case of foliated Riemannian manifolds allows us to clarify the geometrical structure of $\xi(M^n)$ (Corollary 3.5).

The case of a base space M^n of constant curvature is discussed in detail in section 4. An application to the case of a Riemannian manifold of constant curvature enlightens us as to the non rigidity of the totally geodesic property of $\xi(F^l)$, l < n, contrary to the case l = n.

Finally, an application of our results to Lie groups endowed with biinvariant metrics gives a clear geometrical picture of our problem.

Remark. Throughout the paper

- M^n is a given Riemannian manifold with metric \bar{g} , F^l is a submanifold of M^n with the induced metric g, TM^n is the tangent bundle of M^n equipped with the Sasaki metric g_s ;
- $\overline{\nabla}$, ∇ , $\widetilde{\nabla}$ are the Levi-Civita connections with respect to \overline{g} , g, g_s respectively;
- the indices range is fixed as $a, b, c = 1 \dots n; i, j, k = 1 \dots l;$
- all the vector fields are supposed sufficiently smooth, say of class C^{∞} .

1 Local geometry of $\xi(F^l)$.

1.1 Tangent bundle of $\xi(F^l)$.

Let (M^n, \bar{g}) be an *n*-dimensional Riemannian manifold with metric \bar{g} . Denote by $\bar{g}(\cdot, \cdot)$ the scalar product with respect to \bar{g} . The *Sasaki metric* g_s on TM^n is defined by the following scalar product: if \tilde{X}, \tilde{Y} are tangent vector fields on TM^n , then

$$g_s(\tilde{X}, \tilde{Y}) = \bar{g}(\pi_* \tilde{X}, \pi_* \tilde{Y}) + \bar{g}(K \tilde{X}, K \tilde{Y})$$
(1)

where $\pi_*: TTM^n \to TM^n$ is the differential of the projection $\pi: TM^n \to M^n$ and $K: TTM^n \to TM^n$ is the connection map [3]. The local representations for π_* and K are the following ones. Let (x^1, \ldots, x^n) be a local coordinate system on M^n . Denote by $\partial/\partial x^a$ the natural tangent coordinate frame. Then, at each point $x \in M^n$, any tangent vector ξ can be decomposed as $\xi = \xi^a \frac{\partial}{\partial x^a}(x)$. The set of parameters $\{x^1, \ldots, x^n; \xi^1, \ldots, \xi^n\}$ forms the natural induced coordinate system in TM^n , i.e. for a point $z = (x, \xi) \in TM^n$, with $x \in M^n$, $\xi \in T_x M^n$, we have $x = (x^1, \ldots, x^n)$, $\xi = \xi^a \frac{\partial}{\partial x^a}(x)$. The natural frame in $T_z T M^n$ is formed by $\left\{\frac{\partial}{\partial x^a}(z), \frac{\partial}{\partial \xi^a}(z)\right\}$ and for any $\tilde{X} \in T_z T M^n$ we have the decomposition $\tilde{X} = \tilde{X}^a \frac{\partial}{\partial x^a}(z) + \tilde{X}^{n+a} \frac{\partial}{\partial \xi^a}(z)$. Now locally, the horizontal and vertical projections of \tilde{X} are given by

$$\pi_* \tilde{X} = \tilde{X}^a \frac{\partial}{\partial x^a} (\pi(z)),$$

$$K \tilde{X} = (\tilde{X}^{n+a} + \bar{\Gamma}^a_{bc}(\pi(z)) \,\xi^b \tilde{X}^c) \,\frac{\partial}{\partial x^a} (\pi(z)),$$
(2)

where $\bar{\Gamma}^a_{bc}$ are the Christoffel symbols of the metric \bar{g} . The inverse operations are called *lifts*. If $\bar{X} = \bar{X}^a \partial/\partial x^a$ is a vector field on M^n then the vector fields on TM given by

$$\begin{split} \bar{X}^h &= \bar{X}^a \partial / \partial x^a - \bar{\Gamma}^a_{bc} \, \xi^b \bar{X}^c \, \partial / \partial \xi^a, \\ \bar{X}^v &= \bar{X}^a \partial / \partial \xi^a \end{split}$$

are called the *horizontal* and *vertical* lifts of X respectively. Remark that for any vector field \overline{X} on M^n it holds

$$\pi_* \bar{X}^h = \bar{X}, \quad K \bar{X}^h = 0,$$

$$\pi_* \bar{X}^v = 0, \qquad K \bar{X}^v = \bar{X}.$$
(3)

Let F^l be an *l*-dimensional submanifold in M^n with a local representation given by

$$x^a = x^a(u^1, \dots, u^l).$$

Let ξ be a vector field on M^n defined in some neighborhood of (or only on) the submanifold F^l . Then the restriction of ξ to the submanifold F^l , called *a vector field on* M^n *along* F^l , generates a submanifold $\xi(F^l) \subset TM^n$ with a local representation of the form

$$\xi(F^{l}): \begin{cases} x^{a} = x^{a}(u^{1}, \dots, u^{l}), \\ \xi^{a} = \xi^{a}(x^{1}(u^{1}, \dots, u^{l}), \dots, x^{n}(u^{1}, \dots, u^{l})). \end{cases}$$
(4)

In what follows we will refer to the submanifold (4) as to one generated by a vector field on M^n along F^l .

The following Proposition describes the tangent space of $\xi(F^l)$.

Proposition 1.1 A vector field \tilde{X} on TM^n is tangent to $\xi(F^l)$ along $\xi(F^l)$ if and only if its horizontal-vertical decomposition is of the form

$$\tilde{X} = X^h + (\bar{\nabla}_X \xi)^v,$$

where X is a tangent vector field on F^l , $\overline{\nabla}_X \xi$ is the covariant derivative of ξ in the direction of X with respect to the Levi-Civita connection of M^n and the lifts are considered as those on TM^n .

Proof. Let us denote by \tilde{e}_i the vectors of the coordinate frame of $\xi(F^l)$. Then, evidently,

$$\tilde{e}_i = \left\{ \frac{\partial x^1}{\partial u^i}, \dots, \frac{\partial x^n}{\partial u^i}; \quad \frac{\partial \xi^1}{\partial u^i}, \dots, \frac{\partial \xi^n}{\partial u^i} \right\}.$$

Applying (2), we have

$$\begin{aligned} \pi_* \tilde{e}_i &= \quad \frac{\partial x^a}{\partial u^i} \frac{\partial}{\partial x^a} = \frac{\partial}{\partial u^i}, \\ K \tilde{e}_i &= \quad \left(\frac{\partial \xi^a}{\partial u^i} + \bar{\Gamma}^a_{bc} \, \xi^b \, \frac{\partial x^c}{\partial u^i} \right) \frac{\partial}{\partial x^a} = \left(\frac{\partial \xi^a}{\partial x^c} \frac{\partial x^c}{\partial u^i} + \bar{\Gamma}^a_{bc} \, \xi^b \, \frac{\partial x^c}{\partial u^i} \right) \frac{\partial}{\partial x^a} \\ &= \quad \frac{\partial x^c}{\partial u^i} \left(\frac{\partial \xi^a}{\partial x^c} + \bar{\Gamma}^a_{bc} \, \xi^b \right) \frac{\partial}{\partial x^a} = \bar{\nabla}_i \xi, \end{aligned}$$

where $\bar{\Gamma}^a_{bc}$ are the Christoffel symbols of the metric \bar{g} taken along F^l and $\bar{\nabla}_i$ means the covariant derivative of a vector field on M^n with respect to the Levi-Civita connection of \bar{g} along the *i*-th coordinate curve of the submanifold $F^l \subset M^n$. Summing up, we have

$$\tilde{e}_i = \left(\frac{\partial}{\partial u^i}\right)^h + (\bar{\nabla}_i \xi)^v.$$
(5)

Let \tilde{X} be a vector field on TM^n tangent to $\xi(F^l)$ along $\xi(F^l)$. Then the following decomposition holds $\tilde{X} = \tilde{X}^i \tilde{e}_i$. Set $X = \tilde{X}^i \partial/\partial u^i$. The vector field X is tangent to F^l and, taking into account (5), the decomposition of \tilde{X} can be represented as $\tilde{X} = X^h + (\bar{\nabla}_X \xi)^v$, which completes the proof.

Corollary 1.1 Let (F^l, g) be a submanifold of a Riemannian manifold (M^n, \bar{g}) with the induced metric. Let ξ be a vector field on M^n along F^l . Then the metric on $\xi(F^l)$, induced by the Sasaki metric of TM^n , is defined by the following scalar product

$$g_s(X, Y) = g(X, Y) + \bar{g}(\bar{\nabla}_X \xi, \bar{\nabla}_Y \xi),$$

for all vector fields $\tilde{X} = X^h + (\bar{\nabla}_X \xi)^v$ and $\tilde{Y} = Y^h + (\bar{\nabla}_Y \xi)^v$ on $\xi(F^l)$, where X, Y are vector fields on F^l .

1.2 Normal bundle of $\xi(F^l)$.

To describe the normal bundle of $\xi(F^l)$, we need one auxiliary notion. Let ξ be a given vector field on a submanifold $F^l \subset M^n$. Then $\bar{\nabla}$ enables us to define a point-wise linear mapping $\bar{\nabla}\xi : T_xF^l \to T_xM^n$, $X \to \bar{\nabla}_X\xi$, for all $x \in M^n$. Its dual mapping, with respect to the corresponding scalar products induced by g and \bar{g} , gives rise to the linear mapping $(\bar{\nabla}\xi)^* : T_xM^n \to T_xF^l$ defined by the formula

$$g\left((\bar{\nabla}\xi)^*W, X\right) = \bar{g}\left(\bar{\nabla}_X\xi, W\right) \text{ for all } W \in T_x M^n \text{ and } X \in T_x F^l.$$
(6)

We call the mapping $(\bar{\nabla}\xi)^* : T_x M^n \to T_x F^l$ the conjugate derivative mapping, or simply conjugate derivative. Remark, that if W is a vector field on M^n , then the application of $(\bar{\nabla}\xi)^*$ gives rise to a vector field $(\bar{\nabla}\xi)^*W$ on F^l by $[(\bar{\nabla}\xi)^*W]_x = (\bar{\nabla}\xi)^*W_x \in T_x F^l$ for all $x \in F^l$.

Now we can prove

Proposition 1.2 Let η and Z be normal and tangent vector fields on F^l respectively. Then the lifts

$$\eta^h, \ \eta^v - ((\bar{\nabla}\xi)^*\eta)^h, \ Z^v - ((\bar{\nabla}\xi)^*Z)^h$$

to the points of $\xi(F^l)$ span the normal bundle of $\xi(F^l)$ in TM^n .

Proof. Let $\tilde{X} = X^h + (\bar{\nabla}_X \xi)^v$ be a vector field on $\xi(F^l)$. Let η and Z be vector fields on F^l which are normal and tangent to F^l respectively. Taking into account (1), (3) and (6), we have

$$g_s(X,\eta^h) = \bar{g}(X,\eta) = 0$$

$$g_s(\tilde{X},\eta^v - [(\bar{\nabla}\xi)^*\eta]^h) = -\bar{g}(X,(\bar{\nabla}\xi)^*\eta) + \bar{g}(\bar{\nabla}_X\xi,\eta)$$

$$= -\bar{g}(\bar{\nabla}_X\xi,\eta) + \bar{g}(\bar{\nabla}_X\xi,\eta) = 0$$

$$g_s(\tilde{X},Z^v - [(\bar{\nabla}\xi)^*Z]^h) = -\bar{g}(X,(\bar{\nabla}\xi)^*Z) + \bar{g}(\bar{\nabla}_X\xi,Z)$$

$$= -\bar{g}(\bar{\nabla}_X\xi,Z) + \bar{g}(\bar{\nabla}_X\xi,Z) = 0$$

Let η_1, \ldots, η_p $(p = 1, \ldots, n - l)$ be a normal frame of F^l while f_1, \ldots, f_l span $T_x F^l$ at each point $x \in F^l$. Consider the vector fields

$$N_{\alpha} = \eta_{\alpha}^{h}, \ P_{\alpha} = \eta_{\alpha}^{v} - ((\bar{\nabla}\xi)^{*}\eta_{\alpha})^{h}, \ F_{i} = f_{i}^{v} - ((\bar{\nabla}\xi)^{*}e_{i})^{h},$$

where $\alpha = 1, \ldots, n - l$; $i = 1, \ldots, n$. Let us show that these are linearly independent. Indeed, suppose that

$$\lambda^{\alpha}N_{\alpha} + \mu^{\alpha}P_{\alpha} + \nu^{i}F_{i} = \{\lambda^{\alpha}\eta_{\alpha} - \mu^{\alpha}(\bar{\nabla}\xi)^{*}\eta_{\alpha} - \nu^{i}(\bar{\nabla}\xi)^{*}e_{i}\}^{h} + \{\mu^{\alpha}\eta_{\alpha} + \nu^{i}f_{i}\}^{v} = 0.$$

Because of the fact that the horizontal and vertical components are linearly independent, we see that $\mu^{\alpha}\eta_{\alpha} + \nu^{i}f_{i} = 0$ which is possible iff $\mu^{\alpha} = 0, \nu^{i} = 0$. Then, from the horizontal part of the decomposition above we see that $\lambda^{\alpha} = 0$. So, N_{α} , P_{α} and F_{i} are linearly independent, which completes the proof.

Remark. In the case when ξ is a normal vector field, the images $(\nabla \xi)^* \eta$ and $(\overline{\nabla}\xi)^* Z$ have a simple and natural meaning, namely

$$(\bar{\nabla}\xi)^*\eta = g^{ik}\bar{g}\,(\nabla_k^{\perp}\xi,\eta)\frac{\partial}{\partial u^i}, \quad (\bar{\nabla}\xi)^*Z = -A_{\xi}Z,$$

where ∇^{\perp} is the normal bundle connection of F^l and A_{ξ} is the shape operator of F^l with respect to the normal vector field ξ . In fact, $(\bar{\nabla}\xi)^*\eta$ is the vector field on F^l dual to the 1-form $\bar{g}(\nabla_k^{\perp}\xi,\eta) du^k$.

2 Characterization of submanifolds of TM^n transverse to fibers.

It is clear that all totally geodesic vector fields along submanifolds of M^n generate submanifolds in TM^n which are transverse to the fibers of TM^n . We study in this section the converse question. We start with the local case.

Proposition 2.1 Let N^l be an embedded submanifold in the tangent bundle of a Riemannian manifold M^n , which is transverse to the fiber at a point $z \in N^l$, then there is a submanifold F^l of M^n containing $x = \pi(z)$, a neighborhood U of x in M^n , a neighborhood V of z in TM^n and a vector field ξ on M^n along $F^l \cap U$ such that $N^l \cap V = \xi(F^l \cap U)$.

Proof. Since $T_z N^l$ is transverse to the vertical subspace $V_z T M^n$ of $TT M^n$ at $z, \pi_* \upharpoonright T_z N^l : T_z N^l \to T_x M^n$ is injective, and so there is an open neighborhood W of z in TM^n such that $\pi_* \upharpoonright T_{z'} N^l : T_{z'} N^l \to T_{\pi(z')} M^n$ is injective for all $z' \in W \cap N^l$. Hence $\pi \upharpoonright W \cap N^l : W \cap N^l \to M^n$ is an immersion, and thus there exist a cubic centered coordinate system (U,φ) about $x = \pi(z)$ and a neighborhood V of z in W such that $\pi \upharpoonright V \cap N^l$ is 1:1 and $\pi(V \cap N^l)$ is a part of a slice F^l of (U,φ) ([16], p. 28). The slice F^l is a submanifold of M^n and we have $\pi \upharpoonright V \cap N^l : V \cap N^l \to U \cap F^l$ is an imbedding onto, and so there is a C^{∞} -mapping $\xi : F^l \cap U \to N^l \cap V$ such that $\pi \circ \xi = Id_{F^l \cap U}$. In other words, ξ is a vector field on M^n along $F^l \cap U$ such that $N^l \cap V = \xi(F^l \cap U)$.

The global version of the last result requires further conditions.

Theorem 2.1 Let N^n be a connected compact n-dimensional submanifold of the tangent bundle of a connected simply connected Riemannian manifold M^n , which is everywhere transverse to the fibers of TM^n . Then M^n is also compact, and there is a vector field ξ on M^n such that $\xi(M^n) = N^n$.

Proof. The fact that N^n is everywhere transverse to the fibers of TM^n implies that $\pi \upharpoonright N^n : N^n \to M^n$ is an immersion. Since M^n and N^n are connected of the same dimension and N^n is compact, then M^n is compact and $\pi \upharpoonright N^n$ is a covering projection (cf. [8], Vol. 1, p.178). Now, M^n is simply connected and so $\pi \upharpoonright N^n$ is a diffeomorphism. Let $\xi : M^n \to N^n$ be the inverse of $\pi \upharpoonright N^n$. Then ξ is a vector field on M^n and $\xi(M^n) = N^n$.

In a similar way, we can show the following:

Theorem 2.2 Let N^l be a connected compact submanifold of the tangent bundle of a connected simply connected manifold M^n , which is transverse to the fibers it meets and projects onto a simply connected submanifold F^l of M^n . Then F^l is compact and there is a vector field ξ on M^n along F^l such that $\xi(F^l) = N^l$. In the particular case of horizontal totally geodesic submanifolds of TM^n , i.e. whose tangent space at any point is horizontal, we can state the following:

Theorem 2.3 Let N^l be a connected complete totally geodesic horizontal submanifold of the tangent bundle of a connected Riemannian manifold M^n which projects into a simply connected Riemannian submanifold F^l of M^n . Then F^l is also complete and totally geodesic in M^n and there is a parallel vector field ξ on M^n along F^l such that $\xi(F^l) = N^l$.

Proof. By hypothesis, for all $z \in N^l$, $T_z N^l$ is a horizontal subspace of $T_z T M^n$ with respect to the Levi-Civita connection of \overline{g} . Hence $\pi \upharpoonright N^l : N^l \to F^l$ is an isometric submersion of N^l into F^l , with N^l and F^l connected and of the same dimension. Since N^l is complete, also F^l is complete and N^l is a covering space of F^l (cf. [8], Vol.1, p.176). The fact that F^l is simply connected implies that $\pi \upharpoonright N^l : N^l \to F^l$ is an isometry, and there is an isometry $\xi : F^l \to N^l$ such that $\pi \upharpoonright N^l \circ \xi = Id_{F^l}$, i.e. ξ is a vector field on M^n along F^l .

Now, F^l is totally geodesic. Indeed, let X and Y be vector fields on F^l , and denote by the same letters some of their extensions to M^n . If we denote by X^h and Y^h their horizontal lifts to TM^n , then $X^h \upharpoonright N^l$ and $Y^h \upharpoonright N^l$ are vector fields on TM^n along N^l . For all $z \in N^l$, T_zN^l being horizontal, $\pi_* \upharpoonright T_zN^l : T_zN^l \to T_xM^n$ is bijective. Since $\pi_*(X^h(z)) = X(\pi(z))$ and $\pi_*(Y^h(z)) = Y(\pi(z))$, we have that $X^h(z)$ and $Y^h(z)$ are tangent to N^l . Thus $(\tilde{\nabla}_{X^h}Y^h) \upharpoonright N^l$ is tangent to N^l and hence horizontal. Consequently $(\tilde{\nabla}_{X^h}Y^h) \upharpoonright N^l = (\bar{\nabla}_X Y)^h \upharpoonright N^l$ and is tangent to N^l . Hence $\bar{\nabla}_X Y =$ $\pi_* \circ (\bar{\nabla}_X Y)^h$ is tangent to F^l and so F^l is totally geodesic. It remains to prove that ξ is parallel along F^l . In fact, for all $x \in F^l$ and $X \in T_x F^l$, the vector $X^h + (\bar{\nabla}_X \xi)^v$ is tangent to $\xi(F^l) = N^l$ at $\xi(x)$ and is mapped onto X. Since $T_{\xi(x)}N^l$ is a horizontal space, $\bar{\nabla}_X \xi = 0$. Therefore, ξ is parallel along F^l .

Corollary 2.1 Let N^n be a connected complete totally geodesic horizontal *n*-dimensional submanifold of the tangent bundle of a connected simply connected Riemannian manifold M^n . Then M^n is also complete and there is a parallel vector field ξ on M^n such that $\xi(M^n) = N^n$.

3 The conditions on $\xi(F^l)$ to be totally geodesic.

Evidently, geometrical properties of the submanifold $\xi(F^l)$ depend on the submanifold F^l and the vector field ξ . If one does not pose any restrictions on them, the geometry of $\xi(F^l)$ becomes rather intricate. Nevertheless, it is possible to formulate the conditions on $\xi(F^l)$ to be totally geodesic in more or less geometrical terms.

To do this, we introduce the notion of a ξ -connection on the Riemannian manifold M^n .

Definition 3.1 Let M^n be a Riemannian manifold with Riemannian connection $\overline{\nabla}$ and curvature tensor \overline{R} . Let ξ be a fixed smooth vector field on M^n . Denote by $\mathfrak{X}(M^n)$ the set of all smooth vector fields on M^n . The mapping $\stackrel{*}{\nabla}: \mathfrak{X}(M^n) \times \mathfrak{X}(M^n) \to \mathfrak{X}(M^n)$ defined by

$$\stackrel{*}{\nabla}_{\bar{X}} \bar{Y} = \bar{\nabla}_{\bar{X}} \bar{Y} + \frac{1}{2} \Big[\bar{R}(\xi, \bar{\nabla}_{\bar{X}}\xi) \bar{Y} + \bar{R}(\xi, \bar{\nabla}_{\bar{Y}}\xi) \bar{X} \Big]$$
(7)

is a torsion-free affine connection on M^n . It is called the ξ -connection.

Remark that if ξ is a parallel vector field or the manifold M^n is flat, then the ξ -connection is the same as the Levi-Civita connection of M^n .

It is easy to check that (7) indeed defines a torsion-free affine connection. Now we can state the main technical tool for the further considerations.

Proposition 3.1 Let F^l be a submanifold in a Riemannian manifold M^n . Let ξ be a vector field on M^n along F^l . Then $\xi(F^l)$ is totally geodesic in TM^n if and only if

- (a) F^l is totally geodesic with respect to the ξ -connection (7);
- (b) for any vector fields X, Y on F^l

$$\bar{\nabla}_X \bar{\nabla}_Y \xi = \bar{\nabla}_{*}_{\nabla_X Y} \xi + \frac{1}{2} \bar{R}(X, Y) \xi.$$

Proof. By definition, the submanifold $\xi(F^l)$ is totally geodesic in TM^n if and only if $g_s(\tilde{\nabla}_{\tilde{X}}\tilde{Y},\tilde{N}) = 0$ for any vector fields \tilde{X}, \tilde{Y} tangent to $\xi(F^l)$ along $\xi(F^l)$ and \tilde{N} normal to $\xi(F^l)$. To calculate $\tilde{\nabla}_{\tilde{X}}\tilde{Y}$, we use the Kowalski formulas [9].

For any vector fields $\overline{X}, \overline{Y}$ on M^n , the covariant derivatives of various combinations of lifts to the point $(x, \xi) \in TM^n$ can be found as follows

$$\tilde{\nabla}_{\bar{X}^{h}}\bar{Y}^{h} = (\bar{\nabla}_{\bar{X}}\bar{Y})^{h} - \frac{1}{2}(\bar{R}(\bar{X},\bar{Y})\xi)^{v}, \quad \tilde{\nabla}_{\bar{X}^{v}}\bar{Y}^{h} = \frac{1}{2}(\bar{R}(\xi,\bar{X})\bar{Y})^{h},
\tilde{\nabla}_{\bar{X}^{h}}\bar{Y}^{v} = (\bar{\nabla}_{\bar{X}}\bar{Y})^{v} + \frac{1}{2}(\bar{R}(\xi,\bar{Y})\bar{X})^{h}, \quad \tilde{\nabla}_{\bar{X}^{v}}\bar{Y}^{v} = 0.$$
(8)

where $\overline{\nabla}$ and \overline{R} are the Levi-Civita connection and the curvature tensor of M^n respectively.

Let $\tilde{X} = X^{h} + (\bar{\nabla}_{X}\xi)^{v}$ and $\tilde{Y} = (Y)^{h} + (\bar{\nabla}_{Y}\xi)^{v}$ be vector fields tangent to $\xi(F^{l})$. Then, applying (8), we easily find

$$\tilde{\nabla}_{\tilde{X}}\tilde{Y} = (\bar{\nabla}_X Y + \frac{1}{2}\bar{R}(\xi,\bar{\nabla}_X\xi)Y + \frac{1}{2}\bar{R}(\xi,\bar{\nabla}_Y\xi)X)^h + (\bar{\nabla}_X\bar{\nabla}_Y\xi - \frac{1}{2}\bar{R}(X,Y)\xi)^v$$

$$\tilde{\nabla}_{\tilde{X}}\tilde{Y} = (\overset{*}{\nabla}_X Y)^h + (\bar{\nabla}_X \bar{\nabla}_Y \xi - \frac{1}{2}\bar{R}(X,Y)\xi)^v.$$

Using Proposition 1.2, we see that the totally geodesic property of $\xi(F^l)$ is equivalent to

$$\begin{cases} \bar{g} \left(\stackrel{*}{\nabla}_X Y, \eta \right) = 0, \\ \bar{g} \left(\stackrel{*}{\nabla}_X Y, (\nabla \xi)^* \eta \right) = \bar{g} \left(\bar{\nabla}_X \bar{\nabla}_Y \xi - \frac{1}{2} \bar{R}(X, Y) \xi, \eta \right), \\ \bar{g} \left(\stackrel{*}{\nabla}_X Y, (\nabla \xi)^* Z \right) = \bar{g} \left(\bar{\nabla}_X \bar{\nabla}_Y \xi - \frac{1}{2} \bar{R}(X, Y) \xi, Z \right), \end{cases}$$
(9)

for any vector fields X, Y, Z tangent to F^l and any vector field η orthogonal to F^l .

From $(9)_1$ we see that F^l must be autoparallel with respect to $\stackrel{*}{\nabla}$ and hence totally geodesic [8]. Thus, $\stackrel{*}{\nabla}_X Y$ is tangent to F^l and it is possible to apply (6). Therefore, we can rewrite the equations $(9)_2$ and $(9)_3$ as

$$\begin{cases} \bar{g}\left(\bar{\nabla}_{*} \xi - \bar{\nabla}_{X}\bar{\nabla}_{Y}\xi + \frac{1}{2}\bar{R}(X,Y)\xi,\eta\right) = 0, \\ \bar{g}\left(\bar{\nabla}_{*} \xi - \bar{\nabla}_{X}\bar{\nabla}_{Y}\xi + \frac{1}{2}\bar{R}(X,Y)\xi,Z\right) = 0 \end{cases}$$

for any vector fields η normal and Z tangent to F^l along F^l . Thus, we conclude

$$\bar{\nabla}_X \bar{\nabla}_Y \xi = \bar{\nabla}_{\overset{*}{\nabla}_X Y} \xi + \frac{1}{2} \bar{R}(X, Y) \xi,$$

which completes the proof.

For the cases when l = 1 and l = n, we get the known conditions for the totally geodesic property of $\xi(F^l)$.

Corollary 3.1 If l = 1 and $\xi(F^l)$ is a curve Γ in TM^n then this curve is a geodesic if and only if

$$\begin{cases} x'' + \bar{R}(\xi, \xi')x' = 0, \\ \xi'' = 0, \end{cases}$$

where (') means the covariant derivative with respect to the natural parameter of Γ and $x(\sigma) = (\pi \circ \Gamma)(\sigma)$ (cf. [12]);

Proof. Indeed, in this case $\tilde{X} = \tilde{Y} = \Gamma' = (x')^h + (\xi')^v$, $\bar{X} = \bar{Y} = x'$ and $\stackrel{*}{\nabla}_{\bar{X}} \bar{Y} = x'' + \bar{R}(\xi,\xi')x'$. Thus, $x(\sigma)$ is geodesic with respect to the ξ -connection iff $x'' + \bar{R}(\xi,\xi')x' = 0$ and the rest of the proof is evident.

or

Corollary 3.2 If l = n and $F^l = M^n$, then $\xi(M^n)$ is totally geodesic in TM^n if and only if for any vector fields $\overline{X}, \overline{Y}$ on M^n (cf. [14])

$$\bar{\nabla}_{\bar{X}}\bar{\nabla}_{\bar{Y}}\xi = \bar{\nabla}_{*}_{\bar{\nabla}_{\bar{X}}\bar{Y}}\xi + \frac{1}{2}\bar{R}(\bar{X},\bar{Y})\xi.$$

Proof. In this case, only (b) of Proposition 3.1 should be checked, which completes the proof.

The result of Corollary 3.2 can be expressed in more geometrical terms. To do this, introduce a symmetric bilinear mapping $h_{\xi} : \mathfrak{X}(M^n) \times \mathfrak{X}(M^n) \to \mathfrak{X}(M^n)$ by

$$h_{\xi}(\bar{X},\bar{Y}) = \frac{1}{2} \Big[\bar{R}(\xi,\nabla_{\bar{X}}\xi)\bar{Y} + \bar{R}(\xi,\nabla_{\bar{Y}}\xi)\bar{X} \Big], \tag{10}$$

for all $\bar{X}, \bar{Y} \in \mathfrak{X}(M^n)$. Then the definition of the ξ -connection takes as similar form as the Gauss decomposition

$$\stackrel{*}{\nabla}_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + h_{\xi}(\bar{X},\bar{Y}). \tag{11}$$

Define a "shape operator" A_{ξ} for the field ξ by

$$A_{\xi}\bar{Y} = -\bar{\nabla}_{\bar{Y}}\xi, \text{ for all } \bar{Y} \in \mathfrak{X}(M^n).$$
(12)

Then the covariant derivative of the (1, 1)-tensor field A_{ξ} is given by

$$(\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} = -\bar{\nabla}_{\bar{X}}\bar{\nabla}_{\bar{Y}}\xi + \bar{\nabla}_{\bar{\nabla}_{\bar{X}}\bar{Y}}\xi.$$

Hence we see that the Codazzi-type equation $\bar{R}(\bar{X}, \bar{Y})\xi = (\bar{\nabla}_{\bar{Y}}A_{\xi})\bar{X} - (\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y}$ holds. In these notations

$$\bar{\nabla}_{\bar{X}\bar{X}\bar{Y}}\xi + \frac{1}{2}\bar{R}(\bar{X},\bar{Y})\xi - \bar{\nabla}_{\bar{X}}\bar{\nabla}_{\bar{Y}}\xi = \bar{\nabla}_{h_{\xi}(\bar{X},\bar{Y})}\xi + \frac{1}{2}\Big[(\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} + (\bar{\nabla}_{\bar{Y}}A_{\xi})\bar{X}\Big].$$

If we introduce a symmetric bilinear mapping $\Omega_{\xi} : \mathfrak{X}(M^n) \times \mathfrak{X}(M^n) \to \mathfrak{X}(M^n)$ defined by

$$\Omega_{\xi}(\bar{X},\bar{Y}) = \bar{\nabla}_{h_{\xi}(\bar{X},\bar{Y})}\xi + \frac{1}{2} \Big[(\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} + (\bar{\nabla}_{\bar{Y}}A_{\xi})\bar{X} \Big],$$

then Corollary 3.2 can be reformulated as

Corollary 3.3 If ξ is a smooth vector field on a Riemannian manifold M^n then $\xi(M^n)$ is totally geodesic in TM^n if and only if for any vector fields $\overline{X}, \overline{Y}$ on M^n

$$\Omega_{\xi}(\bar{X},\bar{Y}) = \bar{\nabla}_{h_{\xi}(\bar{X},\bar{Y})}\xi + \frac{1}{2} \left[(\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} + (\bar{\nabla}_{\bar{Y}}A_{\xi})\bar{X} \right] \equiv 0, \qquad (13)$$

where h_{ξ} and A_{ξ} are defined by (10) and (12) respectively.

Remark. The statement of Proposition 3.1 can also be reformulated in these terms, namely, let F^l be a submanifold in a Riemannian manifold M^n and ξ be a vector field on M^n along F^l . Then $\xi(F^l)$ is totally geodesic in TM^n if and only if F^l is totally geodesic with respect to the ξ -connection (7) and Ω_{ξ} vanishes on the tangent bundle of F^l

Now, combining Theorem 2.1 with Proposition 3.1, we obtain

Corollary 3.4 On a connected simply connected compact n-dimensional Riemannian manifold, vector fields satisfying (b) of Proposition 3.1 generate the only connected compact totally geodesic n-dimensional submanifolds of the tangent bundle which are transverse to fibers.

As has been shown in [20], for the case of the unit tangent bundle, the Hopf vector fields on odd dimensional spheres generate totally geodesic submanifolds in T_1S^n . For the tangent bundle the situation is different.

Theorem 3.1 A non-zero Killing vector field on a space of non-zero constant curvature (M^n, c) never generates a totally geodesic submanifold in TM^n . Moreover, a manifold with positive sectional curvature does not admit a non-zero Killing vector field with totally geodesic property.

Proof. Let ξ be a Killing vector field on a space M^n of constant curvature c. Then A_{ξ} is a skew-symmetric linear operator, i.e.

$$\bar{g}(A_{\xi}X,Y) + \bar{g}(X,A_{\xi}Y) = 0,$$
 (14)

and moreover,

$$(\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} = \bar{R}(\xi,\bar{X})\bar{Y} \tag{15}$$

for all vector fields \bar{X}, \bar{Y} on M^n (cf. [8]). Since M^n is of non-zero constant curvature, the equation (13) can be simplified in the following way.

$$\begin{split} (\bar{\nabla}_{\bar{X}}A_{\xi})\bar{Y} + (\bar{\nabla}_{\bar{Y}}A_{\xi})\bar{X} &= \bar{R}(\xi,\bar{X})\bar{Y} + \bar{R}(\xi,\bar{Y})\bar{X} = \\ & c\left[2\bar{g}(\bar{X},\bar{Y})\,\xi - \bar{g}(\xi,\bar{X})\bar{Y} - \bar{g}(\xi,\bar{Y})\bar{X}\right] \\ \bar{R}(\xi,\bar{\nabla}_{\bar{X}}\xi)\bar{Y} + \bar{R}(\xi,\bar{\nabla}_{\bar{Y}}\xi)\bar{X} &= c\left[\bar{g}(\bar{\nabla}_{\bar{X}}\xi,\bar{Y}) + \bar{g}(\bar{X},\bar{\nabla}_{\bar{Y}}\xi)\bar{X})\right]\xi - \\ & c\left[(\bar{g}(\xi,\bar{X})\bar{\nabla}_{\bar{Y}}\xi + \bar{g}(\xi,\bar{Y})\bar{\nabla}_{\bar{X}}\xi)\right] = c\left[\bar{g}(\xi,\bar{X})A_{\xi}\bar{Y} + \bar{g}(\xi,\bar{Y})A_{\xi}\bar{X}\right]. \end{split}$$

So, ξ is totally geodesic if

$$\bar{g}(\xi,\bar{X})\bar{Y} + \bar{g}(\xi,\bar{Y})\bar{X} - \bar{\nabla}_{\bar{g}(\xi,\bar{X})A_{\xi}\bar{Y} + \bar{g}(\xi,\bar{Y})A_{\xi}\bar{X}}\xi = 2\bar{g}(\bar{X},\bar{Y})\,\xi,$$

or

$$\bar{g}(\xi,\bar{X})\Big[\bar{Y}+A_{\xi}(A_{\xi}\bar{Y})\Big]+\bar{g}(\xi,\bar{Y})\Big[\bar{X}+A_{\xi}(A_{\xi}\bar{X})\Big]=2\bar{g}(\bar{X},\bar{Y})\,\xi,$$

for all vector fields \bar{X}, \bar{Y} on M^n . Choosing \bar{X}, \bar{Y} such that $\bar{X}_x \neq 0$ and $\bar{X}_x = \bar{Y}_x \perp \xi_x$, we get $2|\bar{X}_x|^2\xi_x = 0$. Therefore, $\xi = 0$ for all $x \in M^n$.

Let ξ be a non-zero Killing vector field on a manifold with *positive* (nonconstant) sectional curvature. From (14) it follows that $A_{\xi}\xi \perp \xi$. If $A_{\xi}\xi = 0$, then, after setting $Y = \xi$ in (14), we conclude that ξ has a constant length and therefore can be totally geodesic if it is a parallel vector field [14]. In this case, $M^n = M^{n-1} \times E^1$ and we come to a contradiction. Suppose that $A_{\xi}\xi \neq 0$. Then $\xi \wedge A_{\xi}\xi$ is a non-zero bivector field. Setting $\overline{Y} = \overline{X}$ in (13) and using (15), we have

$$A_{\xi} \Big[\bar{R}(\xi, A_{\xi} \bar{X}) \bar{X} \Big] + \bar{R}(\xi, \bar{X}) \bar{X} = 0.$$

Taking a scalar product in both sides with ξ and applying (14), we get

$$-\bar{g}(\bar{R}(\xi, A_{\xi}\bar{X})\bar{X}, A_{\xi}\xi) + K_{\xi\wedge\bar{X}}|\xi\wedge\bar{X}|^2 = 0.$$

Finally, setting $\bar{X} = A_{\xi}\xi$, we have $K_{\xi \wedge \bar{X}} = 0$ and come to a contradiction.

The next Theorem is analogous to the one proved by Walczak P. [14], but does not have similar rigid consequences for the structure of M^n .

Theorem 3.2 Let ξ be a vector field of constant length along a submanifold $F^l \subset M^n$. Then $\xi(F^l)$ is a totally geodesic submanifold in TM^n if and only if F^l is totally geodesic in M^n and ξ is a parallel vector field on M^n along F^l .

Proof. The condition $|\xi| = const$ implies $\bar{g}(\bar{\nabla}_X\xi,\xi) = 0$ for any vector field X tangent to F^l . As $\xi(F^l)$ is supposed to be totally geodesic, it follows from the second condition of Proposition 3.1 that $\bar{g}(\bar{\nabla}_X\bar{\nabla}_Y\xi,\xi) = 0$. Hence $\bar{g}(\bar{\nabla}_X\xi,\bar{\nabla}_Y\xi) = 0$ for any $X, Y \in T_xF^l, x \in F^l$. Supposing X = Y, we see that $\bar{\nabla}_X\xi = 0$, i.e. ξ is parallel along F^l in the ambient space and the second condition of Proposition 3.1 is fulfilled. Moreover, the condition $\bar{\nabla}_X\xi = 0$ means that the ξ -connection (7) coincides with the Levi-Civita connection of M^n , so that by Proposition 3.1 F^l is totally geodesic in M^n .

On the other hand, if F^l is totally geodesic in M^n and $\bar{\nabla}_X \xi = 0$ for any tangent vector field X on F^l , then both conditions from Proposition 3.1 are satisfied evidently.

Giving more restrictions on the vector field, we can a more geometrical result.

Theorem 3.3 Let ξ be a normal vector field on a submanifold $F^l \subset M^n$, which is parallel in the normal bundle. Then $\xi(F^l)$ is totally geodesic in TM^n if and only if F^l is totally geodesic in M^n . **Proof.** If ξ is a normal vector field to F^l and parallel in the normal bundle, then $\overline{\nabla}_X \xi = -A_{\xi} X$ for each vector field X on F^l , where A_{ξ} is the shape operator of F^l with respect to ξ , and hence $\overline{g}(\overline{\nabla}_X \xi, \xi) = 0$. This means that $|\xi| = \text{const along } F^l$.

Let $\xi(F^l)$ be totally geodesic in TM^n . Then from (b) of Proposition 3.1 we see that $\bar{g}(\bar{\nabla}_X \bar{\nabla}_Y \xi, \xi) = 0$, which implies $|\bar{\nabla}_X \xi| = 0$ for each Xtangent to F^l . In this case, along F^l the ξ -connection (7) coincides with the Levi-Civita connection of M^n and (a) of Proposition 3.1 implies the totally geodesic property of F^l .

Conversely, if ξ is a normal vector field which is parallel in the normal bundle of F^l and F^l is totally geodesic, then $\bar{\nabla}_X \xi = 0$ for any vector field X tangent to F^l . Evidently, both conditions of Proposition 3.1 are fulfilled.

The application of Theorem 3.3 to the specific case of a foliated Riemannian manifold allows to clarify the geometrical structure of $\xi(M^n)$. The manifold M^n is said to be ν -foliated if it admits a family \mathcal{F} of connected ν -dimensional submanifolds $\{\mathcal{F}_{\alpha}; \alpha \in A\}$ called *leaves* such that (i) $M^n = \bigcup_{\alpha \in A} \mathcal{F}_{\alpha}$; (ii) $\mathcal{F}_{\alpha} \cap \mathcal{F}_{\beta} = \emptyset$ for $\alpha \neq \beta$; (iii) there exists a coordinate covering \mathcal{U} of M^n such that in each local chart $U \in \mathcal{U}$ the leaves can be expressed locally as level submanifolds, i.e. $u^{\nu+1} = c_{\nu+1}, \ldots, u^n = c_n$.

The family \mathcal{F} is called a ν -foliation and hyperfoliation for $\nu = n-1$. The hyperfoliation is said to be transversally orientable if M^n admits a vector field ξ transversal to the leaves. Moreover, with respect to the Riemannian metric on M^n , this vector field can be chosen as a field of unit normals for each leaf.

A submanifold $F^{k+\nu} \subset M^n$ is called ν -ruled if $F^{k+\nu}$ admits a ν -foliation $\{\mathcal{F}_{\alpha}; \alpha \in A\}$ such that each leaf \mathcal{F}_{α} is totally geodesic in M^n . The leaves \mathcal{F}_{α} are called *elements* or *generators* [11].

Corollary 3.5 Let M^n be a Riemannian manifold admitting a totally geodesic transversally orientable hyperfoliation \mathcal{F} . Let ξ be a field of normals of the foliation having constant length. Then $\xi(M^n)$ is an (n-1)-ruled submanifold in TM^n with the elements $\xi(\mathcal{F}_{\alpha})$.

Proof. Indeed, let \mathcal{F}_{α} be a leaf of the hyperfoliation and ξ be a vector field of constant length on M^n which is a field of normals along each leaf. Applying Theorem 3.3, we get that $\xi(\mathcal{F}_{\alpha})$ is totally geodesic in TM^n for each α . Since $\xi : M^n \to \xi(M^n)$ is a homeomorphism, $\xi(\mathcal{F}_{\alpha}) \cap \xi(\mathcal{F}_{\beta}) = \emptyset$ for $\alpha \neq \beta$ and $\xi(M^n) = \bigcup_{\alpha \in A} \xi(\mathcal{F}_{\alpha})$. Finally, if \mathcal{F}_{α} is given by $u^n = c_n$ within a local chart U then from (4) we see that $\xi(\mathcal{F}_{\alpha})$ is given by the same equalities within the local chart $\xi(U)$. So, $\xi(\mathcal{F}) = \{\xi(\mathcal{F}_{\alpha}); \alpha \in A\}$ form a hyperfoliation on $\xi(M^n)$ with totally geodesic leaves in TM^n .

14

4 The case of a base space of constant curvature.

If the ambient space is of constant curvature $c \neq 0$ and ξ is a normal vector field on a submanifold $F^l \subset M^n$, then the necessary and sufficient condition on ξ to generate a totally geodesic submanifold in TM^n takes a rather simple form.

Theorem 4.1 Let F^l be a submanifold of a space $M^n(c)$ of constant curvature $c \neq 0$. Let ξ be a normal vector field on F^l . Then $\xi(F^l)$ is totally geodesic in TM^n if and only if F^l is totally geodesic in $M^n(c)$ and ξ is parallel in the normal bundle.

Proof. The curvature tensor of $M^n(c)$ is of the form

$$\bar{R}(\bar{X},\bar{Y})\bar{Z} = c \; (\bar{g}\;(\bar{Y},\bar{Z})\bar{X} - \bar{g}\;(\bar{X},\bar{Z})\bar{Y}\;). \tag{16}$$

If ξ is a normal vector field on F^l then $\overline{\nabla}_X \xi = -A_{\xi}X + \nabla_X^{\perp}\xi$. As $A_{\xi}X$ is tangent and $\nabla_X^{\perp}\xi$ is normal to F^l , from (16) we find

$$\bar{R}(\xi,\bar{\nabla}_X\xi)Y = -c\,g\,(A_\xi X,Y)\,\xi$$

for any vector fields X, Y on F^l . Thus, the conditions from Proposition 3.1 mean that

$$\begin{cases} \bar{\nabla}_X Y - c g (A_{\xi} X, Y) \xi & \text{is tangent to } F^l, \\ \bar{\nabla}_{\bar{\nabla}_X Y - c g (A_{\xi} X, Y) \xi} \xi = \bar{\nabla}_X \bar{\nabla}_Y \xi. \end{cases}$$
(17)

Multiplying $(17)_1$ by ξ and by normal vector field η orthogonal to ξ , we have

$$\begin{cases} g(A_{\xi}X,Y)(1-c\,|\xi|^2) = 0, \\ g(A_{\eta}X,Y) = 0. \end{cases}$$

If ξ is of constant length $|\xi|^2 = \frac{1}{c}$ (c > 0) then by Theorem 3.2, F^l is totally geodesic in M^n , otherwise F^l is totally geodesic immediately.

So, F^l is totally geodesic and therefore $\overline{\nabla}_X \xi = \nabla_X^{\perp} \xi$, $\overline{\nabla}_X Y = \nabla_X Y$. The condition (17)₂ now takes the form

$$\nabla^{\perp}_{\nabla_X Y} \xi = \nabla^{\perp}_X \nabla^{\perp}_Y \xi. \tag{18}$$

Set $Y = \nabla_V Z$, where V and Z are arbitrary vector fields tangent to F^l . Then from (18), we get

$$\nabla^{\perp}_{\nabla_X \nabla_V Z} \xi = \nabla^{\perp}_X \nabla^{\perp}_{\nabla_V Z} \xi.$$

Applying (18) to $\nabla_{\nabla_V Z}^{\perp} \xi$ in the right-hand side of the above equation, we see that $\nabla_{\nabla_V Z}^{\perp} \xi = \nabla_V^{\perp} \nabla_Z^{\perp} \xi$ and therefore,

$$\nabla^{\perp}_{\nabla_X \nabla_V Z} \xi = \nabla^{\perp}_X \nabla^{\perp}_V \nabla^{\perp}_Z \xi.$$
⁽¹⁹⁾

Interchanging the roles of X and V, we get

$$\nabla^{\perp}_{\nabla_V \nabla_X Z} \xi = \nabla^{\perp}_V \nabla^{\perp}_X \nabla^{\perp}_Z \xi.$$
⁽²⁰⁾

Finally, applying again (18) to the bracket [X, V] and Z, we get

$$\nabla^{\perp}_{\nabla_{[X,V]}Z}\xi = \nabla^{\perp}_{[X,V]}\nabla^{\perp}_{Z}\xi.$$
(21)

Combining (19),(20) and (21), we obtain

$$\nabla_{R(X,V)Z}^{\perp}\xi = R^{\perp}(X,V)\nabla_{Z}^{\perp}\xi$$

where R is the curvature tensor of F^l and R^{\perp} is the normal curvature tensor. Since F^l is totally geodesic and $M^n(c)$ is of constant curvature, $R^{\perp}(X,Y)\eta \equiv 0$ for any normal vector field η and, moreover,

$$R(X,Y)Z = c\left(g\left(Y,Z\right)X - g\left(X,Z\right)Y\right).$$

So, we have

$$c \nabla^{\perp}_{g(Y,Z)X-g(X,Z)Y} \xi = 0.$$

Setting X orthogonal to Y and Y = Z we get $\nabla_X^{\perp} \xi = 0$ for any vector field X on F^l , which completes the necessary part of the proof. The sufficient part is trivial.

The application of Theorem 4.1 to the case of a space of constant curvature shows the difference between our considerations and Walczak's [14]. Let S^n be the unit sphere and S^{n-1} be the unit totally geodesic great sphere in S^n . Denote by D^n an open equatorial zone around S^{n-1} where the unit geodesic vector field orthogonal to S^{n-1} is regularly defined. Then D^n is a Riemannian manifold of constant positive curvature and S^{n-1} is a totally geodesic submanifold in D^n .

Let ξ be a unit (or of constant length) geodesic vector field on $D^n \subset S^n$ which is normal to the totally geodesic great sphere S^{n-1} . Then $\xi(D^n)$ is not totally geodesic in TD^n while the restriction of ξ to S^{n-1} generates the totally geodesic submanifold $\xi(S^{n-1})$ in TD^n .

Indeed, ξ is of constant length and by Walczak's result, $\xi(D^n)$ can be totally geodesic in TD^n only if ξ is a parallel vector field on D^n [14], which is impossible due to positive curvature of D^n . On the other hand, ξ is parallel in the normal bundle of $S^{n-1} \subset D^n$ and we can apply Theorem 4.1 to see that $\xi(S^{n-1})$ is totally geodesic in TD^n .

As concerns flat Riemannian manifolds, Walczak has shown that every totally geodesic vector field on a flat Riemannian manifold is harmonic (cf. [14]) and that, consequently, on a compact flat Riemannian manifold, a vector field is totally geodesic if and only if it is parallel. We shall give a similar result for vector fields along submanifolds. **Theorem 4.2** Let F^l be a compact oriented submanifold in a flat Riemannian manifold M^n . Let ξ be a vector field on F^l . Then $\xi(F^l)$ is totally geodesic in TM^n if and only if F^l is totally geodesic in M^n and ξ is parallel along F^l .

Proof. Since M^n is flat, the ξ -connection is the same as the Levi-Civita connection on M^n . So, by Proposition 3.1, $\xi(F^l)$ is totally geodesic if and only if F^l is totally geodesic and

$$\bar{\nabla}_X \bar{\nabla}_Y \xi = \bar{\nabla}_{\bar{\nabla}_X Y} \xi \tag{22}$$

for all vector fields X and Y on F^l .

Suppose now that $\xi(F^l)$ is totally geodesic. Then F^l is totally geodesic and is thus flat. Hence locally we can choose vector fields $X_1, X_2, ..., X_l$ tangent to F^l such that $\bar{\nabla}_{X_i}X_j = \nabla_{X_i}X_j = 0$, and $\bar{g}(X_i, X_j) = g(X_i, X_j) =$ δ_{ij} , for all i, j = 1, ..., l. Putting $X = Y = X_i$ in the identity (22), we obtain $\bar{\nabla}_{X_i}\bar{\nabla}_{X_i}\xi = 0$. Hence, $\sum_{i=1}^l \bar{g}(\bar{\nabla}_{X_i}\bar{\nabla}_{X_i}\xi,\xi) = 0$, i.e.

$$\sum_{i=1}^{l} X_i \cdot \bar{g}(\bar{\nabla}_{X_i}\xi,\xi) = \sum_{i=1}^{l} |\bar{\nabla}_{X_i}\xi|^2.$$
(23)

If we consider the function f defined by $f(x) = \frac{1}{2}\bar{g}_x(\xi,\xi)$, for all $x \in F^l$, then we can define a global vector field X_f on F^l by the local formula $X_f = g(\bar{\nabla}_{X_i}\xi,\xi)X_i$. Formula (23) can thus be written locally as $\operatorname{div} X_f = \sum_{i=1}^l |\bar{\nabla}_{X_i}\xi|^2$.

Integrating both sides of the last equality and applying Green's theorem, we obtain $\sum_{i=1}^{l} \int_{F^l} |\bar{\nabla}_{X_i}\xi|^2 dv = 0$, and hence $\bar{\nabla}_{X_i}\xi = 0$, for all i = 1, ..., l. Therefore ξ is parallel along F^l .

The sufficient part of the theorem is trivial.

Remarks.

1. If in Theorem 4.2 the field ξ is a normal vector field along F^l , then $\bar{\nabla}_X \xi$ is also normal for each vector field X on F^l . Indeed, for the X_i 's constructed in the proof of the theorem, we have $\bar{g}(\bar{\nabla}_{X_i}\xi, X_j) = X_i \cdot \bar{g}(\xi, X_j) = 0$, and so $\bar{\nabla}_{X_i}\xi$ is normal to F^l . Hence the identity (22) can be written as

$$\bar{\nabla}_X^{\perp} \bar{\nabla}_Y^{\perp} \xi = \bar{\nabla}_{\nabla_X Y} \xi. \tag{24}$$

Also, ξ is parallel if and only if it is parallel in the normal bundle. Hence $\xi(F^l)$ is totally geodesic if and only if F^l is totally geodesic and ξ is parallel in the normal bundle.

2. The condition of compactness is necessary. Indeed, if we consider \mathbb{R}^n with its canonical coordinates $(x_1, x_2, ..., x_n)$ and its canonical Euclidean metric, and the hypersurface \mathbb{R}^{n-1} which is identified with the subspace

given by: $x_n = 0$, then \mathbb{R}^{n-1} is an oriented totally geodesic submanifold of \mathbb{R}^n . We have $\overline{\nabla}_{\partial/\partial x_i} \partial/\partial x_j = 0$ for all i, j = 1, ..., n. We consider the vector field ξ on \mathbb{R}^n along \mathbb{R}^{n-1} defined by $\xi(x) = x_1 \partial/\partial x_n(x)$, where x_1 is the first component of x. Now, to show that $\xi(\mathbb{R}^{n-1})$ is totally geodesic in $T\mathbb{R}^n$, it suffices to check that (22) is verified. In fact, $\overline{\nabla}_{\partial/\partial x_i} \overline{\nabla}_{\partial/\partial x_j} \xi =$ $\overline{\nabla}_{\partial/\partial x_i} \delta_{1j} \partial/\partial x_n = 0$. But $\overline{\nabla}_{\partial/\partial x_1} \xi = \partial/\partial x_n$, and so ξ is not parallel.

5 The case of Lie groups with bi-invariant metrics

Let us consider a connected Lie group G^n equipped with a bi-invariant metric \bar{g} , i.e. invariant by both left and right translations. We shall generalize the results of Walczak P. [14] on totally geodesic left invariant vector fields on G^n to left invariant vector fields along Lie subgroups.

Let H^l be a Lie subgroup of G^n . The metric g induced from \overline{g} on H^l is a bi-invariant metric. If we denote by $\overline{\nabla}$ and ∇ the Levi-Civita connections on G^n and H^l respectively, then we have $\overline{\nabla}_X Y = \frac{1}{2}[X, Y]$, for all X, Y of \mathfrak{g} , the Lie algebra of G^n , and $\nabla_X Y = \frac{1}{2}[X, Y]$, for all X, Y of \mathfrak{h} , the Lie algebra of H^l .

Lemma 5.1 A connected complete submanifold F^l of G^n containing the identity element e of G^n , such that T_eF^l is a subalgebra of \mathfrak{g} , is totally geodesic if and only if F^l is a Lie subgroup H^l of G^n .

Proof.

If we denote by exp the exponential mapping $\exp : \mathfrak{g} \to G^n$ of the Lie group G^n , and by $\exp_x : T_x G^n \to G^n$ the exponential map at a point x of G^n with respect to the Levi-Civita connection of the metric g, then for all $x \in G^n$, $\exp_x = \exp \circ (L_{x^{-1}})_*$, where L_x is the left translation of G^n by x. Indeed, we show firstly that $\exp_e = \exp$. Let $X \in \mathfrak{g} \equiv T_e G^n$ and $\gamma(t) = \exp t X$. It suffices to check that γ is a geodesic. We have $\dot{\gamma}(t) = (L_{\gamma(t)})_*(\dot{\gamma}(0)) = (L_{\gamma(t)})_*(X)$, and thus $\bar{\nabla}_{\dot{\gamma}(t)}\dot{\gamma}(t) = \bar{\nabla}_{X(\gamma(t))}X(\gamma(t))$, where X denotes also the left invariant vector field on G^n corresponding to X. Hence $\bar{\nabla}_{\dot{\gamma}(t)}\dot{\gamma}(t) = \frac{1}{2}[X,X](\gamma(t)) = 0$, and so $\exp_e = \exp$. Now, our assertion follows from the fact that left translations are isometries.

We consider a Lie subgroup H^l of G^n and $\mathfrak{h} = T_e H^l$ its Lie algebra. If $X \in \mathfrak{h}$, then $\exp_e tX = \exp tX \in H^l$, for all t in a neighborhood of 0, i.e. H^l contains the geodesic starting from e and with initial condition X, and by the left translations, H^l contains all geodesics starting from points of H^l with initial vectors tangent to H^l at these points. Thus H^l is totally geodesic.

Conversely, suppose that F^l is a connected complete submanifold of G^n such that $e \in F^l$ and $T_e F^l =: \mathfrak{h}$ is a Lie subalgebra of \mathfrak{g} . Let H^l be the connected subgroup of G^n with Lie algebra \mathfrak{h} . H^l is then a connected totally geodesic submanifold of G^n with $T_e H^l = T_e F^l$. Therefore $H^l = F^l$. **Proposition 5.1** A left invariant vector field on G^n along a submanifold F^l generates a totally geodesic submanifold of TG^n if and only if it is parallel along F^l and F^l is totally geodesic.

Proof. A left invariant vector field on G^n is necessarily of constant length, and we apply Theorem 3.2.

Corollary 5.1 A left invariant vector field ξ on G^n along a Lie subgroup H^l is totally geodesic if and only if it is an element of the centralizer of \mathfrak{h} in \mathfrak{g} .

Proof. By Lemma 5.1, H^l is a totally geodesic submanifold in G^n . Thus, by virtue of Proposition 5.1, ξ is totally geodesic if and only if ξ is parallel along H^l .

Suppose that ξ is totally geodesic. Then $\overline{\nabla}_X \xi = 0$, for all $X \in \mathfrak{h}$; i.e. ξ is in the centralizer of \mathfrak{h} in \mathfrak{g} .

Conversely, if ξ is in the centralizer of \mathfrak{h} in \mathfrak{g} , then $\overline{\nabla}_X \xi = 0$, for all $X \in \mathfrak{h}$. Let $x \in H^l$ and $z \in T_x H^l$. It suffices to prove that $\overline{\nabla}_z \xi = 0$. But $X := (L_{x^{-1}})_*(z) \in T_e H^l \equiv \mathfrak{h}$, and consequently $\overline{\nabla}_z \xi = (\overline{\nabla}_X \xi)(x) = 0$.

Corollary 5.2 (a) There are no non-zero left invariant totally geodesic vector fields on a semi-simple Lie subgroup of a Lie group with a bi-invariant Riemannian metric.

(b) Every left invariant vector field along a subgroup of an abelian Lie group with a bi-invariant Riemannian metric generates a totally geodesic submanifold of the tangent bundle.

Theorem 5.1 Let N^l be a connected complete totally geodesic embedded submanifold of the tangent bundle of a connected Lie group G^n equipped with a bi-invariant Riemannian metric such that $H^l = \pi(N^l)$ is a Lie subgroup of G^n . Suppose that N^l is horizontal at a point z of $T_e G^n$.

(a) If $z \in T_e H^l$, then N^l is the image of H^l by a left invariant vector field on H^l which belongs to the center of \mathfrak{h} . In particular, if H^l is semi-simple, then H^l is the only connected totally geodesic embedded submanifold of TG^n which is tangent to H^l at e and orthogonal to the fiber at a point of $T_e G^n$.

(b) If H^l is simple, then N^l is the image of H^l by a left invariant vector field on G^n along H^l which belongs to the centralizer of \mathfrak{h} in \mathfrak{g} .

Proof. Using Proposition 2.1, there is a neighborhood U of e in G^n , a neighborhood V of z in TG^n and a vector field Y on M^n along $H^l \cap U$ such that $N^l \cap V = Y(H^l \cap U), Y(e) = z$. We have $T_z N^l = T_z(N^l \cap V) =$

 $T_z Y(H^l \cap U)$. Then each vector of $T_z N^l$ can be written as $X^h + (\bar{\nabla}_X Y)^v$, for some $X \in \mathfrak{h}$. But $T_z N^l$ is a subset of the horizontal subspace of TTG^n at z, so at e we have $\bar{\nabla}_X Y = 0$ for all $X \in \mathfrak{h}$. On the other hand, since $N^l \cap V = Y(H^l \cap U)$ is totally geodesic, the second assertion of Proposition 3.1 reduces at e to the identity

$$\bar{\nabla}_{X_1}\bar{\nabla}_{X_2}Y = \frac{1}{2}\bar{R}(X_1, X_2)Y$$
, for all vector fields X_1, X_2 on H^l .

Then for all $W \in \mathfrak{g} = T_e G^n$, we have

$$\bar{g}(\bar{\nabla}_{X_1(e)}\bar{\nabla}_{X_2}Y,W) = \frac{1}{2}\bar{g}(\bar{R}(X_1(e),X_2(e))Y(e),W).$$

If we extend W to a vector field X_3 along H^l , which is orthogonal to $\overline{\nabla}_{X_2} Y$ in a neighborhood of e in H^l , then we can write

$$\bar{g}(\bar{\nabla}_{X_1(e)}\bar{\nabla}_{X_2}Y,W) = -\bar{g}(\bar{\nabla}_{X_2(e)}Y,\bar{\nabla}_{X_1(e)}X_3) = 0,$$

and consequently, $\bar{g}(\bar{R}(X_1(e), X_2(e))Y(e), W) = 0$, for all $X_1(e), X_2(e) \in \mathfrak{h} = T_e H^l$ and $W \in \mathfrak{g} = T_e G^n$. Therefore we have

 $R(\cdot, \cdot)Y(e) = 0$, when applied to vectors in $T_e H^l$.

Let us denote by ξ the left invariant vector field on G^n along H^l such that $Y(e) = \xi(e)$. Then $\overline{R}(\cdot, \cdot)\xi(e) = 0$ when applied to vectors in T_eH^l , and hence

$$R(\cdot, \cdot)\xi = 0$$
, when applied to elements of \mathfrak{h} . (25)

Consider now two cases.

(a) If $\xi(e) = z \in T_e H^l$, then $\xi \in \mathfrak{h}$, and we have, by virtue of (25), $\overline{R}(X,\xi)\xi = 0$, for all $X \in \mathfrak{h}$. Thus $|[\xi,X]|^2 = 4\overline{g}(\overline{R}(\xi,X)X,\xi) = 0$ for all $X \in \mathfrak{h}$. It follows that ξ belongs to the center of \mathfrak{h} .

(b) If H^l is simple, then $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$. But $\overline{\nabla}_{[X_1, X_2]} \xi = \frac{1}{2}[[X_1, X_2], \xi] = -2R(X_1, X_2)\xi = 0$, for all $X_1, X_2 \in \mathfrak{h}$, by virtue of (25). Since $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$, we deduce easily that $\overline{\nabla}_X \xi = 0$, for all $X \in \mathfrak{h}$, or equivalently $[X, \xi] = 0$, for all $X \in \mathfrak{h}$. It follows that ξ belongs to the centralizer of \mathfrak{h} in \mathfrak{g} .

In both cases, ξ belongs to the centralizer of \mathfrak{h} in \mathfrak{g} . Hence, by Lemma 5.1, H^l is totally geodesic in G^n , and Proposition 5.1 implies then that $\xi(H^l)$ is a complete totally geodesic submanifold of TG^n . Therefore $\xi(H^l) = N^l$, because $\xi_*(T_eH^l) = T_zN^l$ and N^l and H^l are connected.

Corollary 5.3 Let N^l be a connected complete horizontal totally geodesic submanifold of the tangent bundle of a connected Lie group G^n equipped with a bi-invariant Riemannian metric such that $H^l = \pi(N^l)$ is a simply connected submanifold of G^n containing the identity element. Suppose that $\mathfrak{h} := \pi_*(T_z N^l)$ is a Lie subalgebra of \mathfrak{g} for a point z of $T_e G^n \cap N^l$. If $Z \in T_e H^l$ (resp. \mathfrak{h} is simple), then H^l is a Lie subgroup of G^n and N^l is the image of H^l by a left invariant vector field on H^l (resp. on G^n along H^l) which belongs to the center of \mathfrak{h} (resp. centralizer of \mathfrak{h} in \mathfrak{g}).

Proof. By Theorem 2.3, H^l is complete and totally geodesic. It follows from Lemma 5.1 that H^l is a Lie subgroup of G^n . Now, our corollary follows from Theorem 5.1.

References

- Boeckx E., Vanhecke L. Harmonic and minimal radial vector fields, Acta Math. Hungar. 90(2001), 317-331.
- [2] Boeckx E., Vanhecke L. Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl.13 (2000), 77-93.
- [3] Dombrowski P. On the geometry of tangent bundle, J. Reine Angew. Math., 210 (1962), N 1-2, 73-88.
- [4] Gil-Medrano O., Llinares-Fuster E. Second variation of volume and energy of vector fields. Stability of Hopf vector fields, Math. Ann. 320 (2001), 531-545.
- [5] Gil-Medrano O., Llinares-Fuster E. Minimal unit vector fields, Tôhoku Math. J., 54(2002), 71-84.
- [6] Gluck H., Ziller W. On the volume of a unit vector field on the threesphere, Comm. Math. Helv. 61 (1986), 177-192.
- [7] González-Dávila J.C., Vanhecke L. Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), 385-404.
- [8] Kobayashi S., Nomizu K. Foundations of differential geometry, Interscience Publ., Vol.1 (1967) and Vol.1,2 (1969).
- [9] Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
- [10] Liu M.-S. Affine maps of tangent bundles with Sasaki metric, Tensor, N.S., 28 (1974), 34-42.
- [11] Rovenskii V. Foliations on Riemannian Manifolds and Submanifolds. Birkhäuser, 1997.

- [12] Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.
- [13] Sato K. Geodesics on the tangent bundles over space forms, Tensor, 32 (1978), 5-10.
- [14] Walczak P. On totally geodesic submanifolds of tangent bundles with Sasaki metric, Bull. Acad. Pol. Sci., ser. Sci. Math., 28 (1980), N 3-4, 161-165.
- [15] Walczak P. On the energy of unit vector fields with isolated singularities, Ann. Pol. Math., LXXII.3 (2000), 269-274.
- [16] Warner, F.W. Foundations of differentiable manifolds and Lie groups, Academic Press, New York, 1971.
- [17] Wood C.M. On the energy of a unit vector field, Geom. Dedicata 64 (1997), 319-330.
- [18] Yampolsky A. On the mean curvature of a unit vector field, Math. Publ. Debrecen, 60/1-2 (2002), 131 – 155.
- [19] Yampolsky A. On the intrinsic geometry of a unit vector field, Comment. Math. Univ. Carolinae 43, 2 (2002), 299-317.
- [20] Yampolsky A. Totally geodesic property of the Hopf vector field, Acta Math. Hungarica, Acta Math. Hungar. 101, 1-2 (2003), 73-92.

Mohamed Tahar Kadaoui ABBASSI, Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fes-Atlas, Fes, Morocco e.mail: mtk_abbassi@Yahoo.fr

Alexander YAMPOLSKY, Department of Geometry, Faculty of Mechanics and Mathematics, Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine. e-mail: yamp@univer.kharkov.ua