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Chapter 0

Introduction

Topology is an important and interesting area of mathematics, the study of which
will not only introduce you to new concepts and theorems but also put into context
old ones like continuous functions. However, to say just this is to understate
the significance of topology. It is so fundamental that its influence is evident in
almost every other branch of mathematics. This makes the study of topology
relevant to all who aspire to be mathematicians whether their first love is (or
will be) algebra, analysis, category theory, chaos, continuum mechanics, dynamics,
geometry, industrial mathematics, mathematical biology, mathematical economics,
mathematical finance, mathematical modelling, mathematical physics, mathematics
of communication, number theory, numerical mathematics, operations research or
statistics. (The substantial bibliography at the end of this book suffices to indicate
that topology does indeed have relevance to all these areas, and more.) Topological
notions like compactness, connectedness and denseness are as basic to
mathematicians of today as sets and functions were to those of last century.

Topology has several different branches — general topology (also known as point-
set topology), algebraic topology, differential topology and topological algebra — the
first, general topology, being the door to the study of the others. I aim in this book
to provide a thorough grounding in general topology. Anyone who conscientiously
studies about the first ten chapters and solves at least half of the exercises will
certainly have such a grounding.

For the reader who has not previously studied an axiomatic branch of mathematics1

such as abstract algebra, learning to write proofs will be a hurdle. To assist you to
learn how to write proofs, in the early chapters I often include an aside which does
not form part of the proof but outlines the thought process which led to the proof.

1A useful introduction to Pure Mathematics is my YouTube video, http://youtu.be/veSbFJFjbzU.
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6 CHAPTER 0. INTRODUCTION

Asides are indicated in the following manner:

In order to arrive at the proof, I went through this thought process, which
might well be called the “discovery” or “experiment phase”.

However, the reader will learn that while discovery or experimentation is
often essential, nothing can replace a formal proof.

There is an important difference between the use of “or” in English and in
mathematics. In English when you say that statement (a) or statement (b) is true,
you usually mean that statement (a) is true or statement (b) is true but not both .
In mathematics the meaning is different: the “or” is not exclusive. So it means
statement (a) is true or statement (b) is true or statement (a) and statement (b)
are both true. For example x > 2 or x 6 2. In fact x 6 2 and x > 2 are both true
when x = 2. This mathematical usage can be misleading at first. For example when
we say “Either statement (a) or statement (b) is true” we mean either statement
(a) is true or statement (b) is true or they are both true. So remember always that
in mathematics, “or” is not exclusive.

This book is typeset using the beautiful typesetting package, TEX, designed by
Donald Knuth. While this is a very clever software package, it is my strong view
that, wherever possible, the statement of a result and its entire proof should appear
on the same page – this makes it easier for the reader to keep in mind what facts are
known, what you are trying to prove, and what has been proved up to this point in a
proof. So I do not hesitate to leave a blank half-page (or use subtleTEXtypesetting
tricks) if the result will be that the statement of a result and its proof will then be
on the one page.

There are many exercises in this book. Only by working through a good number
of exercises will you master this course. I have not provided answers to the exercises,
and I have no intention of doing so. It is my opinion that there are enough worked
examples and proofs within the text itself, that it is not necessary to provide answers
to exercises – indeed it is probably undesirable to do so. Very often I include new
concepts in the exercises; the concepts which I consider most important will generally
be introduced again in the text.

Harder exercises are indicated by an *.

Readers of this book may wish to communicate with each other regarding
difficulties, solutions to exercises, comments on this book, and further reading.
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To make this easier I have created a Facebook Group called “Topology Without
Tears Readers”. You are most welcome to join this Group. Search for the Group,
and then from there join the Group.

Finally, I should mention that mathematical advances are best understood when
considered in their historical context. This book currently fails to address the
historical context sufficiently. For the present I have had to content myself with notes
on topology personalities in Appendix 2 - these notes largely being extracted from
The MacTutor History of Mathematics Archive [369]. The reader is encouraged to
visit the website The MacTutor History of Mathematics Archive [369] and to read the
full articles as well as articles on other key personalities. But a good understanding
of history is rarely obtained by reading from just one source.

In the context of history, all I will say here is that much of the topology described
in this book was discovered in the first half of the twentieth century. And one could
well say that the centre of gravity for this period of discovery was, Poland. (Borders
have moved considerably.) It would be fair to say that World War II permanently
changed the centre of gravity.

0.1 Acknowledgments

Kluvanek

Hanna Neumann

B. H. Neumann

The author must first acknowledge Dr Ian D. Macdonald who,
at the University of Queensland, first introduced him in 1967 to
the subject of Topology and who also supervised in 1967/1968
his first research project on varieties of topological groups and
free topological groups, which later became the topic of the
research for his PhD thesis at Flinders University. The author’s
PhD was supervised by Professor Igor Kluvanek, who introduced
him to free compact abelian groups and to socialism, and who
influenced the author’s approach to teaching mathematics as
did the author’s lecturers: Dr Sheila Oates Williams, Professor
Anne Penfold Street, Professor Rudolf Vyborny, Professor Des
Nicholls, Professor Clive Davis and Dr John Belward at the
University of Queensland. The author’s love of mathematics
was enhanced in 1963-1964 by Professor Graham Jones at
Cavendish Road State High School, and later enriched by
Professor Hanna Neumann and Professor Bernhard H. Neumann
of the Australian National University.
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MacLane

The author’s understanding of category theory and its
significance was developed through discussions with Professor
Gregory Maxwell Kelly of the University of New South Wales
and Professor Saunders MacLane of the University of Chicago,
USA.

The author’s knowledge of Banach Space Theory and Topological Vector Space
Theory was enhanced by discussions at the University of Florida in 1970 and 1971
with Joe Diestel and Steve Saxon.

The author has learnt a vast amount of mathematics from, and has had interesting
and very useful conversations on the teaching of mathematics with, his coauthor
Professor Karl Heinrich Hofmann of the Technical University of Darmstadt in Germany
and Tulane University in New Orleans, USA.

The author’s love of Topology began with two books on Topology, namely Kelley
[219] and Dugundji [109].

Portions of earlier versions of this book were used at the University of New South
Wales, the University College of North Wales, LaTrobe University, University of New
England, University of Wollongong, University of Queensland, University of South
Australia, City College of New York, and the University of Ballarat over a period of
about 40 years and online for about 2 decades. I wish to thank those students who
criticized the earlier versions and identified errors.

Plant

Special thanks go to Deborah King and Allison Plant for
pointing out numerous typos, errors and weaknesses in the
presentation. Thanks also go to several others, some of them
colleagues, including M. H. Alsuwaiyel, Marshall Ash, Jessica
Banks, Ewan Barker, Colin Benner, Henno Brandsma, Leonardo
De Angelis, James Dick, Will Dickinson, Bu Feiming, Alexey
Guzey, Maria Gkerats, Eldar Hajilarov, Karl Heinrich Hofmann,
Manisha Jain, Ralph Kopperman, Ray-Shang Lo, Sordi Massimiliano, Aidan Murphy,
Yash Nair, Rodney Nillsen, Guillermo Pineda-Villavicencio, Peter Pleasants, Kyriakos
Papadopoulos, Strashimir Popvassilev, Geoffrey Prince, Carolyn McPhail Sandison,
Bevan Thompson, Andrey Torba, Michiel Vermeulen, Roger Vogeler, and Juqiang
Zheng who read various versions and suggested improvements.
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Nillsen

Particular thanks go to Rodney Nillsen whose notes on
chaos theory were very useful in preparing the relevant appendix
and to Jack Gray whose excellent University of New South Wales
Lecture Notes “Set Theory and Transfinite Arithmetic", written
in the 1970s, influenced the Appendix on Infinite Set Theory.

In various places in this book, especially Appendix 2, there are historical notes.
I acknowledge two wonderful sources Bourbaki [50] and The MacTutor History of
Mathematics Archive [369].

Knuth

Initially the book was typset using Donald Knuth’s beautiful
and powerful TEX package. As the book was expanded and
colour introduced, this was translated into LATEX. For the
last 30 years most mathematics books and journals have been
typeset in some variety of TEX or LATEX.

Sandison

Appendix 5 is based on my 1977 book2 ”Pontryagin duality
and the structure of locally compact abelian groups”, Morris
[277]. The 1977 book was based on a course I first gave in
1974 at the University College of North Wales in Bangor, Wales,
UK at the request of Professor Ronald (Ronnie) Brown and
subsequently delivered at the University of New South Wales in
1975 and La Trobe University, Melbourne, Australia in 1976.
I am very grateful to Dr Carolyn McPhail Sandison of the
University of Wollongong, who as a present to me, typeset this
book in TEX for me, more than 15 years ago.

Some photographs of mathematicians are included in this book. Often these
are from Wikipedia, https://en.wikipedia.org, and we gratefully acknowledge that
wonderful source of information. Appropriate copyright information can be found at
the end of each chapter.

0.2 Readers – Locations and Professions

This book has been, or is being, used by professors, graduate students, undergraduate
students, high school students, and retirees, some of whom are studying to be,
are or were, accountants, actuaries, applied and pure mathematicians, astronomers,

2Copyright was returned to the author by Cambridge University Press.

https://en.wikipedia.org
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biologists, chemists, computer graphics, computer scientists, econometricians,
economists, aeronautical, database, electrical, mechanical, software, space, spatial
and telecommunications engineers, finance experts, game theorists,
neurophysiologists, nutritionists, options traders, philosophers, physicists,
psychiatrists, psychoanalysts, psychologists, sculptors, software developers, spatial
information scientists, and statisticians in Algeria, Argentina, Australia, Austria,
Bangladesh, Bolivia, Belarus, Belgium, Belize, Brazil, Bulgaria, Cambodia,
Cameroon, Canada, Chile, Gabon, People’s Republic of China, Colombia, Costa
Rica, Croatia, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Estonia, Ethiopia,
Fiji, Finland, France, Gaza, Germany, Ghana, Greece, Greenland, Guatemala, Guyana,
Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Israel, Italy, Jamaica, Japan,
Jordan, Kenya, Korea, Kuwait, Latvia, Liberia, Lithuania, Luxembourg, Malaysia,
Malta, Mauritius, Mexico, New Zealand, Nicaragua, Nigeria, Norway, Pakistan,
Panama, Paraguay, Peru, Poland, Portugal, Puerto Rico, Qatar, Romania, Russia,
Senegal, Serbia, Sierra Leone, Singapore, Slovenia, South Africa, Spain, Sri Lanka,
Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan, Tanzania, Thailand, The
Netherlands, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, Ukraine, United
Arab Emirates, United States of America, Uruguay, Uzbekistan, Venezuela, and
Vietnam.

The book is referenced, in particular, on http://econphd.econwiki.com/notes.htm

a website designed to make known useful references for “graduate-level course notes
in all core disciplines” suitable for Economics students and on Topology Atlas a
resource on Topology http://at.yorku.ca/topology/educ.htm.

0.3 Readers’ Compliments

Jeffrey C., USA: “Topology Without Tears has been, and continues to be, the most
accessible rigorous text on topology legally available on the net. Beyond providing a
foundation on general topology, it was the book that made proof click with me. In
so far as LaTeX markup, SID MORRIS has laid the gold standard for a mathematics
texts for online and device viewing. It displays beautifully in all my devices and
platforms.
The recent additions in quotient spaces and hausdorff dimension are very much
appreciated as well.
Thank you Professor Morris!”

http://econphd.econwiki.com/notes.htm
http://at.yorku.ca/topology/educ.htm
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Hector R., Mexico: “I love your book”;
T. L., USA: “delightful work, beautifully written”;
Cesar, USA “As Topology wasn’t a prerequisite for my class on Quantum Mechanics”
(since I’m a physics major), I cannot express how helpful this book has been in
studying Hilbert Spaces, and thus QM in general. Fantastic text. I’ve recommended
to all my physics classmates, thank you so much Dr. Morris!”
Jari, Finland: “I got my exam in Topology back, which was my last exam in my
master’s degree. 5/5 thanks to Topology Without Tears! I dare to say that I would
have had big problems without this book. So thank you very much and keep up the
good work!”
Ashraf, Assistant Professor, Pakistant: “May Allah bestow the author with happiness,
prosperity and health.”
E. F., Australia: “your notes are fantastic”;
Andreas L., Germany: “I really enjoy your script very much!”;
Yao J., China: “I’m a engineering student from Zhejiang Sci-Tech University, Hangzhou,
Zhejiang Province, China. I have looked through your book titled ’Topology without
tears’ which attractes me much”;
E. Yuan, Germany: “it is really a fantastic book for beginners in Topology”;
D. Johnson, USA: “Loving the book”;
S. Kumar, India: “very much impressed with the easy treatment of the subject,
which can be easily followed by nonmathematicians”;
Pawin S., Thailand: “I am preparing myself for a Ph.D. (in economics) study and
find your book really helpful to the complex subject of topology”;
Hannes R., Sweden: “think it’s excellent”;
Manisha J., India:“I am reading this book and I must say that it is so easy to read.
I have read many other books too, but this book is so easy to grasp.The words you
have used are the words that we use so commonly and the way everything goes in
a flow. I like it Sir. I was having a tough time with topology, maybe this will help
me.Thank you Sir for this”;
G. Gray, USA: “wonderful text”;
Dipak B., India: “beautiful note”;
Jan van L., Netherlands: “I’ve been reading in your textbook for about one hour in
the middle of the night - after hours (days) of searching for a book with a clear and
extended explanation of topology basics. And I realised I found it - your textbook.”
Daniel C., Hungary: “I am an economics student at the Eotvos Lorand University,
Budapest and currently I am reading and studying your book ’Topology without
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tears’, which I find truly fascinating.";
Andrea J., Long Beach, USA: “‘Topology Without Tears’ is exactly what I have
needed to wrap my mind about this subject. I appreciate your huminatarian effort
for people like me!”;
B. Pragoff Jr, USA: “explains topology to an undergrad very well”;
Tapas Kumar B., India: “an excellent collection of information”;
Debanshu R., India: “I have had the recent opportunity to find your book "Topology
without Tears" from your web page. And I can’t describe how much I appreciate
it. I am currently a Mathematics undergrad (3rd yr) in India. And I had my first
course of Topology last semester and your book has really been an exciting piece of
reference for me. And my sister is also into Mathematics and I introduced her to
your book. And she says that she loves it”;.
Bosko D., Serbia: “ I read on computer Your book Topology without tears. It is
very nice book”;
Kyriakos Papadopoulos, Xanthi, Greece: “I discovered your book online, and I loved
the way you explain complicated ideas!”;
Mekonnen Y., Ethiopia “I have found it extremely important reference for my
postgraduate study. it seems that it would be very difficult to me to master the
subject matter in topology without it . . . . i will also remind you in my life long as a
big contribution”;
Yassine A.: “ A great book to understand something like topology that dont make
difference between daughnuts and cup of coffee”;
Muhammad Sani A., Nigeria: “I don’t even know the words to use,in order to express
my profound gratitude, because, to me a mere saying ‘thank you very much’ is not
enough. However, since it a tradition, that whenever a good thing is done to you,
you should at least, say ’thank you’ I will not hesitate to say the same, but, I know
that, I owe you more than that, therefore, I will continue praying for you”;
Spyridon N. D., Greece: “I recently found out about your book "Topology without
Tears". I would like to teach myself some topology. Having read a few pages of
your book "Topology without Tears" carefully , I think it will be of tremendous help
to this cause;”
Emelife O., Nigeria: “i am an M.sc student in the department of mathematics at
Nnamdi Azikiwe University Awka Nigeria, read about your book "topology without
tears" on net, i am indebted to people like you who chose not to hid knowledge
because of money”;
S. Saripalli, USA: “I’m a homeschooled 10th grader . . . I’ve enjoyed reading Topology
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Without Tears”;
Roman G., Czech Republic: “I would like to ask you to send me a password for a
printable copy of your wonderful book "Topology without Tears". I am a graduate
student in Economics at CERGE-EI, in Prague.";
Samuel F.,USA:“Firstly I would like to thank you for writing an excellent Topology
text, I have finished the first two chapters and I really enjoy it. I would suggest
adding some "challenge" exercises. The exercises are a little easy. Then again, I
am a mathematics major and I have taken courses in analysis and abstract algebra
and your book is targeted at a wider audience. You see, my school is undergoing a
savage budget crisis and the mathematics department does not have enough funds
to offer topology so I am learning it on my own because I feel it will give me a
deeper understanding of real and complex analysis”;
Maria Amarakristi O., Nigeria: “ I am a final year student of Mathematics in
University of Nigeria. . . . I found your book profoundly interesting as it makes the
challenging course - topology more interesting. The presentation is very good and
for a beginner like me, it will be of very great help in understanding the fundamentals
of General topology.”;
Andree G., Peru: "I would like you to let me download your spanish version of the
book, it is only for private use, Im coursing economics and Im interested in learning
about the topic for my self. I study in San Marcos University that its the oldest
university of Latin America";
Eszter C., Hungary: “I am an undergraduate student student studying Math-ematical
Economics ... I’m sure that you have heard it many times before, but I will repeat
it anyway that the book is absolutely brilliant!”;
Prof. Dr. Mehmet T., Yasar Universit, Turkey: “I would like to use your book
âĂĲTopology without tearsâĂİ in my class. Would you like to send me a (free)
printable version of your WONDERFUL work”;
Christopher R., Australia: “May I first thank you for writing your book ‘Topology
without tears’? Although it is probably very basic to you, I have found reading it a
completely wonderful experience”;
Jeanine D., USA: “I am currently taking Topology and I am having an unusual
amount of difficulty with the class. I have been reading your book online as it helps
so much”;
Dr. Anwar F., Qassim University, Saudi Arabia: “I would like to congratulate you
for your nice book " TOPOLOGY WITHOUT TEARS" . It is really a wonderful
book. It is very nice as a text book because it is written in a way that is very easy
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to the student to understand. I am teaching Topology for undergraduate students.
I found your book very good and easy for the student to understand. I would like to
use your book " TOPOLOGY WITHOUT TEARS" as a text book for my students.
Could you please tell me how to order some copies of the book in Arabic language
for the students and also for the library?”
Michael N., Macau:“Unlike many other math books, your one is written in a friendly
manner. For instance, in the early chapters, you gave hints and analysis to almost all
the proof of the theorems. It makes us, especial the beginners, easier to understand
how to think out the proofs. Besides, after each definition, you always give a number
of examples as well as counterexamples so that we can have a correct and clear idea
of the concept”;
Elise D., UK: “ I am currently studying Topology at Oxford University. I am finding
the book I am currently using is more difficult than expected. My tutor recommended
your book "Topology Without Tears";”
Tarek Fouda, USA: “I study advanced calculus in Stevens institute of technology
to earn masters of science in financial engineering major. It is the first time I am
exposed to the subject of topology. I bought few books but I find yours the only
that explains the subject in such an interesting way and I wish to have the book
with me just to read it in train or school.”
Ahmad A., Malaysia:“I am Ph.D. student in UKM (Malaysia) my area of research is
general topology and I fined your book is very interesting”;
Jose V., Uruguay:“n this semester I am teaching Topology in the Facultad de
Ciencias of Universidad de la Republica. I would like to have a printable version
of your (very good) book.”
Muhammad Y. B., Professor of Mathematics, Bayero University, Nigeria: “Your
ebook, ‘Topology Without Tears’, is an excellent resource for anyone requiring the
knowledge of topology. I do teach some analysis courses which assumes basic
background in topology. Unfortunately, some of my students either do not have
such a background, or have forgotten it. After going through the electronic version,
I observe your book would be a good source of refreshing/providing the background
to the students.”
Prof. dr. Ljubomir R. S., Institute for Mechanics and Theory of Structures,
University of Belgrade, Serbia:“I just learn topology and I have seen your superb
book. My field is in fact Continuum Mechanics and Structural Analysis”;
Pascal L., Germany:“I must print your fantastic book for writing notes on edge of
the real sheets of paper”;
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Professor Luis J. A., Department of Mathematics at University of Murcia, Spain:
“I have just discovered your excellent text "Topology Without Tears". During this
course, I will be teaching a course on General Topology (actually, I will start my
course tomorrow morning). I started to teach that course last year, and esentially I
followed Munkres’s book (Topology, Second edition), from which I covered Chapters
2, 3, part of 4, 5, and part of 9. I have been reading your book and I have really
enjoyed it. I like it very much, specially the way you introduce new concepts and
also the hints and key remarks that you give to the students.”
Daniel N., Lecturer, Department of Physics,University of Buea, Cameroon: "After
many years of struggle to understand the rudiments of topology, without any success
at all, I gave up!. Then recently I stumbled upon your God-sent text while browsing
the web. Flipping through the pages of the on-line I am convinced that if I cannot
understand the subject from this text, then no other book can probably help me";
Tirthankar C., Oxford University, UK: “I am the University of Cambridge and am an
econometrician. Your notes are very well written”;
Thomas E., Germany: “I was intensely attracted to contents and style. Especially, I
like the way you introduce the basics and make them work via exercises and guided
proofs.”;
Gabriele. E.M. B. MD PhD, Head of Research, Institute of Molecular Bioimaging
and Physiology, National Research Council, Italy: “I am a neurophysiologist and
am trying to achieve some new neurodynamic description of sensory processes by
topological approach. I stepped into your wonderful book.”
Fazal H., Pakistan:“I am PhD student in the faculty of Enginneering Ghlam Ishaq
Khan Institute of Sciences and Techonology Topi swabi Pakistan. I was surprised
by reading your nice book topology without tears. In fact i have never seen such a
beautifully weitten book on topology before”;
Gabriele L., Italy: “I’m just a young student, but I found very interesting the way
you propose the topology subject, especially the presence of so many examples”;
K. Orr, USA: “excellent book”;
Professor Ahmed Ould, Colombia: “let me congratulate you for presentation,
simplicity and the clearness of the material”;
Paul U., USA: “I like your notes since they provide many concrete examples and do
not assume that the reader is a math major”;
Alberto Garcia Raboso, Spain: “I like it very much”;
Guiseppe Curci, Research Director in Theoretical Physics, National Institute of
Theoretical Physics, Pisa: “nice and illuminating book on topology”;
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M. Rinaldi, USA: “this is by far the clearest and best introduction to topology I have
ever seen . . . when I studied your notes the concepts clicked and your examples are
great”;
Joaquin P., Undergraduate Professor of Economics, Catholic University of Chile: “I
have just finished reading your book and I really liked it. It is very clear and the
examples you give are revealing”;
Alexander L., Sweden: “I’ve been enjoying reading your book from the screen but
would like to have a printable copy”
Francois N., USA: “I am a graduate student in a spatial engineering course at the
University of Maine (US), and our professor has enthusiastically recommended your
text for the Topology unit.”;
Hsin-Han S., USA: “I am a Finance PhD student in State Univ of New York at
Buffalo. I found the Topology materials on your website is very detailed and readable,
which is an ideal first-course-in topology material for a PhD student who does not
major in math, like me”;
Degin C., USA: “your book is wonderful”;
Eric Y., Darmstadt, Germany: “I am now a mathematics student in Darmstadt
University of Technology, studying Topology, and our professor K.H. Hofmann
recommended your book ‘Topology Without Tears’ very highly”;
Martin V., Oxford University: “I am an Msc student in Applied Math here in oxford.
Since I am currently getting used to abstract concepts in maths, the title of the
book topology without tears has a natural attraction”;
Ahmet E., Turkey: “I liked it a lot”;
Kartika B., India: “i am pursuing my master in economics here at Delhi School of
Economics, University of Delhi,I found your book very useful and easy to understand.
Many of my doubts have been solved while reading your book”;
Wolfgang M., Belgium:“I am a Bachelor-student of the "Katholieke Universiteit
Leuven. I found myself reading most of the first part of "Topology Without Tears"
in a matter of hours. Before I proceed, I must praise you for your clear writing and
excellent structure (it certainly did not go unnoticed!)”
Duncan C., USA: “You must have received emails like this one many times, but I
would still like thanks you for the book ‘Topology without Tears’. I am a professional
software developer and enjoy reading mathematics.”
Maghaisvarei S., Singapore: “I will be going to US to do my PhD in Economics
shortly. I found your book on topology to be extremely good”;
Tom H., USA: “thank you for making your fine text available on the web”;
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Fausto S., Italy: “i’m reading your very nice book and this is the best one I saw
until now about this subject”;
Takayuki O., USA: “ started reading your "Topology Without Tears" online, and
found that it is a very nice material to learn topology as well as general mathematical
concept”;
Roman K., Germany: “Thank you very much for letting me read your great book.
The ‘topology without tears’ helped me a lot and i regained somehow my interest
in mathematics, which was temporarily lost because of unsystematic lectures and
superfluous learning by heart”;
Yuval Y., USA:“I had a look at the book and it does seem like a marvelous work”;
N.S. M., Greece: “It is a very good work”;
Semih T., Turkey: “I know that PhD in Economics programs are mathematically
demanding, so I found your book extremely useful while reviewing the necessary
topics”;
Pyung Ho K., USA: “I am currently a Ph.D. student... I am learning economic
geography, and i found your book is excellent to learn a basic concept of topology”;
Javier H., Turkey: “I am really grateful to all those, which like you, spend their
efforts to share knowledge with the others, without thinking only in the benefit they
could get by hiding the candle under the table and getting money to let us spot the
light”;
Martin D. S., Center for Economics and Development Studies (CEDS), Padjadjaran
University, Bandung, Indonesia: “I found it is very useful for me, since next September
I will continue my study at Stockholm School of Economics. Thank you very much
for what you have done, it helps me a lot, for my preparation before I go to the grad
school.”
J. Chand, Australia: “Many thanks for producing topology without tears. Your book
is fantastic.”;
Richard Vande V., USA: “Two years ago I contacted you about downloading a copy
of your "Topology without Tears" for my own use. At that time I was teaching
a combined undergraduate / graduate course in topology. I gave the students the
URL to access (online) the text. Even though I did not follow the topics and
development in exactly the same order which you do, one of the better students in
the class indicated that I should have made that the one and only required text for
the course! I think that is a nice recommendation. Well, history repeats itself and
two years later I am again teaching the same course to the same sort of audience.
So, I would like to be able to download a complete version of the text”;
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Professor Sha Xin W., Fine Arts and Computer Science, Concordia University,
Canada:
“Compliments on your very carefully and humanely written text on topology! I
would like to consider adopting it for a course introducing "living" mathematics to
ambitious scholarly peers and artists. It’s always a pleasure to find works such as
yours that reaches out to peers without compromise.”;
Associate Professor Dr Rehana B., Bangladesh: “I am a course teacher of Topology
in M.Sc. class of the department of Mathematics, University of Dhaka, Bangladesh.
Can I have a copy of your wonderful book "Topology Without Tears" for my personal
use?”;
Emrah A., Department of Mathematics,Anadolu University, Turkey: "I have just
seen your beautiful book "Topology without Tears" and I m planning to follow your
book for this summer semester";
Rahul N., PhD Student, Department of Economics University of Southern California,
USA: “I am a PhD student at the Department of Economics of the University of
Southern California, Los Angeles. I hope to work in the area of general equilibrium
with incomplete markets. This area requires a thorough understanding of topological
concepts. Your excellent book was referred to me by a colleague of mine from Kansas
University (a Mr. Ramu Gopalan). After having read part of the book from the non-
printable pdf file, I have concluded that this is the book that I want to read to learn
topology.”
Long N., USA “I have never seen any book so clear on such a difficult subject”;
Renato O., Chile: “Congratulations for your great book. I went through the first
chapters and had a great time. I thought that topology was out of my reach, now
I declare myself an optimist in this matter. ”;
Sisay Regasa S., Assistant Dean, Faculty of Business and Economics, Addis Ababa
University Ethopia:“ I am prospective PhD student of Economics currently a lecturer
in Economics at Economics Department of Addis Ababa University, Ethiopia, East
Africa. Could you please send me the printable version of your book?”
Nicanor M. T., Davao Oriental State College of Science and Technology,
Philippines: “Greetings! I would like to express my gratitude for your unselfish
act of sharing your instructional resources, you indeed help me and my students gain
topological maturity. Thanks and more power”;
Ernita R. C., Philippines:”I’m Ms. Ernita R. Calayag, a Filipino, student of De La
Salle University taking up Ph. D. in Mathematics. I heard good things about your
book “Topology Without Tears" and as student of mathematics, I just can’t miss the
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opportunity of having a copy and enjoy its benefits. I hope that with your approval I
can start to understand Topology more as a foundational subject of mathematics.”
Nikola M., Serbia: “Your book is really unique and valuable, suitable for a wide
audience. This is a precious gift from You, which is appreciated worldwide. I think
that almost everybody who needs to obtain appropriate knowledge in topology can
benefit greatly from Your book.”
Iraj D., Iran: “(please excuse me for unsuitable letter) i am mechanical engineer. but
i very very interest mathematics (more like to analysis). i am study myself without
teacher. some subject in this is difficult for me (for example topology and abstract
analysis) because my experiment in pure mathematics isn’t high yet. i now study
your book(topology whithout tears). this book very very different from other books
in this subject and teached me many things which abstract for me until now.[thank
you]”;
Dr Abdul I., Bayero University, Kano, Nigeria: "My name is ABDUL IGUDA (PhD-in
General Topology). I have been teaching General Topology for the past 18 years in
my university, I am also a visiting lecturer to some orther two universities (Gwambe
State University and Umaru Musa Yar’Adua University). Sir, I will like to posses a
(free) printable Vesion of your Book (Topology Without Tears). Thank you very
much";
Mahdi J., KNToosi University, Tehran, Iran: "My name is Mahdi Jafari and study
space engineering."
Jayakrishnan M, K., India:“I am an undergraduate student of mathematics and I
have started learning topology this year. All that I learned so far was ‘topology
with tears’. Topology has been the most difficult area for me (until I found your
book). However I was able to swallow some theorems. But I always stumbled upon
problems. I think it is futile to go further, simply swallowing more theorems without
clearly understanding the subject matter and without being able to solve even a
problem. Having such great difficulty in taking topology, I searched the internet for
some resource which would help me. Most of the stuff I found was more or less
the same to the books and notes that I used to follow. But I was delighted to find
TOPOLOGY WITHOUT TEARS, an excellent, totally different work in which the
substance is beautifully presented; each definition is made clear with a number of
good examples. Your work stands apart for its lucidity. Now I really enjoy learning
topology. I express my sincere gratitude to you for making topology an interesting
subject for me.”
M.A.R. K., Karachi: “thank you for remembering a third world student”.



20 CHAPTER 0. INTRODUCTION

0.4 Helpful Hint on Hyperlinks

If you are using the pdf file of this book on a computer or tablet rather than using
a print copy, you should find the hyperlinks very useful. Often when you use a
hyperlink to a previous theorem or definition in this book, you will want to return
to the page you were studying. On many pdf readers, including Adobe, this can be
achieved by simultaneously pressing the ALT key and the LEFT ARROW key.
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Chapter 1

Topological Spaces

Introduction

Tennis, football, baseball and hockey may all be exciting games but to play them
you must first learn (some of) the rules of the game. Mathematics is no different.
So we begin with the rules for topology.

This chapter opens with the definition of a topology and is then devoted to
some simple examples: finite topological spaces, discrete spaces, indiscrete spaces,
and spaces with the finite-closed topology.

Topology, like other branches of pure mathematics such as group theory, is an
axiomatic subject. We start with a set of axioms and we use these axioms to prove
propositions and theorems. It is extremely important to develop your skill at writing
proofs.

Why are proofs so important? Suppose our task were to construct a building.
We would start with the foundations. In our case these are the axioms or definitions
– everything else is built upon them. Each theorem or proposition represents a new
level of knowledge and must be firmly anchored to the previous level. We attach the
new level to the previous one using a proof. So the theorems and propositions are
the new heights of knowledge we achieve, while the proofs are essential as they are
the mortar which attaches them to the level below. Without proofs the structure
would collapse.

So what is a mathematical proof?

23
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A mathematical proof is a watertight argument which begins with information
you are given, proceeds by logical argument, and ends with what you are asked to
prove.

You should begin a proof by writing down the information you are given and
then state what you are asked to prove. If the information you are given or what
you are required to prove contains technical terms, then you should write down the
definitions of those technical terms.

Every proof should consist of complete sentences. Each of these sentences
should be a consequence of (i) what has been stated previously or (ii) a theorem,
proposition or lemma that has already been proved.

In this book you will see many proofs, but note that mathematics is not a
spectator sport. It is a game for participants. The only way to learn to write proofs
is to try to write them yourself.

1.1 Topology

1.1.1 Definitions. Let X be a non-empty set. A set τ of subsets of X is
said to be a topology on X if

(i) X and the empty set, Ø, belong to τ ,

(ii) the union of any (finite or infinite) number of sets in τ belongs to τ , and
(iii) the intersection of any two sets in τ belongs to τ .
The pair (X,τ ) is called a topological space.

1.1.2 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then τ 1 is a topology on X as it satisfies conditions (i), (ii) and (iii) of Definitions
1.1.1.
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1.1.3 Example. Let X = {a, b, c, d, e} and

τ 2 = {X,Ø, {a}, {c, d}, {a, c, e}, {b, c, d}}.

Then τ 2 is not a topology on X as the union

{c, d} ∪ {a, c, e} = {a, c, d, e}

of two members of τ 2 does not belong to τ 2 ; that is, τ 2 does not satisfy condition
(ii) of Definitions 1.1.1.

1.1.4 Example. Let X = {a, b, c, d, e, f} and

τ 3 = {X,Ø, {a}, {f}, {a, f}, {a, c, f}, {b, c, d, e, f}} .

Then τ 3 is not a topology on X since the intersection

{a, c, f} ∩ {b, c, d, e, f} = {c, f}

of two sets in τ 3 does not belong to τ 3 ; that is, τ 3 does not have property (iii) of
Definitions 1.1.1.

1.1.5 Example. Let N be the set of all natural numbers (that is, the set of all
positive integers) and let τ 4 consist of N, Ø, and all finite subsets of N. Then τ 4

is not a topology on N, since the infinite union

{2} ∪ {3} ∪ · · · ∪ {n} ∪ · · · = {2, 3, . . . , n, . . . }

of members of τ 4 does not belong to τ 4 ; that is, τ 4 does not have property (ii)
of Definitions 1.1.1.

1.1.6 Definitions. Let X be any non-empty set and let τ be the collection
of all subsets of X. Then τ is called the discrete topology on the set X. The
topological space (X,τ ) is called a discrete space.

We note that τ in Definitions 1.1.6 does satisfy the conditions of Definitions
1.1.1 and so is indeed a topology.

Observe that the set X in Definitions 1.1.6 can be any non-empty set. So
there is an infinite number of discrete spaces – one for each set X.
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1.1.7 Definitions. Let X be any non-empty set and τ = {X,Ø}. Then τ
is called the indiscrete topology and (X,τ ) is said to be an indiscrete space.

Once again we have to check that τ satisfies the conditions of 1.1.1 and so is
indeed a topology.

We observe again that the set X in Definitions 1.1.7 can be any non-empty
set. So there is an infinite number of indiscrete spaces – one for each set X.

In the introduction to this chapter we discussed the
importance of proofs and what is involved in writing
them. Our first experience with proofs is in Example
1.1.8 and Proposition 1.1.9. You should study these
proofs carefully.

You may like to watch the first of the YouTube videos
on proofs. It is called
“Topology Without Tears – Video 4 – Writing Proofs in
Mathematics”
and can be found on YouTube at
http://youtu.be/T1snRQEQuEk

or on the Chinese Youku site at
http://tinyurl.com/mwpmlqs

or by following the relevant link from
http://www.topologywithouttears.net.

http://youtu.be/T1snRQEQuEk
http://tinyurl.com/mwpmlqs
http://www.topologywithouttears.net
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1.1.8 Example. If X = {a, b, c} and τ is a topology on X with {a} ∈ τ ,
{b} ∈ τ , and {c} ∈ τ , prove that τ is the discrete topology.

Proof.

We are given that τ is a topology and that {a} ∈ τ , {b} ∈ τ , and {c} ∈ τ .
We are required to prove that τ is the discrete topology; that is, we are

required to prove (by Definitions 1.1.6) that τ contains all subsets of X.
Remember that τ is a topology and so satisfies conditions (i), (ii) and (iii)
of Definitions 1.1.1.

So we shall begin our proof by writing down all of the subsets of X.

The set X has 3 elements and so it has 23 distinct subsets. They are: S1 = Ø,
S2 = {a}, S3 = {b}, S4 = {c}, S5 = {a, b}, S6 = {a, c}, S7 = {b, c}, and
S8 = {a, b, c} = X.

We are required to prove that each of these subsets is in τ . As τ is a topology,
Definitions 1.1.1 (i) implies that X and Ø are in τ ; that is, S1 ∈ τ and S8 ∈ τ .

We are given that {a} ∈ τ , {b} ∈ τ and {c} ∈ τ ; that is, S2 ∈ τ , S3 ∈ τ and
S4 ∈ τ .

To complete the proof we need to show that S5 ∈ τ , S6 ∈ τ , and S7 ∈ τ . But
S5 = {a, b} = {a} ∪ {b}. As we are given that {a} and {b} are in τ , Definitions
1.1.1 (ii) implies that their union is also in τ ; that is, S5 = {a, b} ∈ τ .

Similarly S6 = {a, c} = {a}∪{c} ∈ τ and S7 = {b, c} = {b}∪{c} ∈ τ .
In the introductory comments on this chapter we observed that mathematics

is not a spectator sport. You should be an active participant. Of course your
participation includes doing some of the exercises. But more than this is expected
of you. You have to think about the material presented to you.

One of your tasks is to look at the results that we prove and to ask pertinent
questions. For example, we have just shown that if each of the singleton sets
{a}, {b} and {c} is in τ and X = {a, b, c}, then τ is the discrete topology. You
should ask if this is but one example of a more general phenomenon; that is, if (X,τ )

is any topological space such that τ contains every singleton set, is τ necessarily
the discrete topology? The answer is “yes”, and this is proved in Proposition 1.1.9.
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1.1.9 Proposition. If (X,τ ) is a topological space such that, for every
x ∈ X, the singleton set {x} is in τ , then τ is the discrete topology.

Proof.

This result is a generalization of Example 1.1.8. Thus you might expect that
the proof would be similar. However, we cannot list all of the subsets of X
as we did in Example 1.1.8 because X may be an infinite set. Nevertheless
we must prove that every subset of X is in τ .
At this point you may be tempted to prove the result for some special

cases, for example takingX to consist of 4, 5 or even 100 elements. But this
approach is doomed to failure. Recall our opening comments in this chapter
where we described a mathematical proof as a watertight argument. We
cannot produce a watertight argument by considering a few special cases,
or even a very large number of special cases. The watertight argument
must cover all cases. So we must consider the general case of an arbitrary
non-empty set X. Somehow we must prove that every subset of X is in τ .
Looking again at the proof of Example 1.1.8 we see that the key is that

every subset of X is a union of singleton subsets of X and we already know
that all of the singleton subsets are in τ . This is also true in the general
case.

We begin the proof by recording the fact that every set is a union of its singleton
subsets. Let S be any subset of X. Then

S =
⋃
x∈S
{x}.

Since we are given that each {x} is in τ , Definitions 1.1.1 (ii) and the above equation
imply that S ∈ τ . As S is an arbitrary subset of X, we have that τ is the discrete
topology.
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That every set S is a union of its singleton subsets is a result which we shall
use from time to time throughout the book in many different contexts. Note that
it holds even when S = Ø as then we form what is called an empty union and get
Ø as the result.

Exercises 1.1

1. Let X = {a, b, c, d, e, f}. Determine whether or not each of the following
collections of subsets of X is a topology on X:

(a) τ 1 = {X, Ø, {a}, {a, f}, {b, f}, {a, b, f}};

(b) τ 2 = {X, Ø, {a, b, f}, {a, b, d}, {a, b, d, f}};

(c) τ 3 = {X, Ø, {f}, {e, f}, {a, f}}.

2. Let X = {a, b, c, d, e, f}. Which of the following collections of subsets of X is a
topology on X? (Justify your answers.)

(a) τ 1 = {X, Ø, {c}, {b, d, e}, {b, c, d, e}, {b}};

(b) τ 2 = {X, Ø, {a}, {b, d, e}, {a, b, d}, {a, b, d, e}};

(c) τ 3 = {X, Ø, {b}, {a, b, c}, {d, e, f}, {b, d, e, f}}.

3. IfX = {a, b, c, d, e, f} and τ is the discrete topology onX, which of the following
statements are true?
(a) X ∈ τ ; (b) {X} ∈ τ ; (c) {Ø} ∈ τ ; (d) Ø ∈ τ ;

(e) Ø ∈ X; (f) {Ø} ∈ X; (g) {a} ∈ τ ; (h) a ∈ τ ;

(i) Ø ⊆ X; (j) {a} ∈ X; (k) {Ø} ⊆ X; (l) a ∈ X;

(m) X ⊆ τ ; (n) {a} ⊆ τ ; (o) {X} ⊆ τ ; (p) a ⊆ τ .
[Hint. Precisely six of the above are true.]

4. Let (X,τ ) be any topological space. Verify that the intersection of any finite
number of members of τ is a member of τ .
[Hint. To prove this result use “mathematical induction”.]
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5. Let R be the set of all real numbers. Prove that each of the following collections
of subsets of R is a topology.

(i) τ 1 consists of R, Ø, and every interval (−n, n), for n any positive integer;

(ii) τ 2 consists of R, Ø, and every interval [−n, n], for n any positive integer;

(iii) τ 3 consists of R, Ø, and every interval [n,∞), for n any positive integer.

6. Let N be the set of all positive integers. Prove that each of the following
collections of subsets of N is a topology.

(i) τ 1 consists of N, Ø, and every set {1, 2, . . . , n}, for n any positive integer.
(This is called the initial segment topology.)

(ii) τ 2 consists of N, Ø, and every set {n, n+ 1, . . . }, for n any positive integer.
(This is called the final segment topology.)

7. List all possible topologies on the following sets:

(a) X = {a, b} ;
(b) Y = {a, b, c}.

8. Let X be an infinite set and τ a topology on X. If every infinite subset of X
is in τ , prove that τ is the discrete topology.
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9.* Let R be the set of all real numbers. Precisely three of the following ten
collections of subsets of R are topologies? Identify these and justify your answer.

(i) τ 1 consists of R, Ø, and every interval (a, b), for a and b any real numbers
with a < b ;

(ii) τ 2 consists of R, Ø, and every interval (−r, r), for r any positive real number;

(iii) τ 3 consists of R, Ø, and every interval (−r, r), for r any positive rational
number;

(iv) τ 4 consists of R, Ø, and every interval [−r, r], for r any positive rational
number;

(v) τ 5 consists of R, Ø, and every interval (−r, r), for r any positive irrational
number;

(vi) τ 6 consists of R, Ø, and every interval [−r, r], for r any positive irrational
number;

(vii) τ 7 consists of R, Ø, and every interval [−r, r), for r any positive real number;

(viii) τ 8 consists of R, Ø, and every interval (−r, r], for r any positive real number;

(ix) τ 9 consists of R, Ø, every interval [−r, r], and every interval (−r, r), for r
any positive real number;

(x) τ 10 consists of R, Ø, every interval [−n, n], and every interval (−r, r), for n
any positive integer and r any positive real number.

1.2 Open Sets, Closed Sets, and Clopen Sets

Rather than continually refer to “members of τ ", we find it more convenient to give
such sets a name. We call them “open sets”. We shall also name the complements
of open sets. They will be called “closed sets”. This nomenclature is not ideal, but
derives from the so-called “open intervals” and “closed intervals” on the real number
line. We shall have more to say about this in Chapter 2.

1.2.1 Definition. Let (X,τ ) be any topological space. Then the members
of τ are said to be open sets.



32 CHAPTER 1. TOPOLOGICAL SPACES

1.2.2 Proposition. If (X,τ ) is any topological space, then

(i) X and Ø are open sets,

(ii) the union of any (finite or infinite) number of open sets is an open set, and

(iii) the intersection of any finite number of open sets is an open set.

Proof. Clearly (i) and (ii) are trivial consequences of Definition 1.2.1 and
Definitions 1.1.1 (i) and (ii). The condition (iii) follows from Definition 1.2.1 and
Exercises 1.1 #4.

On reading Proposition 1.2.2, a question should have popped into your mind:
while any finite or infinite union of open sets is open, we state only that finite
intersections of open sets are open. Are infinite intersections of open sets always
open? The next example shows that the answer is “no”.
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1.2.3 Example. Let N be the set of all positive integers and let τ consist of
Ø and each subset S of N such that the complement of S in N, N\S, is a finite set.
It is easily verified that τ satisfies Definitions 1.1.1 and so is a topology on N. (In
the next section we shall discuss this topology further. It is called the finite-closed
topology.) For each natural number n, define the set Sn as follows:

Sn = {1} ∪ {n+ 1} ∪ {n+ 2} ∪ {n+ 3} ∪ · · · = {1} ∪
∞⋃

m=n+1

{m}.

Clearly each Sn is an open set in the topology τ , since its complement is a finite
set. However,

∞⋂
n=1

Sn = {1}. (1)

As the complement of {1} is neither N nor a finite set, {1} is not open. So (1)
shows that the intersection of the open sets Sn is not open.

You might well ask: how did you find the example presented in Example 1.2.3?
The answer is unglamorous! It was by trial and error.

If we tried, for example, a discrete topology, we would find that each intersection
of open sets is indeed open. The same is true of the indiscrete topology. So what
you need to do is some intelligent guesswork.

Remember that to prove that the intersection of open sets is not necessarily
open, you need to find just one counterexample!

1.2.4 Definition. Let (X,τ ) be a topological space. A subset S of X is
said to be a closed set in (X,τ ) if its complement in X, namely X \S, is open
in (X,τ ).

In Example 1.1.2, the closed sets are

Ø, X, {b, c, d, e, f}, {a, b, e, f}, {b, e, f} and {a}.

If (X,τ ) is a discrete space, then it is obvious that every subset of X is a closed
set. However in an indiscrete space, (X,τ ), the only closed sets are X and Ø.
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1.2.5 Proposition. If (X,τ ) is any topological space, then

(i) Ø and X are closed sets,

(ii) the intersection of any (finite or infinite) number of closed sets is a closed
set and

(iii) the union of any finite number of closed sets is a closed set.

Proof. (i) follows immediately from Proposition 1.2.2 (i) and Definition 1.2.4, as
the complement of X is Ø and the complement of Ø is X.

To prove that (iii) is true, let S1, S2, . . . , Sn be closed sets. We are required to
prove that S1 ∪S2 ∪ · · · ∪Sn is a closed set. It suffices to show, by Definition 1.2.4,
that X \ (S1 ∪ S2 ∪ · · · ∪ Sn) is an open set.

As S1, S2, . . . , Sn are closed sets, their complements X \S1, X \S2, . . . , X \Sn
are open sets. But

X \ (S1 ∪ S2 ∪ · · · ∪ Sn) = (X \ S1) ∩ (X \ S2) ∩ · · · ∩ (X \ Sn). (1)

As the right hand side of (1) is a finite intersection of open sets, it is an open
set. So the left hand side of (1) is an open set. Hence S1 ∪S2 ∪ · · · ∪Sn is a closed
set, as required. So (iii) is true.

The proof of (ii) is similar to that of (iii). [However, you should read the warning
in the proof of Example 1.3.9.]
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Warning. The names “open” and “closed” often lead newcomers to the world
of topology into error. Despite the names, some open sets are also closed sets!
Moreover, some sets are neither open sets nor closed sets! Indeed, if we consider
Example 1.1.2 we see that

(i) the set {a} is both open and closed;

(ii) the set {b, c} is neither open nor closed;

(iii) the set {c, d} is open but not closed;

(iv) the set {a, b, e, f} is closed but not open.

In a discrete space every set is both open and closed, while in an indiscrete space
(X,τ ), all subsets of X except X and Ø are neither open nor closed.

To remind you that sets can be both open and closed we introduce the following
definition.

1.2.6 Definition. A subset S of a topological space (X,τ ) is said to be
clopen if it is both open and closed in (X,τ ).

In every topological space (X,τ ) both X and Ø are clopen1.

In a discrete space all subsets of X are clopen.

In an indiscrete space the only clopen subsets are X and Ø.

Exercises 1.2

1. List all 64 subsets of the set X in Example 1.1.2. Write down, next to each set,
whether it is (i) clopen; (ii) neither open nor closed; (iii) open but not closed;
(iv) closed but not open.

2. Let (X,τ ) be a topological space with the property that every subset is closed.
Prove that it is a discrete space.

1We admit that “clopen” is an ugly word but its use is now widespread.
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3. Observe that if (X,τ ) is a discrete space or an indiscrete space, then every open
set is a clopen set. Find a topology τ on the set X = {a, b, c, d} which is not
discrete and is not indiscrete but has the property that every open set is clopen.

4. Let X be an infinite set. If τ is a topology on X such that every infinite subset
of X is closed, prove that τ is the discrete topology.

5. Let X be an infinite set and τ a topology on X with the property that the only
infinite subset of X which is open is X itself. Is (X,τ ) necessarily an indiscrete
space?

6. (i) Let τ be a topology on a set X such that τ consists of precisely four
sets; that is, τ = {X,Ø, A,B}, where A and B are non-empty distinct
proper subsets of X. [A is a proper subset of X means that A ⊆ X and
A 6= X. This is denoted by A ⊂ X.] Prove that A and B must satisfy
exactly one of the following conditions:

(a) B = X \ A; (b) A ⊂ B; (c) B ⊂ A.

[Hint. Firstly show that A and B must satisfy at least one of the conditions
and then show that they cannot satisfy more than one of the conditions.]

(ii) Using (i) list all topologies on X = {1, 2, 3, 4} which consist of exactly four
sets.
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Distinct Topologies on Finite and Infinite Sets

7. (i) As recorded in http://en.wikipedia.org/wiki/Finite_topological_space, the
number of distinct topologies on a set with n ∈ N points can be very large
even for small n; namely when n = 2, there are 4 topologies; when n = 3,
there are 29 topologies: when n = 4, there are 355 topologies; when n = 5,
there are 6942 topologies etc. Using mathematical induction, prove that as
n increases, the number of topologies increases.

[Hint. It suffices to show that if a set with n points hasM distinct topologies,
then a set with n+ 1 points has at least M + 1 topologies.]

(ii) Using mathematical induction prove that if the finite set X has n ∈ N points,
then it has at least (n− 1)! distinct topologies.

[Hint. Let X = {x1, . . . , xn} and Y = {x1, . . . , xn, xn+1}. if τ is any
topology on X, fix an i ∈ {1, 2, . . . , n}. Define a topology τ i on Y as
follows: For each open set U ∈ τ , define Ui by replacing any occurrence of
xi in U by xn+1; then τ i consists of all such Ui plus the set Y . Verify that
τ i is indeed a topology on Y . Deduce that for each topology on X, there
are at least n distinct topologies on Y .]

(iii) If X is any infinite set of cardinality ℵ, prove that there are at least 2ℵ

distinct topologies on X. Deduce that every infinite set has an uncountable
number of distinct topologies on it.

[Hint. Prove that there at least 2ℵ distinct topologies with precisely 3 open
sets. For an introduction to cardinal numbers, see Appendix 1.]

http://en.wikipedia.org/wiki/Finite_topological_space
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1.3 The Finite-Closed Topology

It is usual to define a topology on a set by stating which sets are open. However,
sometimes it is more natural to describe the topology by saying which sets are closed.
The next definition provides one such example.

1.3.1 Definition. Let X be any non-empty set. A topology τ on X is
called the finite-closed topology or the cofinite topology if the closed subsets
of X are X and all finite subsets of X; that is, the open sets are Ø and all subsets
of X which have finite complements.

Once again it is necessary to check that τ in Definition 1.3.1 is indeed a
topology; that is, that it satisfies each of the conditions of Definitions 1.1.1.

Note that Definition 1.3.1 does not say that every topology which has X and
the finite subsets of X closed is the finite-closed topology. These must be the only
closed sets. [Of course, in the discrete topology on any set X, the set X and all
finite subsets of X are indeed closed, but so too are all other subsets of X.]

In the finite-closed topology all finite sets are closed. However, the following
example shows that infinite subsets need not be open sets.

1.3.2 Example. If N is the set of all positive integers, then sets such as {1},
{5, 6, 7}, {2, 4, 6, 8} are finite and hence closed in the finite-closed topology. Thus
their complements

{2, 3, 4, 5, . . .}, {1, 2, 3, 4, 8, 9, 10, . . .}, {1, 3, 5, 7, 9, 10, 11, . . .}

are open sets in the finite-closed topology. On the other hand, the set of even
positive integers is not a closed set since it is not finite and hence its complement,
the set of odd positive integers, is not an open set in the finite-closed topology.

So while all finite sets are closed, not all infinite sets are open.
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1.3.3 Example. Let τ be the finite-closed topology on a set X. If X has at
least 3 distinct clopen subsets, prove that X is a finite set.

Proof.

We are given that τ is the finite-closed topology, and that there are at least
3 distinct clopen subsets.

We are required to prove that X is a finite set.

Recall that τ is the finite-closed topology means that the family of all
closed sets consists of X and all finite subsets of X. Recall also that a set
is clopen if and only if it is both closed and open.

Remember that in every topological space there are at least 2 clopen
sets, namely X and Ø. (See the comment immediately following Definition
1.2.6.) But we are told that in the space (X,τ ) there are at least 3 clopen
subsets. This implies that there is a clopen subset other than Ø and X. So
we shall have a careful look at this other clopen set!

As our space (X,τ ) has 3 distinct clopen subsets, we know that there is a clopen
subset S of X such that S 6= X and S 6= Ø. As S is open in (X,τ ), Definition 1.2.4
implies that its complement X \ S is a closed set.

Thus S and X \ S are closed in the finite-closed topology τ . Therefore S and
X \S are both finite, since neither equals X. But X = S ∪ (X \S) and so X is the
union of two finite sets. Thus X is a finite set, as required.

We now know three distinct topologies we can put on any infinite set – and
there are many more. The three we know are the discrete topology, the indiscrete
topology, and the finite-closed topology. So we must be careful always to specify
the topology on a set.

For example, the set {n : n > 10} is open in the finite-closed topology on the
set of natural numbers, but is not open in the indiscrete topology. The set of odd
natural numbers is open in the discrete topology on the set of natural numbers, but
is not open in the finite-closed topology.
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We shall now record some definitions which you have probably met before.

1.3.4 Definitions. Let f be a function from a set X into a set Y .

(i) The function f is said to be one-to-one or injective if f(x1) = f(x2)

implies x1 = x2, for x1, x2 ∈ X;

(ii) The function f is said to be onto or surjective if for each y ∈ Y there
exists an x ∈ X such that f(x) = y;

(iii) The function f is said to be bijective if it is both one-to-one and onto.

1.3.5 Definitions. Let f be a function from a set X into a set Y . The
function f is said to have an inverse if there exists a function g of Y into X
such that g(f(x)) = x, for all x ∈ X and f(g(y)) = y, for all y ∈ Y . The
function g is called an inverse function of f .

The proof of the following proposition is left as an exercise for you.

1.3.6 Proposition. Let f be a function from a set X into a set Y .

(i) The function f has an inverse if and only if f is bijective.

(ii) Let g1 and g2 be functions from Y into X. If g1 and g2 are both inverse
functions of f , then g1 = g2; that is, g1(y) = g2(y), for all y ∈ Y .

(iii) Let g be a function from Y into X. Then g is an inverse function of f if
and only if f is an inverse function of g.

Warning. It is a very common error for students to think that a function is one-
to-one if “it maps one point to one point”.

All functions map one point to one point. Indeed this is part of the definition
of a function.

A one-to-one function is a function that maps different points to different
points.
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We now turn to a very important notion that you may not have met before.

1.3.7 Definition. Let f be a function from a set X into a set Y . If S is
any subset of Y , then the set f−1(S) is defined by

f−1(S) = {x : x ∈ X and f(x) ∈ S}.

The subset f−1(S) of X is said to be the inverse image of S.

Note that an inverse function of f : X → Y exists if and only if f is bijective.
But the inverse image of any subset of Y exists even if f is neither one-to-one nor
onto. The next example demonstrates this.

1.3.8 Example. Let f be the function from the set of integers, Z, into itself
given by f(z) = |z|, for each z ∈ Z.

The function f is not one-to one, since f(1) = f(−1).

It is also not onto, since there is no z ∈ Z, such that f(z) = −1. So f is
certainly not bijective. Hence, by Proposition 1.3.6 (i), f does not have an inverse
function. However inverse images certainly exist. For example,

f−1({1, 2, 3}) = {−1,−2,−3, 1, 2, 3}
f−1({−5, 3, 5, 7, 9}) = {−3,−5,−7,−9, 3, 5, 7, 9}. �

We conclude this section with an interesting example.

1.3.9 Example. Let (Y,τ ) be a topological space and X a non-empty set.
Further, let f be a function from X into Y . Put τ 1 = {f−1(S) : S ∈ τ}. Prove
that τ 1 is a topology on X.

Proof.

Our task is to show that the collection of sets, τ 1, is a topology on X;
that is, we have to show that τ 1 satisfies conditions (i), (ii) and (iii) of
Definitions 1.1.1
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.

X ∈ τ 1 since X = f−1(Y ) and Y ∈ τ .
Ø ∈ τ 1 since Ø = f−1(Ø) and Ø ∈ τ .

Therefore τ 1 has property (i) of Definitions 1.1.1.

To verify condition (ii) of Definitions 1.1.1, let {Aj : j ∈ J} be a collection
of members of τ 1 , for some index set J . We have to show that

⋃
j∈J Aj ∈ τ 1.

As Aj ∈ τ 1, the definition of τ 1 implies that Aj = f−1(Bj), where Bj ∈ τ .
Also

⋃
j∈J Aj =

⋃
j∈J f

−1(Bj) = f−1
(⋃

j∈J Bj
)
. [See Exercises 1.3 # 1.]

Now Bj ∈ τ , for all j ∈ J , and so
⋃
j∈J Bj ∈ τ , since τ is a topology on Y .

Therefore, by the definition of τ 1, f
−1
(⋃

j∈J Bj
)
∈ τ 1; that is,

⋃
j∈J Aj ∈ τ 1.

So τ 1 has property (ii) of Definitions 1.1.1.

[Warning. You are reminded that not all sets are countable. (See the Appendix
for comments on countable sets.) So it would not suffice, in the above argument,
to assume that sets A1, A2. . . . , An, . . . are in τ 1 and show that their union
A1 ∪ A2 ∪ . . . ∪ An ∪ . . . is in τ 1. This would prove only that the union of a
countable number of sets in τ 1 lies in τ 1, but would not show that τ 1 has property
(ii) of Definitions 1.1.1– this property requires all unions, whether countable or
uncountable, of sets in τ 1 to be in τ 1.]

Finally, let A1 and A2 be in τ 1. We have to show that A1 ∩ A2 ∈ τ 1.

As A1, A2 ∈ τ 1, A1 = f−1(B1) and A2 = f−1(B2), where B1, B2 ∈ τ .

A1 ∩ A2 = f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2). [See Exercises 1.3 #1.]

As B1 ∩ B2 ∈ τ , we have f−1(B1 ∩ B2) ∈ τ 1. Hence A1 ∩ A2 ∈ τ 1, and we
have shown that τ 1 also has property (iii) of Definitions 1.1.1.

So τ 1 is indeed a topology on X.
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Exercises 1.3

1. Let f be a function from a set X into a set Y . Then we stated in Example
1.3.9 that

f−1( ⋃
j∈J

Bj
)

=
⋃
j∈J

f−1(Bj) (1)

and
f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2) (2)

for any subsets Bj of Y , and any index set J .

(a) Prove that (1) is true.
[Hint. Start your proof by letting x be any element of the set on the left-
hand side and show that it is in the set on the right-hand side. Then do the
reverse.]

(b) Prove that (2) is true.

(c) Find (concrete) sets A1, A2, X, and Y and a function f : X → Y such that
f(A1 ∩ A2) 6= f(A1) ∩ f(A2), where A1 ⊆ X and A2 ⊆ X.

2. Is the topology τ described in Exercises 1.1 #6 (ii) the finite-closed topology?
(Justify your answer.)

T1-spaces

3. A topological space (X,τ ) is said to be a T1-space if every singleton set {x}
is closed in (X,τ ). Show that precisely two of the following nine topological
spaces are T1-spaces. (Justify your answer.)

(i) a discrete space;
(ii) an indiscrete space with at least two points;
(iii) an infinite set with the finite-closed topology;
(iv) Example 1.1.2;
(v) Exercises 1.1 #5 (i);
(vi) Exercises 1.1 #5 (ii);
(vii) Exercises 1.1 #5 (iii);
(viii) Exercises 1.1 #6 (i);
(ix) Exercises 1.1 #6 (ii).



44 CHAPTER 1. TOPOLOGICAL SPACES

4. Let τ be the finite-closed topology on a set X. If τ is also the discrete topology,
prove that the set X is finite.

T0-spaces and the Sierpinski Space

5. A topological space (X,τ ) is said to be a T0-space if for each pair of distinct
points a, b in X, either2 there exists an open set containing a and not b, or there
exists an open set containing b and not a.

(i) Prove that every T1-space is a T0-space.

(ii) Which of (i)–(vi) in Exercise 3 above are T0-spaces? (Justify your answer.)

(iii) Put a topology τ on the set X = {0, 1} so that (X,τ ) will be a T0-space but
not a T1-space. [The topological space you obtain is called the Sierpiński
space.]

(iv) Prove that each of the topological spaces described in Exercises 1.1 #6 is
a T0-space. (Observe that in Exercise 3 above we saw that neither is a
T1-space.)

Countable-Closed Topology

6. Let X be any infinite set. The countable-closed topology is defined to be the
topology having as its closed sets X and all countable subsets of X. Prove that
this is indeed a topology on X.

2You are reminded that the use of “or” in mathematics is different from that in everyday
English. In mathematics, “or” is not exclusive. See the comments on this in Chapter 0.
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Intersection of Two Topologies

7. Let τ 1 and τ 2 be two topologies on a set X. Prove each of the following
statements.

(i) If τ 3 is defined by τ 3 = τ 1 ∪ τ 2, then τ 3 is not necessarily a topology on
X. (Justify your answer, by finding a concrete example.)

(ii) If τ 4 is defined by τ 4 = τ 1∩τ 2, then τ 4 is a topology on X. (The topology
τ 4 is said to be the intersection of the topologies τ 1 and τ 2.)

(iii) If (X,τ 1) and (X,τ 2) are T1-spaces, then (X,τ 4) is also a T1-space.
(iv) If (X,τ 1) and (X,τ 2) are T0-spaces, then (X,τ 4) is not necessarily a T0-

space. (Justify your answer by finding a concrete example.)

(v) If τ 1,τ 2, . . . ,τn are topologies on a set X, then τ =
n⋂
i=1
τ i is a topology

on X.
(vi) If for each i ∈ I, for some index set I, each τ i is a topology on the set X,

then τ =
⋂
i∈I
τ i is a topology on X.

Distinct T0-Topologies on a Finite Set

8. In Wikipedia, http://en.wikipedia.org/wiki/Finite_topological_space, as we noted
in Exercises 1.2 #7, it says that the number of topologies on a finite set with
n ∈ N points can be quite large, even for small n. This is also true even for
T0-spaces as defined in Exercises 1.3 #5. Indeed that same Wikipedia source
says, that if n = 3, there are 19 distinct T0-spaces; for n = 4, there are 219
distinct T0-spaces; for n = 5, there are 4231 distinct T0-spaces. Prove, using
mathematical induction, that as n increases, the number of T0-spaces increases.

[Hint. It suffices to show that if there are M T0-spaces with n points, then
there are at least M + 1 T0-spaces with n+ 1 points.]

http://en.wikipedia.org/wiki/Finite_topological_space
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9. A topological space (X,τ ) is said to be a door space if every subset of X is
either an open set or a closed set (or both).

(i) Is a discrete space a door space?

(ii) Is an indiscrete space a door space?

(iii) If X is an infinite set and τ is the finite-closed topology, is (X,τ ) a door
space?

(iv) Let X be the set {a, b, c, d}. identify those topologies τ on X which make
it into a door space?

Saturated Sets

10. A subset S of a topological space (X,τ ) is said to be saturated if it is an
intersection of open sets in (X,τ ).

(i) Verify that every open set is a saturated set.

(ii) Verify that in a T1-space every set is a saturated set.

(iii) Give an example of a topological space which has at least one subset which
is not saturated.

(iv) Is it true that if the topological space (X,τ ) is such that every subset is
saturated, then (X,τ ) is a T1-space?

1.4 Postscript

In this chapter we introduced the fundamental notion of a topological space. As
examples we saw various finite topological spaces3, as well as discrete spaces,
indiscrete spaces and spaces with the finite-closed topology. None of these is a
particularly important example as far as applications are concerned. However, in
Exercises 4.3 #8, it is noted that every infinite topological space “contains” an
infinite topological space with one of the five topologies: the indiscrete topology,
the discrete topology, the finite-closed topology, the initial segment topology, or the
final segment topology of Exercises 1.1 #6. In the next chapter we describe the
very important euclidean topology.

3By a finite topological space we mean a topological space (X,τ ) where the set X is finite.
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En route we met the terms “open set” and “closed set” and we were warned
that these names can be misleading. Sets can be both open and closed, neither
open nor closed, open but not closed, or closed but not open. It is important to
remember that we cannot prove that a set is open by proving that it is not closed.

Other than the definitions of topology, topological space, open set, and closed
set the most significant topic covered was that of writing proofs .

In the opening comments of this chapter we pointed out the importance of
learning to write proofs. In Example 1.1.8, Proposition 1.1.9, and Example 1.3.3
we have seen how to “think through” a proof. It is essential that you develop your
own skill at writing proofs. Good exercises to try for this purpose include Exercises
1.1 #8, Exercises 1.2 #2,4, and Exercises 1.3 #1,4.

If you have not already done so, you should watch the
first two of the YouTube videos on proofs. They are
called
“Topology Without Tears – Video 4a – Writing Proofs
in Mathematics” and “Topology Without Tears – Video
4b – Writing Proofs in Mathematics”
and can be found at
http://youtu.be/T1snRQEQuEk and http://youtu.be/VrAwuszhzTw

or on the Chinese Youku site at
http://tinyurl.com/mwpmlqs and http://tinyurl.com/n3jjmsm

or by following the relevant link from
http://www.topologywithouttears.net.
It would also be quite helpful to watch the fourth video
on writing proofs. It is on writing proofs which use
Mathematical Induction. It is called“Topology Without
Tears - Video 4d - Writing Proofs in Mathematics” and
can be found at
http://youtu.be/gu0Z029ebo0

http://youtu.be/T1snRQEQuEk
http://youtu.be/VrAwuszhzTw
http://tinyurl.com/mwpmlqs
http://tinyurl.com/n3jjmsm
http://www.topologywithouttears.net
http://youtu.be/gu0Z029ebo0
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Some students are confused by the notion of topology as it involves “sets of
sets”. To check your understanding, do Exercises 1.1 #3.

The exercises included the notions of T0-space and T1-space which will be
formally introduced later. These are known as separation properties.

Finally we emphasize the importance of inverse images. These are dealt with in
Example 1.3.9 and Exercises 1.3 #1. Our definition of continuous mapping will rely
on inverse images.



Chapter 2

The Euclidean Topology

Introduction

In a movie or a novel there are usually a few central characters about whom the
plot revolves. In the story of topology, the euclidean topology on the set of real
numbers is one of the central characters. Indeed it is such a rich example that we
shall frequently return to it for inspiration and further examination.

Let R denote the set of all real numbers. In Chapter 1 we defined three
topologies that can be put on any set: the discrete topology, the indiscrete topology
and the finite-closed topology. So we know three topologies that can be put on the
set R. Six other topologies on R were defined in Exercises 1.1 #5 and #9. In this
chapter we describe a much more important and interesting topology on R which is
known as the euclidean topology.

An analysis of the euclidean topology leads us to the notion of “basis for a
topology”. In the study of Linear Algebra we learn that every vector space has a
basis and every vector is a linear combination of members of the basis. Similarly, in
a topological space every open set can be expressed as a union of members of the
basis. Indeed, a set is open if and only if it is a union of members of the basis.

In order to understand this chapter, you should familiarize yourself with the
content of the first section of Appendix 1; that is A1.1. This is supplemented by the
videos "Topology Without Tears - Video 2a & 2b - Infinite Set Theory" which are
on YouTube at http://youtu.be/9h83ZJeiecg & http://youtu.be/QPSRB4Fhzko;
on Youku at http://tinyurl.com/m4dlzhh & http://tinyurl.com/kf9lp8e; and
have links from http://www.topologywithouttears.net.
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http://youtu.be/9h83ZJeiecg
http://youtu.be/QPSRB4Fhzko
http://tinyurl.com/m4dlzhh
http://tinyurl.com/kf9lp8e
http://www.topologywithouttears.net
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2.1 The Euclidean Topology on RRR

2.1.1 Definition. A subset S of R is said to be open in the euclidean
topology on R if it has the following property:

(∗) For each x ∈ S, there exist a, b in R, with a < b, such that x ∈ (a, b) ⊆ S.

Notation. Whenever we refer to the topological space R without specifying the
topology, we mean R with the euclidean topology.

2.1.2 Remarks. (i) The “euclidean topology” τ is a topology.
Proof.

We are required to show that τ satisfies conditions (i), (ii), and (iii) of
Definitions 1.1.1.

We are given that a set is in τ if and only if it has property (∗).

Firstly, we show that R ∈ τ . Let x ∈ R. If we put a = x − 1 and b = x + 1,
then x ∈ (a, b) ⊆ R; that is, R has property (∗) and so R ∈ τ . Secondly, Ø ∈ τ as
Ø has property (∗) by default.

Now let {Aj : j ∈ J}, for some index set J , be a family of members of τ . Then
we have to show that

⋃
j∈J Aj ∈ τ ; that is, we have to show that

⋃
j∈J Aj has

property (∗). Let x ∈
⋃
j∈J Aj . Then x ∈ Ak, for some k ∈ J . As Ak ∈ τ , there

exist a and b in R with a < b such that x ∈ (a, b) ⊆ Ak. As k ∈ J , Ak ⊆
⋃
j∈J Aj

and so x ∈ (a, b) ⊆
⋃
j∈J Aj . Hence

⋃
j∈J Aj has property (∗) and thus is in τ , as

required.

Finally, let A1 and A2 be in τ . We have to prove that A1 ∩ A2 ∈ τ . So let
y ∈ A1 ∩ A2. Then y ∈ A1. As A1 ∈ τ , there exist a and b in R with a < b such
that y ∈ (a, b) ⊆ A1. Also y ∈ A2 ∈ τ . So there exist c and d in R with c < d such
that y ∈ (c, d) ⊆ A2. Let e be the greater of a and c, and f the smaller of b and
d. It is easily checked that e < y < f, and so y ∈ (e, f). As (e, f) ⊆ (a, b) ⊆ A1

and (e, f) ⊆ (c, d) ⊆ A2, we deduce that y ∈ (e, f) ⊆ A1 ∩ A2. Hence A1 ∩ A2 has
property (∗) and so is in τ .

Thus τ is indeed a topology on R. �
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We now proceed to describe the open sets and the closed sets in the euclidean
topology on R. In particular, we shall see that all open intervals are indeed open
sets in this topology and all closed intervals are closed sets.

(ii) Let r, s ∈ R with r < s. In the euclidean topology τ on R, the open
interval (r, s) does indeed belong to τ and so is an open set.

Proof.

We are given the open interval (r, s).

We must show that (r, s) is open in the euclidean topology; that is, we
have to show that (r, s) has property (∗) of Definition 2.1.1.

So we shall begin by letting x ∈ (r, s). We want to find a and b in R with
a < b such that x ∈ (a, b) ⊆ (r, s).

Let x ∈ (r, s). Choose a = r and b = s. Then clearly

x ∈ (a, b) ⊆ (r, s).

So (r, s) is an open set in the euclidean topology. �

(iii) The open intervals (r,∞) and (−∞, r) are open sets in R, for every real
number r.

Proof.

Firstly, we shall show that (r,∞) is an open set; that is, that it has property
(∗).
To show this we let x ∈ (r,∞) and seek a, b ∈ R such that

x ∈ (a, b) ⊆ (r,∞).

Let x ∈ (r,∞). Put a = r and b = x + 1. Then x ∈ (a, b) ⊆ (r,∞) and so
(r,∞) ∈ τ .

A similar argument shows that (−∞, r) is an open set in R. �
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(iv) It is important to note that while every open interval is an open set in
R, the converse is false. Not all open sets in R are intervals. For example, the
set (1, 3) ∪ (5, 6) is an open set in R, but it is not an open interval. Even the set⋃∞
n=1(2n, 2n+ 1) is an open set in R. �

(v) For each c and d in R with c < d, the closed interval [c, d] is not an open
set in R.1

Proof.

We have to show that [c, d] does not have property (∗).
To do this it suffices to find any one x such that there is no a, b having

property (∗).
Obviously c and d are very special points in the interval [c, d]. So we shall

choose x = c and show that no a, b with the required property exist.

We use the method of proof called Proof by Contradiction. We
suppose that a and b exist with the required property and show that this
leads to a contradiction, that is something which is false.

Consequently the supposition is false ! Hence no such a and b exist.
Thus [c, d] does not have property (∗) and so is not an open set.

Observe that c ∈ [c, d]. Suppose there exist a and b in R with a < b such that
c ∈ (a, b) ⊆ [c, d]. Then c ∈ (a, b) implies a < c < b and so a < c+a

2 < c < b. Thus
c+a

2 ∈ (a, b) and c+a
2 /∈ [c, d]. Hence (a, b) 6⊆ [c, d], which is a contradiction. So there

do not exist a and b such that c ∈ (a, b) ⊆ [c, d]. Hence [c, d] does not have property
(∗) and so [c, d] /∈ τ . �

(vi) For each a and b in R with a < b, the closed interval [a, b] is a closed set
in the euclidean topology on R.

Proof. To see that it is closed we have to observe only that its complement
(−∞, a) ∪ (b,∞), being the union of two open sets, is an open set. �

1You should watch the YouTube video “Topology Without Tears - Video 4c - Writing Proofs in
Mathematics” which discusses Proof by Contradiction. See http://youtu.be/T4384JAS3L4.

http://youtu.be/T4384JAS3L4
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(vii) Each singleton set {a} is closed in R.
Proof. The complement of {a} is the union of the two open sets (−∞, a) and
(a,∞) and so is open. Therefore {a} is closed in R, as required.

[In the terminology of Exercises 1.3 #3, this result says that R is a T1-space.]�

(viii) Note that we could have included (vii) in (vi) simply by replacing “a < b”
by “a 6 b”. The singleton set {a} is just the degenerate case of the closed interval
[a, b]. �

(ix) The set Z of all integers is a closed subset of R.

Proof. The complement of Z is the union
⋃∞
n=−∞(n, n + 1) of open subsets

(n, n+ 1) of R and so is open in R. Therefore Z is closed in R. �

(x) The set Q of all rational numbers is neither a closed subset of R nor an
open subset of R.

Proof.

We shall show that Q is not an open set by proving that it does not have
property (∗).
To do this it suffices to show that Q does not contain any interval (a, b),

with a < b.

Suppose that (a, b) ⊆ Q, where a and b are in R with a < b. Between any two
distinct real numbers there is an irrational number. (Can you prove this?) Therefore
there exists c ∈ (a, b) such that c /∈ Q. This contradicts (a, b) ⊆ Q. Hence Q does
not contain any interval (a, b), and so is not an open set.

To prove that Q is not a closed set it suffices to show that R\Q is not an open
set. Using the fact that between any two distinct real numbers there is a rational
number we see that R \Q does not contain any interval (a, b) with a < b. So R \Q
is not open in R and hence Q is not closed in R. �

(xi) In Chapter 3 we shall prove that the only clopen subsets of R are the
trivial ones, namely R and Ø. �
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Exercises 2.1

1. Prove that if a, b ∈ R with a < b then neither [a, b) nor (a, b] is an open subset
of R. Also show that neither is a closed subset of R.

2. Prove that the sets [a,∞) and (−∞, a] are closed subsets of R.
3. Show, by example, that the union of an infinite number of closed subsets of R

is not necessarily a closed subset of R.
4. Prove each of the following statements.

(i) The set Z of all integers is not an open subset of R.
(ii) The set P of all prime numbers is a closed subset of R but not an open

subset of R.
(iii) The set I of all irrational numbers is neither a closed subset nor an open

subset of R.

5. If F is a non-empty finite subset of R, show that F is closed in R but that F is
not open in R.

6. If F is a non-empty countable subset of R, prove that F is not an open set, but
that F may or may not be a closed set depending on the choice of F .

7. (i) Let S = {0, 1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .}. Prove that the set S is
closed in the euclidean topology on R.

(ii) Is the set T = {1, 1/2, 1/3, 1/4, 1/5, . . . , 1/n, . . .} closed in R?
(iii) Is the set {

√
2, 2
√

2, 3
√

2, . . . , n
√

2, . . . } closed in R?
Fσ-Sets and Gδ-Sets

8. (i) Let (X,τ ) be a topological space. A subset S of X is said to be an Fσ-set
if it is the union of a countable number of closed sets. Prove that all open
intervals (a, b) and all closed intervals [a, b], are Fσ-sets in R.

(ii) Let (X,τ ) be a topological space. A subset T of X is said to be a Gδ-set
if it is the intersection of a countable number of open sets. Prove that all
open intervals (a, b) and all closed intervals [a, b] are Gδ-sets in R.

(iii) Prove that the set Q of rationals is an Fσ-set in R. (In Exercises 6.5 #3 we
prove that Q is not a Gδ-set in R.)

(iv) Verify that the complement of an Fσ-set is a Gδ-set and the complement of
a Gδ-set is an Fσ-set.
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2.2 Basis for a Topology

Remarks 2.1.2 allow us to describe the euclidean topology on R in a much more
convenient manner. To do this, we introduce the notion of a basis for a topology.

2.2.1 Proposition. A subset S of R is open if and only if it is a union of
open intervals.

Proof.

We are required to prove that S is open if and only if it is a union of open
intervals; that is, we have to show that

(i) if S is a union of open intervals, then it is an open set, and

(ii) if S is an open set, then it is a union of open intervals.

Assume that S is a union of open intervals; that is, there exist open intervals
(aj, bj), where j belongs to some index set J , such that S =

⋃
j∈J(aj , bj). By

Remarks 2.1.2 (ii) each open interval (aj, bj) is an open set. Thus S is a union of
open sets and so S is an open set.

Conversely, assume that S is open in R. Then for each x ∈ S, there exists an
interval Ix = (a, b) such that x ∈ Ix ⊆ S. We now claim that S =

⋃
x∈S Ix.

We are required to show that the two sets S and
⋃
x∈S Ix are equal.

These sets are shown to be equal by proving that

(i) if y ∈ S, then y ∈
⋃
x∈S Ix, and

(ii) if z ∈
⋃
x∈S Ix, then z ∈ S.

[Note that (i) is equivalent to the statement S ⊆
⋃
x∈S Ix, while (ii) is

equivalent to
⋃
x∈S Ix ⊆ S.]

Firstly let y ∈ S. Then y ∈ Iy. So y ∈
⋃
x∈S Ix, as required. Secondly, let

z ∈
⋃
x∈S Ix. Then z ∈ It, for some t ∈ S. As each Ix ⊆ S, we see that It ⊆ S and

so z ∈ S. Hence S =
⋃
x∈S Ix, and we have that S is a union of open intervals, as

required.
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The above proposition tells us that in order to describe the topology of R it
suffices to say that all intervals (a, b) are open sets. Every other open set is a union
of these open sets. This leads us to the following definition.

2.2.2 Definition. Let (X,τ ) be a topological space. A collection B of
open subsets of X is said to be a basis for the topology τ if every open set is
a union of members of B.

If B is a basis for a topology τ on a set X then a subset U of X is in τ if
and only if it is a union of members of B. So B “generates” the topology τ in the
following sense: if we are told what sets are members of B then we can determine
the members of τ – they are just all the sets which are unions of members of B.

2.2.3 Example. Let B = {(a, b) : a, b ∈ R, a < b}. Then B is a basis for the
euclidean topology on R, by Proposition 2.2.1. �

2.2.4 Example. Let (X,τ ) be a discrete space and B the family of all singleton
subsets of X; that is, B = {{x} : x ∈ X}. Then, by Proposition 1.1.9, B is a basis
for τ . �

2.2.5 Example. Let X = {a, b, c, d, e, f} and

τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then B = {{a}, {c, d}, {b, c, d, e, f}} is a basis for τ 1 as B ⊆ τ 1 and every member
of τ 1 can be expressed as a union of members of B. (Observe that Ø is an empty
union of members of B.)

Note that τ 1 itself is also a basis for τ 1. �
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2.2.6 Remark. Observe that if (X,τ ) is a topological space then B = τ is a
basis for the topology τ . So, for example, the set of all subsets of X is a basis for
the discrete topology on X.

We see, therefore, that there can be many different bases for the same topology.
Indeed if B is a basis for a topology τ on a set X and B1 is a collection of subsets
of X such that B ⊆ B1 ⊆ τ , then B1 is also a basis for τ . [Verify this.] �

As indicated above the notion of “basis for a topology” allows us to define
topologies. However the following example shows that we must be careful.

2.2.7 Example. Let X = {a, b, c} and B = {{a}, {c}, {a, b}, {b, c}}. Then B is
not a basis for any topology on X. To see this, suppose that B is a basis for a
topology τ . Then τ consists of all unions of sets in B; that is,

τ = {X,Ø, {a}, {c}, {a, c}, {a, b}, {b, c}}.

(Once again we use the fact that Ø is an empty union of members of B and so
Ø ∈ τ .)

However, τ is not a topology since the set {b} = {a, b} ∩ {b, c} is not in τ and
so τ does not have property (iii) of Definitions 1.1.1. This is a contradiction, and
so our supposition is false. Thus B is not a basis for any topology on X. �

Thus we are led to ask: if B is a collection of subsets of X, under what conditions
is B a basis for a topology? This question is answered by Proposition 2.2.8.
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2.2.8 Proposition. Let X be a non-empty set and let B be a collection of
subsets of X. Then B is a basis for a topology on X if and only if B has the
following properties:
(a) X =

⋃
B∈B

B, and

(b) for any B1, B2 ∈ B, the set B1 ∩B2 is a union of members of B.

Proof. If B is a basis for a topology τ then τ must have the properties (i),
(ii), and (iii) of Definitions 1.1.1. In particular X must be an open set and the
intersection of any two open sets must be an open set. As the open sets are just
the unions of members of B, this implies that (a) and (b) above are true.

Conversely, assume that B has properties (a) and (b) and let τ be the collection
of all subsets of X which are unions of members of B. We shall show that τ is
a topology on X. (If so then B is obviously a basis for this topology τ and the
proposition is true.)

By (a), X =
⋃
B∈B B and so X ∈ τ . Note that Ø is an empty union of members

of B and so Ø ∈ τ . So we see that τ does have property (i) of Definitions 1.1.1.

Now let {Tj} be a family of members of τ . Then each Tj is a union of members
of B. Hence the union of all the Tj is also a union of members of B and so is in τ .
Thus τ also satisfies condition (ii) of Definitions 1.1.1.

Finally let C and D be in τ . We need to verify that C ∩ D ∈ τ . But
C =

⋃
k∈K Bk, for some index set K and sets Bk ∈ B. Also D =

⋃
j∈J Bj , for

some index set J and Bj ∈ B. Therefore

C ∩D =

 ⋃
k∈K

Bk

 ⋂  ⋃
j∈J

Bj

 =
⋃

k∈K, j∈J
(Bk ∩Bj).

You should verify that the two expressions for C ∩D are indeed equal!

In the finite case this involves statements like
(B1 ∪B2) ∩ (B3 ∪B4) = (B1 ∩B3) ∪ (B1 ∩B4) ∪ (B2 ∩B3) ∪ (B2 ∩B4).

By our assumption (b), each Bk ∩Bj is a union of members of B and so C ∩D
is a union of members of B. Thus C ∩D ∈ τ . So τ has property (iii) of Definition
1.1.1. Hence τ is indeed a topology, and B is a basis for this topology, as required.�
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Proposition 2.2.8 is a very useful result. It allows us to define topologies by
simply writing down a basis. This is often easier than trying to describe all of the
open sets.

We shall now use this Proposition to define a topology on the plane. This
topology is known as the “euclidean topology”.

2.2.9 Example. Let B be the collection of all “open rectangles”
{〈x, y〉 : 〈x, y〉 ∈ R2, a < x < b, c < y < d} in the plane which have each side
parallel to the X- or Y -axis.
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........................

Then B is a basis for a topology on the plane. This topology is called the euclidean
topology.

Whenever we use the symbol R2 we mean the plane, and if we refer to R2 as a
topological space without explicitly saying what the topology is, we mean the plane
with the euclidean topology.

To see that B is indeed a basis for a topology, observe that (i) the plane is the
union of all of the open rectangles, and (ii) the intersection of any two rectangles is
a rectangle. [By “rectangle” we mean one with sides parallel to the axes.] So the
conditions of Proposition 2.2.8 are satisfied and hence B is a basis for a topology.�

2.2.10 Remark. By generalizing Example 2.2.9 we see how to put a topology
on Rn = {〈x1, x2, . . . , xn〉 : xi ∈ R, i = 1, . . . , n}, for each integer n > 2. We
let B be the collection of all subsets {〈x1, x2, . . . , xn〉 ∈ Rn : ai < xi < bi, i =

1, 2, . . . , n} of Rn with sides parallel to the axes. This collection B is a basis for
the euclidean topology on Rn. �
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Exercises 2.2

1. In this exercise you will prove that disc {〈x, y〉 : x2 + y2 < 1} is an open subset
of R2, and then that every open disc in the plane is an open set.

(i) Let 〈a, b〉 be any point in the disc D = {〈x, y〉 : x2 + y2 < 1}. Put
r =
√
a2 + b2. Let R〈a,b〉 be the open rectangle with vertices at the points

〈a± 1−r
8 , b± 1−r

8 〉. Verify that R〈a,b〉 ⊂ D.

(ii) Using (i) show that

D =
⋃

〈a,b〉∈D
R〈a,b〉.

(iii) Deduce from (ii) that D is an open set in R2.

(iv) Show that every disc {〈x, y〉 : (x − a)2 + (y − b)2 < c2, a, b, c ∈ R} is open
in R2.

2. In this exercise you will show that the collection of all open discs in R2 is a basis
for a topology on R2. [Later we shall see that this is the euclidean topology.]

(i) Let D1 and D2 be any open discs in R2 with D1 ∩D2 6= Ø. If 〈a, b〉 is any
point in D1 ∩ D2, show that there exists an open disc D〈a,b〉 with centre
〈a, b〉 such that D〈a,b〉 ⊂ D1 ∩D2.
[Hint: draw a picture and use a method similar to that of Exercise 1 (i).]

(ii) Show that

D1 ∩D2 =
⋃

〈a,b〉∈D1∩D2

D〈a,b〉.

(iii) Using (ii) and Proposition 2.2.8, prove that the collection of all open discs
in R2 is a basis for a topology on R2.

3. Let B be the collection of all open intervals (a, b) in R with a < b and a and
b rational numbers. Prove that B is a basis for the euclidean topology on R.
[Compare this with Proposition 2.2.1 and Example 2.2.3 where a and b were not
necessarily rational.]
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[Hint: do not use Proposition 2.2.8 as this would show only that B is a basis for
some topology not necessarily a basis for the euclidean topology.]

Second Axiom of Countability

4. A topological space (X,τ ) is said to satisfy the second axiom of countability
or to be second countable if there exists a basis B for τ , where B consists of
only a countable number of sets.

(i) Using Exercise 3 above show that R satisfies the second axiom of countability.
(ii) Prove that the discrete topology on an uncountable set does not satisfy the

second axiom of countability.
[Hint: It is not enough to show that one particular basis is uncountable. You
must prove that every basis for this topology is uncountable.]

(iii) Prove that Rn satisfies the second axiom of countability, for each positive
integer n.

(iv) Let (X,τ ) be the set of all integers with the finite-closed topology. Does
the space (X,τ ) satisfy the second axiom of countability?

5. Prove the following statements.

(i) Let m and c be real numbers. Then the line L = {〈x, y〉 : y = mx+ c} is a
closed subset of R2.

(ii) Let S1 be the unit circle given by S1 = {〈x, y〉 ∈ R2 : x2 + y2 = 1}. Then
S1 is a closed subset of R2.

(iii) Let Sn be the unit n-sphere given by

Sn = {〈x1, x2, . . . , xn, xn+1〉 ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

Then Sn is a closed subset of Rn+1.
(iv) Let Bn be the closed unit n-ball given by

Bn = {〈x1, x2, . . . , xn〉 ∈ Rn : x2
1 + x2

2 + · · ·+ x2
n 6 1}.

Then Bn is a closed subset of Rn.
(v) The curve C = {〈x, y〉 ∈ R2 : xy = 1} is a closed subset of R2.
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Product Topology

6. Let B1 be a basis for a topology τ 1 on a set X and B2 a basis for a topology
τ 2 on a set Y . The set X × Y consists of all ordered pairs 〈x, y〉, x ∈ X and
y ∈ Y . Let B be the collection of subsets of X × Y consisting of all the sets
B1 × B2 where B1 ∈ B1 and B2 ∈ B2. Prove that B is a basis for a topology
on X × Y . The topology so defined is called the product topology on X × Y .
[Hint: See Example 2.2.9.]

7. Using Exercise 3 above and Exercises 2.1 #8, prove that every open subset of
R is an Fσ-set and a Gδ-set.

2.3 Basis for a Given Topology

Proposition 2.2.8 told us under what conditions a collection B of subsets of a set X
is a basis for some topology on X. However sometimes we are given a topology
τ on X and we want to know whether B is a basis for this specific topology τ .
To verify that B is a basis for τ we could simply apply Definition 2.2.2 and show
that every member of τ is a union of members of B. However, Proposition 2.3.2
provides us with an alternative method.

But first we present an example which shows that there is a difference between
saying that a collection B of subsets of X is a basis for some topology, and saying
that it is a basis for a given topology.

2.3.1 Example. Let B be the collection of all half-open intervals of the form
(a, b], a < b, where (a, b] = {x : x ∈ R, a < x 6 b}. Then B is a basis for a topology
on R, since R is the union of all members of B and the intersection of any two
half-open intervals is a half-open interval.

However, the topology τ 1 which has B as its basis, is not the euclidean topology
on R. We can see this by observing that (a, b] is an open set in R with topology τ 1,
while (a, b] is not an open set in R with the euclidean topology. (See Exercises 2.1
#1.) So B is a basis for some topology but not a basis for the euclidean topology
on R. �
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2.3.2 Proposition. Let (X,τ ) be a topological space. A family B of open
subsets of X is a basis for τ if and only if for any point x belonging to any open
set U , there is a B ∈ B such that x ∈ B ⊆ U.

Proof.

We are required to prove that
(i) if B is a basis for τ and x ∈ U ∈ τ , then there exists a B ∈ B such that
x ∈ B ⊆ U ,

and
(ii) if for each U ∈ τ and x ∈ U there exists a B ∈ B such that x ∈ B ⊆ U ,
then B is a basis for τ .

Assume B is a basis for τ and x ∈ U ∈ τ . As B is a basis for τ , the open set
U is a union of members of B; that is, U =

⋃
j∈J Bj, where Bj ∈ B, for each j in

some index set J . But x ∈ U implies x ∈ Bj, for some j ∈ J . Thus x ∈ Bj ⊆ U ,
as required.

Conversely, assume that for each U ∈ τ and each x ∈ U , there exists a B ∈ B
with x ∈ B ⊆ U . We have to show that every open set is a union of members of
B. So let V be any open set. Then for each x ∈ V , there is a Bx ∈ B such that
x ∈ Bx ⊆ V . Clearly V =

⋃
x∈V Bx. (Check this!) Thus V is a union of members

of B. �

2.3.3 Proposition. Let B be a basis for a topology τ on a set X. Then
a subset U of X is open if and only if for each x ∈ U there exists a B ∈ B such
that x ∈ B ⊆ U .

Proof. Let U be any subset of X. Assume that for each x ∈ U , there exists a
Bx ∈ B such that x ∈ Bx ⊆ U . Clearly U =

⋃
x∈U Bx. So U is a union of open sets

and hence is open, as required. The converse statement follows from Proposition
2.3.2. �
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Observe that the basis property described in Proposition 2.3.3 is precisely what
we used in defining the euclidean topology on R. We said that a subset U of R is
open if and only if for each x ∈ U , there exist a and b in R with a < b, such that
x ∈ (a, b) ⊆ U.

Warning. Make sure that you understand the difference between Proposition 2.2.8
and Proposition 2.3.2. Proposition 2.2.8 gives conditions for a family B of subsets
of a set X to be a basis for some topology on X. However, Proposition 2.3.2 gives
conditions for a family B of subsets of a topological space (X,τ ) to be a basis for
the given topology τ .

We have seen that a topology can have many different bases. The next
proposition tells us when two bases B1 and B2 on the set X define the same topology.

2.3.4 Proposition. Let B1 and B2 be bases for topologies τ 1 and τ 2,
respectively, on a non-empty set X. Then τ 1 = τ 2 if and only if

(i) for each B ∈ B1 and each x ∈ B, there exists a B
′ ∈ B2 such that

x ∈ B′ ⊆ B, and

(ii) for each B ∈ B2 and each x ∈ B, there exists a B
′ ∈ B1 such that

x ∈ B′ ⊆ B.

Proof.

We are required to show that B1 and B2 are bases for the same topology
if and only if (i) and (ii) are true.

Firstly we assume that they are bases for the same topology, that is
τ 1 = τ 2, and show that conditions (i) and (ii) hold.

Next we assume that (i) and (ii) hold and show that τ 1 = τ 2.

Firstly, assume that τ 1 = τ 2. Then (i) and (ii) are immediate consequences of
Proposition 2.3.2.

Conversely, assume that B1 and B2 satisfy the conditions (i) and (ii). By
Proposition 2.3.2, (i) implies that each B ∈ B1 is open in (X,τ 2); that is, B1 ⊆ τ 2.
As every member of τ 1 is a union of members of τ 2 this implies τ 1 ⊆ τ 2. Similarly
(ii) implies τ 2 ⊆ τ 1. Hence τ 1 = τ 2, as required. �
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2.3.5 Example. Show that the set B of all “open equilateral triangles” with
base parallel to the X-axis is a basis for the euclidean topology on R2. (By an “open
triangle” we mean that the boundary is not included.)

Outline Proof. (We give here only a pictorial argument. It is left to you to write
a detailed proof.)

We are required to show that B is a basis for the euclidean topology.

We shall apply Proposition 2.3.4, but first we need to show that B is a
basis for some topology on R2.

To do this we show that B satisfies the conditions of Proposition 2.2.8.
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The first thing we observe is that B is a basis for some topology because it
satisfies the conditions of Proposition 2.2.8. (To see that B satisfies Proposition
2.2.8, observe that R2 equals the union of all open equilateral triangles with base
parallel to the X-axis, and that the intersection of two such triangles is another such
triangle.)

Next we shall show that the conditions (i) and (ii) of Proposition 2.3.4 are
satisfied.

Firstly we verify condition (i). Let R be an open rectangle with sides parallel to
the axes and any x any point in R. We have to show that there is an open equilateral
triangle T with base parallel to the X-axis such that x ∈ T ⊆ R. Pictorially this is
easy to see.
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........................• x

Finally we verify condition (ii) of Proposition 2.3.4. Let T ′ be an open equilateral
triangle with base parallel to the X-axis and let y be any point in T ′. Then there
exists an open rectangle R′ such that y ∈ R′ ⊆ T ′. Pictorially, this is again easy to
see.
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So the conditions of Proposition 2.3.4 are satisfied. Thus B is indeed a basis
for the euclidean topology on R2. �

In Example 2.2.9 we defined a basis for the euclidean topology to be the
collection of all “open rectangles” (with sides parallel to the axes). Example 2.3.5
shows that “open rectangles” can be replaced by “open equilateral triangles” (with
base parallel to the X-axis) without changing the topology. In Exercises 2.3 #1
we see that the conditions above in brackets can be dropped without changing the
topology. Also “open rectangles” can be replaced by “open discs”2.

2In fact, most books describe the euclidean topology on R2 in terms of open discs.
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Exercises 2.3

1. Determine whether or not each of the following collections is a basis for the
euclidean topology on R2 :

(i) the collection of all “open” squares with sides parallel to the axes;

(ii) the collection of all “open” discs;

(iii) the collection of all “open” squares;

(iv) the collection of all “open” rectangles;

(v) the collection of all “open” triangles.

2. (i) Let B be a basis for a topology τ on a non-empty set X. If B1 is a collection
of subsets of X such that τ ⊇ B1 ⊇ B, prove that B1 is also a basis for τ .

(ii) Deduce from (i) that there exist an uncountable number of distinct bases
for the euclidean topology on R.

3. Let B = {(a, b] : a, b ∈ R, a < b}. As seen in Example 2.3.1, B is a basis for
a topology τ on R and τ is not the euclidean topology on R. Nevertheless,
show that each interval (a, b) is open in (R,τ ).

4.* Let C[0, 1] be the set of all continuous real-valued functions on [0, 1].

(i) Show that the collection M, where M = {M(f, ε) : f ∈ C[0, 1] and ε is a

positive real number} and M(f, ε) =
{
g : g ∈ C[0, 1] and

∫ 1

0
|f − g| < ε

}
,

is a basis for a topology τ 1 on C[0, 1].

(ii) Show that the collection U , where U = {U(f, ε) : f ∈ C[0, 1] and ε is
a positive real number} and U(f, ε) = {g : g ∈ C[0, 1] and supx∈[0,1] |
f(x)− g(x) |< ε}, is a basis for a topology τ 2 on C[0, 1].

(iii) Prove that τ 1 6= τ 2.
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Subbasis for a Topology

5. Let (X,τ ) be a topological space. A non-empty collection S of open subsets
of X is said to be a subbasis for τ if the collection of all finite intersections of
members of S forms a basis for τ .

(i) Prove that the collection of all open intervals of the form (a,∞) or (−∞, b)
is a subbasis for the euclidean topology on R.

(ii) Prove that S = {{a}, {a, c, d}, {b, c, d, e, f}} is a subbasis for the topology
τ 1 of Example 1.1.2.

6. Let S be a subbasis for a topology τ on the set R. (See Exercise 5 above.) If
all of the closed intervals [a, b], with a < b, are in S, prove that τ is the discrete
topology.

7. Let X be a set with at least two elements and S the collection of all sets X\{x},
x ∈ X. Prove S is a subbasis for the finite-closed topology on X.

8. Let X be any infinite set and τ the discrete topology on X. Find a subbasis S
for τ such that S does not contain any singleton sets.

9. Let S be the collection of all straight lines in the plane R2. If S is a subbasis
for a topology τ on the set R2, what is the topology?

10. Let S be the collection of all straight lines in the plane which are parallel to the
X-axis. If S is a subbasis for a topology τ on R2, describe the open sets in
(R2,τ ).

11. Let S be the collection of all circles in the plane. If S is a subbasis for a topology
τ on R2, describe the open sets in (R2,τ ).

12. Let S be the collection of all circles in the plane which have their centres on
the X-axis. If S is a subbasis for a topology τ on R2, describe the open sets in
(R2,τ ).
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2.4 Postscript

In this chapter we have defined a very important topological space – R, the set
of all real numbers with the euclidean topology, and spent some time analyzing it.
We observed that, in this topology, open intervals are indeed open sets (and closed
intervals are closed sets). However, not all open sets are open intervals. Nevertheless,
every open set in R is a union of open intervals. This led us to introduce the notion
of “basis for a topology” and to establish that the collection of all open intervals is
a basis for the euclidean topology on R.

In the introduction to Chapter 1 we described a mathematical proof as a
watertight argument and underlined the importance of writing proofs. In this chapter
we were introduced to proof by contradiction in Remarks 2.1.2 (v) with another
example in Example 2.2.7. Proving “necessary and sufficient” conditions, that is, “if
and only if” conditions, was explained in Proposition 2.2.1, with further examples in
Propositions 2.2.8, 2.3.2, 2.3.3, and 2.3.4.

Bases for topologies is a significant topic in its own right. We saw, for example,
that the collection of all singletons is a basis for the discrete topology. Proposition
2.2.8 gives necessary and sufficient conditions for a collection of subsets of a set X
to be a basis for some topology on X. This was contrasted with Proposition 2.3.2
which gives necessary and sufficient conditions for a collection of subsets of X to
be a basis for the given topology on X. It was noted that two different collections
B1 and B2 can be bases for the same topology. Necessary and sufficient conditions
for this are given by Proposition 2.3.4.

We defined the euclidean topology on Rn, for n any positive integer. We saw
that the family of all open discs is a basis for R2, as is the family of all open squares,
or the family of all open rectangles.

The exercises introduced three interesting ideas. Exercises 2.1 #8 covered the
notions of Fσ-set and Gδ-set which are important in measure theory. Exercises
2.3 #4 introduced the space of continuous real-valued functions. Such spaces are
called function spaces which are the central objects of study in functional analysis.
Functional analysis is a blend of (classical) analysis and topology, and was for some
time called modern analysis, cf. Simmons [341]. Finally, Exercises 2.3 #5–12 dealt
with the notion of subbasis.
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By now you should have watched the videos:
Topology Without Tears - Video 1 - Pure Mathematics
Topology Without Tears - Video 2a & 2b - Infinite Set
Theory
Topology Without Tears - Video 4a & 4b &4c &4d -
Writing Proofs in Mathematics
Links to these videos on YouTube and Youku can be
found on
http://www.topologywithouttears.net.

http://www.topologywithouttears.net


Chapter 3

Limit Points

Introduction

On the real number line we have a notion of “closeness”. For example each point
in the sequence .1, .01, .001, .0001, .00001, . . . is closer to 0 than the previous one.
Indeed, in some sense, 0 is a limit point of this sequence. So the interval (0, 1] is not
closed, as it does not contain the limit point 0. In a general topological space we do
not have a “distance function”, so we must proceed differently. We shall define the
notion of limit point without resorting to distances. Even with our new definition
of limit point, the point 0 will still be a limit point of (0, 1] . The introduction of
the notion of limit point will lead us to a much better understanding of the notion
of closed set.

Another very important topological concept we shall introduce in this chapter is
that of connectedness. Consider the topological space R. While the sets [0, 1]∪ [2, 3]

and [4, 6] could both be described as having length 2, it is clear that they are different
types of sets . . . the first consists of two disjoint pieces and the second of just one
piece. The difference between the two is “topological” and will be exposed using
the notion of connectedness.

71
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In order to understand this chapter, you should familiarize
yourself with the content of Appendix 1.
As mentioned previously, this is supplemented by the
videos "Topology Without Tears - Video 2a & 2b -
Infinite Set Theory" which are on YouTube at
http://youtu.be/9h83ZJeiecg &
http://youtu.be/QPSRB4Fhzko;
on Youku at http://tinyurl.com/m4dlzhh &
http://tinyurl.com/kf9lp8e;
and have links from
http://www.topologywithouttears.net.

3.1 Limit Points and Closure

If (X,τ ) is a topological space then it is usual to refer to the elements of the set
X as points.

3.1.1 Definition. Let A be a subset of a topological space (X,τ ). A point
x ∈ X is said to be a limit point (or accumulation point or cluster point) of
A if every open set, U , containing x contains a point of A different from x.

http://youtu.be/9h83ZJeiecg
http://youtu.be/QPSRB4Fhzko
http://tinyurl.com/m4dlzhh
http://tinyurl.com/kf9lp8e
http://www.topologywithouttears.net
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3.1.2 Example. Consider the topological space (X,τ ) where the set X =

{a, b, c, d, e}, the topology τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}, and A =

{a, b, c}. Then b, d, and e are limit points of A but a and c are not limit points of
A.

Proof.

The point a is a limit point of A if and only if every open set containing a
contains another point of the set A.

So to show that a is not a limit point of A, it suffices to find even one
open set which contains a but contains no other point of A.

The set {a} is open and contains no other point of A. So a is not a limit point
of A.

The set {c, d} is an open set containing c but no other point of A. So c is not
a limit point of A.

To show that b is a limit point of A, we have to show that every open set
containing b contains a point of A other than b.

We shall show this is the case by writing down all of the open sets
containing b and verifying that each contains a point of A other than b.

The only open sets containing b are X and {b, c, d, e} and both contain another
element of A, namely c. So b is a limit point of A.

The point d is a limit point of A, even though it is not in A. This is so since
every open set containing d contains a point of A. Similarly e is a limit point of A
even though it is not in A. �
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3.1.3 Example. Let (X,τ ) be a discrete space and A a subset of X. Then A
has no limit points, since for each x ∈ X, {x} is an open set containing no point of
A different from x. �

3.1.4 Example. Consider the subset A = [a, b) of R. Then it is easily verified
that every element in [a, b) is a limit point of A. The point b is also a limit point of
A. �

3.1.5 Example. Let (X,τ ) be an indiscrete space and A a subset of X with
at least two elements. Then it is readily seen that every point of X is a limit point
of A. (Why did we insist that A have at least two points?) �

The next proposition provides a useful way of testing whether a set is closed or
not.
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3.1.6 Proposition. Let A be a subset of a topological space (X,τ ). Then
A is closed in (X,τ ) if and only if A contains all of its limit points.

Proof.

We are required to prove that A is closed in (X,τ ) if and only if A contains
all of its limit points; that is, we have to show that

(i) if A is a closed set, then it contains all of its limit points, and

(ii) if A contains all of its limit points, then it is a closed set.

Assume that A is closed in (X,τ ). Suppose that p is a limit point of A which
belongs to X \ A. Then X \ A is an open set containing the limit point p of A.
Therefore X \ A contains an element of A. This is clearly false and so we have a
contradiction to our supposition. Therefore every limit point of A must belong to
A.

Conversely, assume that A contains all of its limit points. For each z ∈ X \ A,
our assumption implies that there exists an open set Uz 3 z such that Uz ∩A = Ø;
that is, Uz ⊆ X \ A. Therefore X \ A =

⋃
z∈X\A Uz. (Check this!) So X \ A is a

union of open sets and hence is open. Consequently its complement, A, is closed.�

3.1.7 Example. As applications of Proposition 3.1.6 we have the following:

(i) the set [a, b) is not closed in R, since b is a limit point and b /∈ [a, b);

(ii) the set [a, b] is closed in R, since all the limit points of [a, b] (namely all the
elements of [a, b]) are in [a, b];

(iii) (a, b) is not a closed subset of R, since it does not contain the limit point a;

(iv) [a,∞) is a closed subset of R. �
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3.1.8 Proposition. Let A be a subset of a topological space (X,τ ) and
A′ the set of all limit points of A. Then A ∪ A′ is a closed set.

Proof. From Proposition 3.1.6 it suffices to show that the set A ∪ A′ contains
all of its limit points or equivalently that no element of X \ (A∪A′) is a limit point
of A ∪ A′.

Let p ∈ X \ (A ∪ A′). As p /∈ A′, there exists an open set U containing p with
U ∩A = {p} or Ø. But p /∈ A, so U ∩A = Ø. We claim also that U ∩A′ = Ø. For
if x ∈ U then as U is an open set and U ∩A = Ø, x /∈ A′. Thus U ∩A′ = Ø. That
is, U ∩ (A ∪ A′) = Ø, and p ∈ U. This implies p is not a limit point of A ∪ A′ and
so A ∪ A′ is a closed set. �

3.1.9 Definition. Let A be a subset of a topological space (X,τ ). Then
the set A∪A′ consisting of A and all its limit points is called the closure of A
and is denoted by A.

3.1.10 Remark. It is clear from Proposition 3.1.8 that A is a closed set. By
Proposition 3.1.6 and Exercises 3.1 #5 (i), every closed set containing A must also
contain the set A′. So A ∪ A′ = A is the smallest closed set containing A. This
implies that A is the intersection of all closed sets containing A. �
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3.1.11 Example. Let X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Show that {b} = {b, e}, {a, c} = X, and {b, d} = {b, c, d, e}.

Proof.

To find the closure of a particular set, we shall find all the closed sets
containing that set and then select the smallest. We therefore begin by
writing down all of the closed sets – these are simply the complements of
all the open sets.

The closed sets are Ø, X, {b, c, d, e}, {a, b, e}, {b, e} and {a}. So the smallest
closed set containing {b} is {b, e}; that is, {b} = {b, e}. Similarly {a, c} = X, and
{b, d} = {b, c, d, e}. �

3.1.12 Example. Let Q be the subset of R consisting of all the rational
numbers. Prove that Q = R.

Proof. Suppose Q 6= R. Then there exists an x ∈ R \ Q. As R\Q is open in
R, there exist a, b with a < b such that x ∈ (a, b) ⊆ R \ Q. But in every interval
(a, b) there is a rational number q; that is, q ∈ (a, b). So q ∈ R \ Q which implies
q ∈ R \Q. This is a contradiction, as q ∈ Q. Hence Q = R. �

3.1.13 Definition. Let A be a subset of a topological space (X,τ ). Then
A is said to be dense in X or everywhere dense in X if A = X.

We can now restate Example 3.1.12 as: Q is a dense subset of R.
Note that in Example 3.1.11 we saw that {a, c} is dense in X.
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3.1.14 Example. Let (X,τ ) be a discrete space. Then every subset of X is
closed (since its complement is open). Therefore the only dense subset of X is X
itself, since each subset of X is its own closure. �

3.1.15 Proposition. Let A be a subset of a topological space (X,τ ). Then
A is dense in X if and only if every non-empty open subset of X intersects A
non-trivially (that is, if U ∈ τ and U 6= Ø then A ∩ U 6= Ø.)

Proof. Assume, firstly that every non-empty open set intersects A non-trivially.
If A = X, then clearly A is dense in X. If A 6= X, let x ∈ X \ A. If U ∈ τ and
x ∈ U then U ∩ A 6= Ø. So x is a limit point of A. As x is an arbitrary point in
X \ A, every point of X \ A is a limit point of A. So A′ ⊇ X \ A and then, by
Definition 3.1.9, A = A′ ∪ A = X; that is, A is dense in X.

Conversely, assume A is dense in X. Let U be any non-empty open subset of
X. Suppose U ∩ A = Ø. Then if x ∈ U , x /∈ A and x is not a limit point of A,
since U is an open set containing x which does not contain any element of A. This
is a contradiction since, as A is dense in X, every element of X \A is a limit point
of A. So our supposition is false and U ∩ A 6= Ø, as required. �

Exercises 3.1

1. (a) In Example 1.1.2, find all the limit points of the following sets:

(i) {a},
(ii) {b, c},
(iii) {a, c, d},
(iv) {b, d, e, f}.

(b) Hence, find the closure of each of the above sets.
(c) Now find the closure of each of the above sets using the method of Example

3.1.11.

2. Let (Z,τ ) be the set of integers with the finite-closed topology. List the set of
limit points of the following sets:

(i) A = {1, 2, 3, . . . , 10},
(ii) The set, E, consisting of all even integers.
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3. Find all the limit points of the open interval (a, b) in R, where a < b.

4. (a) What is the closure in R of each of the following sets?

(i) {1, 1
2 ,

1
3 ,

1
4 , . . . ,

1
n , . . . };

(ii) the set Z of all integers;

(iii) the set P of all irrational numbers.

(b) Let S be a non-empty subset of R and a ∈ R. Prove that a ∈ S if and only
if for each positive integer n, there exists an xn ∈ S such that |xn− a| < 1

n .

5. Let S and T be non-empty subsets of a topological space (X,τ ) with S ⊆ T .

(i) If p is a limit point of the set S, verify that p is also a limit point of the set
T .

(ii) Deduce from (i) that S ⊆ T .

(iii) Hence show that if S is dense in X, then T is dense in X.

(iv) Using (iii) show that R has an uncountable number of distinct dense subsets.

[Hint: Uncountable sets are discussed in Appendix 1.]

(v)* Again using (iii), prove that R has an uncountable number of distinct
countable dense subsets and 2c distinct uncountable dense subsets.
[Hint: Note that c is discussed in Appendix 1.]

6. Let A and B be subsets of the space R with the Euclidean topology. Consider
the four sets (i) A ∩B; (ii) A ∩B; (iii) A ∩B; (iv) A ∩B.

(a) If A is the set of all rational numbers and B is the set of all irrational
numbers, prove that no two of the above four sets are equal.

(b) If A and B are open intervals in R, prove that at least two of the above four
sets are equal.

(c) Find open subsets A and B of R such that no two of the above four sets
are equal.
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3.2 Neighbourhoods

3.2.1 Definition. Let (X,τ ) be a topological space, N a subset of X and
p a point in N . Then N is said to be a neighbourhood of the point p if there
exists an open set U such that p ∈ U ⊆ N.

3.2.2 Example. The closed interval [0, 1] in R is a neighbourhood of the point
1
2, since

1
2 ∈ (1

4 ,
3
4) ⊆ [0, 1]. �

3.2.3 Example. The interval (0, 1] in R is a neighbourhood of the point 1
4, as

1
4 ∈ (0, 1

2) ⊆ (0, 1]. But (0, 1] is not a neighbourhood of the point 1. (Prove this.)�

3.2.4 Example. If (X,τ ) is any topological space and U ∈ τ , then from
Definition 3.2.1, it follows that U is a neighbourhood of every point p ∈ U. So, for
example, every open interval (a, b) in R is a neighbourhood of every point that it
contains. �

3.2.5 Example. Let (X,τ ) be a topological space, and N a neighbourhood of
a point p. If S is any subset of X such that N ⊆ S, then S is a neighbourhood of
p. �

The next proposition is easily verified, so its proof is left to the reader.

3.2.6 Proposition. Let A be a subset of a topological space (X,τ ). A
point x ∈ X is a limit point of A if and only if every neighbourhood of x
contains a point of A different from x. �
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As a set is closed if and only if it contains all its limit points we deduce the
following:

3.2.7 Corollary. Let A be a subset of a topological space (X,τ ). Then
the set A is closed if and only if for each x ∈ X \ A there is a neighbourhood
N of x such that N ⊆ X \ A. �

3.2.8 Corollary. Let U be a subset of a topological space (X,τ ). Then
U ∈ τ if and only if for each x ∈ U there exists a neighbourhood N of x such
that N ⊆ U. �

The next corollary is readily deduced from Corollary 3.2.8.

3.2.9 Corollary. Let U be a subset of a topological space (X,τ ). Then
U ∈ τ if and only if for each x ∈ U there exists a V ∈ τ such that x ∈ V ⊆ U.�

Corollary 3.2.9 provides a useful test of whether a set is open or not. It says
that a set is open if and only if it contains an open set about each of its points.

Exercises 3.2

1. Let A be a subset of a topological space (X,τ ). Prove that A is dense in X if
and only if every neighbourhood of each point in X \A intersects A non-trivially.

2. (i) Let A and B be subsets of a topological space (X,τ ). Prove carefully that

A ∩B ⊆ A ∩B.

(ii) Construct an example in which

A ∩B 6= A ∩B.
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3. Let (X,τ ) be a topological space. Prove that τ is the finite-closed topology
on X if and only if (i) (X,τ ) is a T1-space, and (ii) every infinite subset of X
is dense in X.

Separable Spaces

4. A topological space (X,τ ) is said to be separable if it has a dense subset which
is countable. Determine which of the following spaces are separable:

(i) the set R with the usual topology;

(ii) a countable set with the discrete topology;

(iii) a countable set with the finite-closed topology;

(iv) (X,τ ) where X is finite;

(v) (X,τ ) where τ is finite;

(vi) an uncountable set with the discrete topology;

(vii) an uncountable set with the finite-closed topology;

(viii) a space (X,τ ) satisfying the second axiom of countability.

Interior of a Set

5. Let (X,τ ) be any topological space and A any subset of X. The largest open
set contained in A is called the interior of A and is denoted by Int(A). [It is
the union of all open sets in X which lie wholly in A.]

(i) Prove that in R, Int([0, 1]) = (0, 1).

(ii) Prove that in R, Int((3, 4)) = (3, 4).

(iii) Show that if A is open in (X,τ ) then Int(A) = A.

(iv) Verify that in R, Int({3}) = Ø.

(v) Show that if (X,τ ) is an indiscrete space then, for all proper subsets A of
X, Int(A) = Ø.

(vi) Show that for every countable subset A of R, Int(A) = Ø.

6. Show that if A is any subset of a topological space (X,τ ), then Int(A) =

X \ (X \ A). (See Exercise 5 above for the definition of Int.)

7. Using Exercise 6 above, verify that A is dense in (X,τ ) if and only if Int(X\A) =

Ø.
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8. Using the definition of Int in Exercise 5 above, determine which of the following
statements are true for arbitrary subsets A1 and A2 of a topological space
(X,τ )?

(i) Int(A1 ∩ A2) = Int(A1) ∩ Int(A2),

(ii) Int(A1 ∪ A2) = Int(A1) ∪ Int(A2),

(iii) A1 ∪ A2 = A1 ∪ A2.

(If your answer to any part is “true” you must write a proof. If your answer is
“false” you must give a concrete counterexample.)

9.* Let S be a dense subset of a topological space (X,τ ). Prove that for every
open subset U of X, S ∩ U = U.

10. Let S and T be dense subsets of a space (X,τ ). If T is also open, deduce from
Exercise 9 above that S ∩ T is dense in X.

The Sorgenfrey Line

11. Let B = {[a, b) : a ∈ R, b ∈ Q, a < b}. Prove each of the following statements.

(i) B is a basis for a topology τ 1 on R. (The space (R,τ 1) is called the
Sorgenfrey line.)

(ii) If τ is the Euclidean topology on R, then τ 1 ⊃ τ .
(iii) For all a, b ∈ R with a < b, [a, b) is a clopen set in (R,τ 1).

(iv) The Sorgenfrey line is a separable space.

(v)* The Sorgenfrey line does not satisfy the second axiom of countability.
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3.3 Connectedness

3.3.1 Remark. We record here some definitions and facts you should already
know. Let S be any set of real numbers. If there is an element b in S such that
x 6 b, for all x ∈ S, then b is said to be the greatest element of S. Similarly if
S contains an element a such that a 6 x, for all x ∈ S, then a is called the least
element of S. A set S of real numbers is said to be bounded above if there exists
a real number c such that x 6 c, for all x ∈ S, and c is called an upper bound for
S. Similarly the terms “bounded below” and “lower bound” are defined. A set
which is bounded above and bounded below is said to be bounded. �

Least Upper Bound Axiom: Let S be a non-empty set of real numbers. If
S is bounded above, then it has a least upper bound. �

The least upper bound, also called the supremum of S, denoted by sup(S),
may or may not belong to the set S. Indeed, the supremum of S is an element of
S if and only if S has a greatest element. For example, the supremum of the open
interval S = (1, 2) is 2 but 2 /∈ (1, 2), while the supremum of [3, 4] is 4 which does lie
in [3, 4] and 4 is the greatest element of [3, 4]. Any set S of real numbers which is
bounded below has a greatest lower bound which is also called the infimum and
is denoted by inf(S).

3.3.2 Lemma. Let S be a subset of R which is bounded above and let p
be the supremum of S. If S is a closed subset of R, then p ∈ S.

Proof. Suppose p ∈ R \ S. As R \ S is open there exist real numbers a and b
with a < b such that p ∈ (a, b) ⊆ R \ S. As p is the least upper bound for S and
a < p, it is clear that there exists an x ∈ S such that a < x. Also x < p < b, and so
x ∈ (a, b) ⊆ R \ S. But this is a contradiction, since x ∈ S. Hence our supposition is
false and p ∈ S. �
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3.3.3 Proposition. Let T be a clopen subset of R. Then either T = R or
T = Ø.

Proof. Suppose T 6= R and T 6= Ø. Then there exists an element x ∈ T and an
element z ∈ R \ T . Without loss of generality, assume x < z. Put S = T ∩ [x, z].

Then S, being the intersection of two closed sets, is closed. It is also bounded
above, since z is obviously an upper bound. Let p be the supremum of S. By
Lemma 3.3.2, p ∈ S. Since p ∈ [x, z], p 6 z. As z ∈ R \ S, p 6= z and so p < z.

Now T is also an open set and p ∈ T . So there exist a and b in R with a < b

such that p ∈ (a, b) ⊆ T . Let t be such that p < t < min(b, z), where min(b, z)

denotes the smaller of b and z. So t ∈ T and t ∈ [p, z]. Thus t ∈ T ∩ [x, z] = S. This
is a contradiction since t > p and p is the supremum of S. Hence our supposition is
false and consequently T = R or T = Ø. �

3.3.4 Definition. Let (X,τ ) be a topological space. Then it is said to be
connected if the only clopen subsets of X are X and Ø.

So restating Proposition 3.3.3 we obtain:

3.3.5 Proposition. The topological space R is connected. �

3.3.6 Example. If (X,τ ) is any discrete space with more than one element,
then (X,τ ) is not connected as each singleton set is clopen. �

3.3.7 Example. If (X,τ ) is any indiscrete space, then it is connected as the
only clopen sets are X and Ø. (Indeed the only open sets are X and Ø.) �
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3.3.8 Example. If X = {a, b, c, d, e} and

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

then (X,τ ) is not connected as {b, c, d, e} is a clopen subset. �

3.3.9 Remark. From Definition 3.3.4 it follows that a topological space (X,τ )

is not connected (that is, it is disconnected) if and only if there are non-empty open
sets A and B such that A ∩B = Ø and A ∪B = X.1 (See Exercises 3.3 #3.)

We conclude this section by recording that R2 (and indeed, Rn, for each n > 1)
is a connected space. However the proof is delayed to Chapter 5.

Connectedness is a very important property about which we shall say a lot more.

Exercises 3.3

1. Let S be a set of real numbers and T = {x : −x ∈ S}.

(a) Prove that the real number a is the infimum of S if and only if −a is the
supremum of T .

(b) Using (a) and the Least Upper Bound Axiom prove that every non-empty
set of real numbers which is bounded below has a greatest lower bound.

2. For each of the following sets S of real numbers find the greatest element and
the least upper bound, if they exist.

(i) S = R.
(ii) S = Z = the set of all integers.
(iii) S = [9, 10).
(iv) S = the set of all real numbers of the form 1 − 3

n2
, where n is a positive

integer.
(v) S = (−∞, 3].

1Most books use this property to define connectedness.
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3. Let (X,τ ) be any topological space. Prove that (X,τ ) is not connected if
and only if it has proper non-empty disjoint open subsets A and B such that
A ∪B = X.

4. Is the space (X,τ ) of Example 1.1.2 connected?

5. Let (X,τ ) be any infinite set with the finite-closed topology. Is (X,τ )

connected?

6. Let (X,τ ) be an infinite set with the countable-closed topology. Is (X,τ )

connected?

7. Which of the topological spaces of Exercises 1.1 #9 are connected?

3.4 Postscript

In this chapter we have introduced the notion of limit point and shown that a set
is closed if and only if it contains all its limit points. Proposition 3.1.8 then tells us
that any set A has a smallest closed set A which contains it. The set A is called
the closure of A.

A subset A of a topological space (X,τ ) is said to be dense in X if A = X. We
saw that Q is dense in R and the set I of all irrational numbers is also dense in R.
We introduced the notion of neighbourhood of a point and the notion of connected
topological space. We proved an important result, namely that R is connected. We
shall have much more to say about connectedness later.

In the exercises we introduced the notion of interior of a set, this concept being
complementary to that of closure of a set.



Chapter 4

Homeomorphisms

Introduction

In each branch of mathematics it is essential to recognize when two structures are
equivalent. For example two sets are equivalent, as far as set theory is concerned,
if there exists a bijective function which maps one set onto the other. Two groups
are equivalent, known as isomorphic, if there exists a a homomorphism of one to the
other which is one-to-one and onto. Two topological spaces are equivalent, known
as homeomorphic, if there exists a homeomorphism of one onto the other.

88
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Before studying this chapter you should have studied
Appendix 1 and watched the videos:
“Topology Without Tears - Video 1 - Pure Mathematics”
which is on YouTube at
http://youtu.be/veSbFJFjbzU

and on Youku at
http://tinyurl.com/mulg9fv

“Topology Without Tears - Video 2a & 2b - Infinite Set

Theory”
which are are on YouTube at
http://youtu.be/9h83ZJeiecg and http://youtu.be/QPSRB4Fhzko

and on Youku at
http://tinyurl.com/m4dlzhh and http://tinyurl.com/kf9lp8e

and “Topology Without Tears - Video 4a & 4b &4c &4d

- Writing Proofs in Mathematics”
which are on YouTube.

Links to the videos on YouTube and Youku can be found
on http://www.topologywithouttears.net.

http://youtu.be/veSbFJFjbzU
http://tinyurl.com/mulg9fv
http://youtu.be/9h83ZJeiecg
http://youtu.be/QPSRB4Fhzko
http://tinyurl.com/m4dlzhh
http://tinyurl.com/kf9lp8e
http://www.topologywithouttears.net
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4.1 Subspaces

4.1.1 Definition. Let Y be a non-empty subset of a topological space
(X,τ ). The collection τY = {O ∩ Y : O ∈ τ} of subsets of Y is a topology
on Y called the subspace topology (or the relative topology or the induced
topology or the topology induced on Y by τ ). The topological space (Y,τY )

is said to be a subspace of (X,τ ).

Of course you should check1 that TY is indeed a topology on Y .

4.1.2 Example. Let X = {a, b, c, d, e, f},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}},

and Y = {b, c, e}. Then the subspace topology on Y is

τY = {Y,Ø, {c}}. �

4.1.3 Example. Let X = {a, b, c, d, e},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

and Y = {a, d, e}. Then the induced topology on Y is

τY = {Y,Ø, {a}, {d}, {a, d}, {d, e}}. �

4.1.4 Example. Let B be a basis for the topology τ on X and let Y

be a non-empty subset of X. Then it is not hard to show that the collection
BY = {B ∩ Y : B ∈ B} is a basis for the subspace topology τY on Y . [Exercise:
verify this.]

So let us consider the subset (1, 2) of R. A basis for the induced topology on
(1, 2) is the collection {(a, b)∩ (1, 2) : a, b ∈ R, a < b}; that is, {(a, b) : a, b ∈ R, 1 6

a < b 6 2} is a basis for the induced topology on (1, 2). �
1As first observed by Bruce Blackadar and Stanislav Jabuka, Blackadar [43], this is not quite as

straightforward as one might think: given an infinite number of sets Ui : Ui ∈ τ Y one needs to prove
that their union is in τ Y . So for each Ui, one must select an Oi ∈ τ , such that Oi ∩ Y = Ui. As
this selection of Oi is to be made for each i ∈ I, it may involve us in making an infinite number
of arbitrary choices which requires use of the Axiom of Choice. However, one can avoid using the
Axiom of Choice by selecting instead a special Oi, namely the union of all the open sets in τ whose
intersection with Y is Ui.
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4.1.5 Example. Consider the subset [1, 2] of R. A basis for the subspace
topology τ on [1, 2] is

{(a, b) ∩ [1, 2] : a, b ∈ R, a < b};

that is,

{(a, b) : 16 a < b6 2} ∪ {[1, b) : 1 < b6 2} ∪ {(a, 2] : 16 a < 2} ∪ {[1, 2]}

is a basis for τ .
But here we see some surprising things happening; e.g. [1, 11

2) is certainly not
an open set in R, but [1, 11

2) = (0, 11
2) ∩ [1, 2], is an open set in the subspace [1, 2].

Also (1, 2] is not open in R but is open in [1, 2]. Even [1, 2] is not open in R,
but is an open set in [1, 2].

So whenever we speak of a set being open we must make perfectly clear in what
space or what topology it is an open set. �

4.1.6 Example. Let Z be the subset of R consisting of all the integers. Prove
that the topology induced on Z by the euclidean topology on R is the discrete
topology.

Proof.

To prove that the induced topology, τZ, on Z is discrete, it suffices, by
Proposition 1.1.9, to show that every singleton set in Z is open in τZ; that
is, if n ∈ Z then {n} ∈ τZ.

Let n ∈ Z. Then {n} = (n− 1, n+ 1) ∩ Z. But (n− 1, n+ 1) is open in R and
therefore {n} is open in the induced topology on Z. Thus every singleton set in Z
is open in the induced topology on Z. So the induced topology is discrete. �
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Notation. Whenever we refer to

Q = the set of all rational numbers,

Z = the set of all integers,

N = the set of all positive integers,

I = the set of all irrational numbers,

(a, b), [a, b], [a, b), (−∞, a), (−∞, a], (a,∞), or [a,∞)

as topological spaces without explicitly saying what the topology is, we mean the
topology induced as a subspace of R. (Sometimes we shall refer to the induced
topology on these sets as the “usual topology”.)

Exercises 4.1

1. Let X = {a, b, c, d, e} and τ = {X,Ø, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}.
List the members of the induced topologies τY on Y = {a, c, e} and τZ on
Z = {b, c, d, e}.

2. Describe the topology induced on the set N of positive integers by the euclidean
topology on R.

3. Write down a basis for the usual topology on each of the following:

(i) [a, b), where a < b;
(ii) (a, b], where a < b;
(iii) (−∞, a];
(iv) (−∞, a);
(v) (a,∞);
(vi) [a,∞).
[Hint: see Examples 4.1.4 and 4.1.5.]

4. Let A ⊆ B ⊆ X and X have the topology τ . Let τB be the subspace topology
on B. Further let τ 1 be the topology induced on A by τ , and τ 2 be the
topology induced on A by τB. Prove that τ 1 = τ 2. (So a subspace of a
subspace is a subspace.)

5. Let (Y,τY ) be a subspace of a space (X,τ ). Show that a subset Z of Y is
closed in (Y,τY ) if and only if Z = A∩Y , where A is a closed subset of (X,τ ).
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6. Show that every subspace of a discrete space is discrete.

7. Show that every subspace of an indiscrete space is indiscrete.

8. Show that the subspace [0, 1]∪ [3, 4] of R has at least 4 clopen subsets. Exactly
how many clopen subsets does it have?

9. Is it true that every subspace of a connected space is connected?

10. Let (Y,τY ) be a subspace of (X,τ ). Show that τY ⊆ τ if and only if Y ∈ τ .

[Hint: Remember Y ∈ τY .]

11. Let A and B be connected subspaces of a topological space (X,τ ). If A∩B 6= Ø,
prove that the subspace A ∪B is connected.

12. Let (Y,τ 1) be a subspace of a T1-space (X,τ ). Show that (Y,τ 1) is also a
T1-space.

Hausdorff Spaces or T2-spaces

13. A topological space (X,τ ) is said to be Hausdorff (or a T2-space) if given any
pair of distinct points a, b in X there exist open sets U and V such that a ∈ U ,
b ∈ V , and U ∩ V = Ø.

(i) Show that R is Hausdorff.
(ii) Prove that every discrete space is Hausdorff.
(iii) Show that any T2-space is also a T1-space.
(iv) Show that Z with the finite-closed topology is a T1-space but is not a T2-

space.
(v) Prove that any subspace of a T2-space is a T2-space.

(vi) If (X,τ ) is a Hausdorff door space (see Exercises 1.3 #9), prove that at
most one point x ∈ X is a limit point of X and that if a point y ∈ X is not
a limit point of X, then the singleton set {y} is an open set.

14. Let (Y,τ 1) be a subspace of a topological space (X,τ ). If (X,τ ) satisfies the
second axiom of countability, show that (Y,τ 1) also satisfies the second axiom
of countability.

15. Let a and b be in R with a < b. Prove that [a, b] is connected.

[Hint: In the statement and proof of Proposition 3.3.3 replace R everywhere by
[a, b].]
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16. Let Q be the set of all rational numbers with the usual topology and let I be
the set of all irrational numbers with the usual topology.

(i) Prove that neither Q nor I is a discrete space.
(ii) Is Q or I a connected space?
(iii) Is Q or I a Hausdorff space?
(iv) Does Q or I have the finite-closed topology?

Regular Spaces and T3-Spaces

17. A topological space (X,τ ) is said to be a regular space if for any closed subset
A of X and any point x ∈ X \ A, there exist open sets U and V such that
x ∈ U , A ⊆ V , and U ∩ V = Ø. If (X,τ ) is regular and a T1-space, then it is
said to be a T3-space. Prove the following statements.

(i) Every subspace of a regular space is a regular space.
(ii) The spaces R, Z, Q, I, and R2 are regular spaces.
(iii) If (X,τ ) is a regular T1-space, then it is a T2-space.
(iv) The Sorgenfrey line is a regular space.
(v)* Let X be the set, R, of all real numbers and S = { 1

n : n ∈ N}. Define a
set C ⊆ R to be closed if C = A ∪ T , where A is closed in the euclidean
topology on R and T is any subset of S. The complements of these closed
sets form a topology τ on R which is Hausdorff but not regular.
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4.2 Homeomorphisms

We now turn to the notion of equivalent topological spaces. We begin by considering
an example:

X = {a, b, c, d, e}, Y = {g, h, i, j, k},

τ = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

and
τ 1 = {Y,Ø, {g}, {i, j}, {g, i, j}, {h, i, j, k}}.

It is clear that in an intuitive sense (X,τ ) is “equivalent” to (Y,τ 1). The function
f : X → Y defined by f(a) = g, f(b) = h, f(c) = i, f(d) = j, and f(e) = k,

provides the equivalence. We now formalize this.

4.2.1 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then
they are said to be homeomorphic if there exists a function f : X → Y which
has the following properties:

(i) f is one-to-one (that is f(x1) = f(x2) implies x1 = x2),

(ii) f is onto (that is, for any y ∈ Y there exists an x ∈ X such that f(x) = y),

(iii) for each U ∈ τ 1, f−1(U) ∈ τ , and

(iv) for each V ∈ τ , f(V ) ∈ τ 1.

Further, the map f is said to be a homeomorphism between (X,τ ) and (Y,τ 1).
We write (X,τ ) ∼= (Y,τ 1). �

We shall show that “∼=” is an equivalence relation and use this to show that
all open intervals (a, b) are homeomorphic to each other. Example 4.2.2 is the first
step, as it shows that “∼=” is a transitive relation.



96 CHAPTER 4. HOMEOMORPHISMS

4.2.2 Example. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces. If
(X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2), prove that (X,τ ) ∼= (Z, T2).

Proof.

We are given that (X, τ ) ∼= (Y, τ 1); that is, there exists a homeomorphism
f : (X, τ ) → (Y, τ 1). We are also given that (Y, τ 1) ∼= (Z, τ 2); that is,
there exists a homeomorphism g : (Y, τ 1)→ (Z, τ 2).

We are required to prove that (X, τ ) ∼= (Z, τ 2); that is, we need to find
a homeomorphism h : (X, τ ) → (Z, τ 2). We will prove that the composite
map g ◦ f : X → Z is the required homeomorphism.

As (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2), there exist homeomorphisms
f : (X, T ) → (Y,τ 1) and g : (Y,τ 1) → (Z,τ 2). Consider the composite map
g ◦ f : X → Z. [Thus g ◦ f(x) = g(f(x)), for all x ∈ X.] It is a routine task
to verify that g ◦ f is one-to-one and onto. Now let U ∈ τ 2. Then, as g is a
homeomorphism g−1(U) ∈ τ 1. Using the fact that f is a homeomorphism we obtain
that f−1(g−1(U)) ∈ τ . But f−1(g−1(U)) = (g ◦ f)−1(U). So g ◦ f has property
(iii) of Definition 4.2.1. Next let V ∈ τ . Then f(V ) ∈ τ 1 and so g(f(V )) ∈ τ 2;
that is g ◦ f(V ) ∈ τ 2 and we see that g ◦ f has property (iv) of Definition 4.2.1.
Hence g ◦ f is a homeomorphism. �

4.2.3 Remark. Example 4.2.2 shows that “∼=” is a transitive binary relation.
Indeed it is easily verified that it is an equivalence relation; that is,

(i) (X,τ ) ∼= (X,τ ) (Reflexive);
(ii) (X,τ ) ∼= (Y,τ 1) implies (Y,τ 1) ∼= (X,τ ) (Symmetric);

[Observe that if f : (X,τ )→ (Y,τ 1) is a homeomorphism, then its inverse
f−1 : (Y,τ 1)→ (X,τ ) is also a homeomorphism.]

(iii) (X,τ ) ∼= (Y,τ 1) and (Y,τ 1) ∼= (Z,τ 2) implies (X,τ ) ∼= (Z,τ 2) (Transitive).

�

The next three examples show that all open intervals in R are homeomorphic.
Length is certainly not a topological property. In particular, an open interval of finite
length, such as (0, 1), is homeomorphic to one of infinite length, such as (−∞, 1).
Indeed all open intervals are homeomorphic to R.
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4.2.4 Example. Prove that every two non-empty open intervals (a, b) and (c, d)

are homeomorphic.

Outline Proof.

By Remark 4.2.3 it suffices to show that (a, b) is homeomorphic to (0, 1) and
(c, d) is homeomorphic to (0, 1). But as a and b are arbitrary (except that
a < b), if (a, b) is homeomorphic to (0, 1) then (c, d) is also homeomorphic
to (0, 1). To prove that (a, b) is homeomorphic to (0, 1) it suffices to find a
homeomorphism f : (0, 1)→ (a, b).

Let a, b ∈ R with a < b and consider the function f : (0, 1) → (a, b) given by
f(x) = a(1− x) + bx.
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a

b

0 1

Clearly f : (0, 1) → (a, b) is one-to-one and onto. It is also clear from the diagram
that the image under f of any open interval in (0, 1) is an open interval in (a, b);
that is,

f(open interval in (0, 1)) = an open interval in (a, b).

But every open set in (0, 1) is a union of open intervals in (0, 1) and so

f(open set in (0, 1)) = f(union of open intervals in (0, 1))

= union of open intervals in (a, b)

= open set in (a, b).

So condition (iv) of Definition 4.2.1 is satisfied. Similarly, we see that f−1 (open
set in (a, b)) is an open set in (0, 1). So condition (iii) of Definition 4.2.1 is also
satisfied.
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[Exercise: write out the above proof carefully.]

Hence f is a homeomorphism and (0, 1) ∼= (a, b), for all a, b ∈ R with a < b.

From the above it immediately follows that (a, b) ∼= (c, d), as required. �

4.2.5 Example. Prove that the space R is homeomorphic to the open interval
(−1, 1) with the usual topology.

Outline Proof. Define f : (−1, 1)→ R by

f(x) =
x

1− | x |
.

It is readily verified that f is one-to-one and onto, and a diagrammatic argument
like that in Example 4.2.2 indicates that f is a homeomorphism.
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[Exercise: write out a proof that f is a homeomorphism.] �

4.2.6 Example. Prove that every open interval (a, b), with a < b, is homeomorphic
to R.

Proof. This follows immediately from Examples 4.2.5 and 4.2.4 and Remark
4.2.3. �
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4.2.7 Remark. It can be proved in a similar fashion that any two intervals [a, b]

and [c, d], with a < b and c < d, are homeomorphic. �

Exercises 4.2

1. (i) If a, b, c, and d are real numbers with a < b and c < d, prove that [a, b] ∼= [c, d].

(ii) If a and b are any real numbers, prove that

(−∞, a] ∼= (−∞, b] ∼= [a,∞) ∼= [b,∞).

(iii) If c, d, e, and f are any real numbers with c < d and e < f , prove that

[c, d) ∼= [e, f) ∼= (c, d] ∼= (e, f ].

(iv) Deduce that for any real numbers a and b with a < b,

[0, 1) ∼= (−∞, a] ∼= [a,∞) ∼= [a, b) ∼= (a, b].

2. Prove that Z ∼= N
3. Let m and c be real numbers and X the subspace of R2 given by X = {〈x, y〉 :

y = mx+ c}. Prove that X is homeomorphic to R.
4. (i) Let X1 and X2 be the closed rectangular regions in R2 given by

X1 = {〈x, y〉 : |x| 6 a1 and |y| 6 b1}

and X2 = {〈x, y〉 : |x| 6 a2 and |y| 6 b2}

where a1, b1, a2, and b2 are positive real numbers. If X1 and X2 are given their
induced topologies, τ 1 and τ 2 respectively, from R2, show that X1

∼= X2.

(ii) Let D1 and D2 be the closed discs in R2 given by

D1 = {〈x, y〉 : x2 + y2 6 c1}

and D2 = {〈x, y〉 : x2 + y2 6 c2}

where c1 and c2 are positive real numbers. Prove that the topological space
D1
∼= D2, where D1 and D2 have their subspace topologies.

(iii) Prove that X1
∼= D1.
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5. Let X1 and X2 be subspaces of R given by X1 = (0, 1) ∪ (3, 4) and X2 =

(0, 1) ∪ (1, 2). Is X1
∼= X2? (Justify your answer.)

Group of Homepmorphisms

6. (Group of Homeomorphisms) Let (X,τ ) be any topological space and G

the set of all homeomorphisms of X into itself.

(i) Show that G is a group under the operation of composition of functions.

(ii) If X = [0, 1], show that G is infinite.

(iii) If X = [0, 1], is G an abelian group?

7. Let (X,τ ) and (Y,τ 1) be homeomorphic topological spaces. Prove that

(i) If (X,τ ) is a T0-space, then (Y,τ 1) is a T0-space.

(ii) If (X,τ ) is a T1-space, then (Y,τ 1) is a T1-space.

(iii) If (X,τ ) is a Hausdorff space, then (Y,τ 1) is a Hausdorff space.

(iv) If (X,τ ) satisfies the second axiom of countability, then (Y,τ 1) satisfies the
second axiom of countability.

(v) If (X,τ ) is a separable space, then (Y,τ 1) is a separable space.

8.* Let (X,τ ) be a discrete topological space. Prove that (X,τ ) is homeomorphic
to a subspace of R if and only if X is countable.

4.3 Non-Homeomorphic Spaces

To prove two topological spaces are homeomorphic we have to find a homeomorphism
between them.

But, to prove that two topological spaces are not homeomorphic is often much
harder as we have to show that no homeomorphism exists. The following example
gives us a clue as to how we might go about showing this.
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4.3.1 Example. Prove that [0, 2] is not homeomorphic to the subspace
[0, 1] ∪ [2, 3] of R.

Proof. Let (X,τ ) = [0, 2] and (Y,τ 1) = [0, 1] ∪ [2, 3]. Then

[0, 1] = [0, 1] ∩ Y ⇒ [0, 1] is closed in (Y,τ 1)

and [0, 1] = (−1, 1
1

2
) ∩ Y ⇒ [0, 1] is open in (Y,τ 1).

Thus Y is not connected, as it has [0, 1] as a proper non-empty clopen subset.

Suppose that (X,τ ) ∼= (Y,τ 1). Then there exists a homeomorphism f : (X,τ )→
(Y,τ 1). So f−1([0, 1]) is a proper non-empty clopen subset of X, and hence X is
not connected. This is false as [0, 2] = X is connected. (See Exercises 4.1 #15.)
So we have a contradiction and thus (X,τ ) 6∼= (Y,τ 1). �

What do we learn from this?

4.3.2 Proposition. Any topological space homeomorphic to a connected
space is connected. �

Proposition 4.3.2 gives us one way to try to show two topological spaces are
not homeomorphic . . . by finding a property “preserved by homeomorphisms” which
one space has and the other does not.
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We have met many properties “preserved by homeomorphisms” amongst the
exercises:

(i) T0-space;

(ii) T1-space;

(iii) T2-space or Hausdorff space;

(iv) regular space;

(v) T3-space;

(vi) satisfying the second axiom of countability;

(vii) separable space. [See Exercises 4.2 #7.]

There are also others:

(viii) discrete space;

(ix) indiscrete space;

(x) finite-closed topology;

(xi) countable-closed topology.

So together with connectedness we know twelve properties which are preserved
by homeomorphisms. Also two spaces (X,τ ) and (Y,τ 1) cannot be homeomorphic
if X and Y have different cardinalities (e.g. X is countable and Y is uncountable)
or if τ and τ 1 have different cardinalities.

Nevertheless when faced with a specific problem we may not have the one we
need. For example, show that (0, 1) is not homeomorphic to [0, 1] or show that R
is not homeomorphic to R2. We shall see how to show that these spaces are not
homeomorphic shortly.
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Before moving on to this let us settle the following question: which subspaces
of R are connected?

4.3.3 Definition. A subset S of R is said to be an interval if it has the
following property: if x ∈ S, z ∈ S, and y ∈ R are such that x < y < z, then
y ∈ S.

4.3.4 Remarks. Note the following:

(i) Each singleton set {x} is an interval.

(ii) Every interval has one of the following forms: {a}, [a, b], (a, b), [a, b), (a, b],

(−∞, a), (−∞, a], (a,∞), [a,∞), (−∞,∞).

(iii) It follows from Example 4.2.6, Remark 4.2.7, and Exercises 4.2 #1, that every
interval is homeomorphic to (0, 1), [0, 1], [0, 1), or {0}. In Exercises 4.3 #1 we
are able to make an even stronger statement.

4.3.5 Proposition. A subspace S of R is connected if and only if it is an
interval.

Proof. That all intervals are connected can be proved in a similar fashion to
Proposition 3.3.3 by replacing R everywhere in the proof by the interval we are
trying to prove connected.

Conversely, let S be connected. Suppose x ∈ S, z ∈ S, x < y < z, and y /∈ S.
Then (−∞, y) ∩ S = (−∞, y] ∩ S is an open and closed subset of S. So S has
a clopen subset, namely (−∞, y) ∩ S. To show that S is not connected we have
to verify only that this clopen set is proper and non-empty. It is non-empty as it
contains x. It is proper as z ∈ S but z /∈ (−∞, y)∩ S. So S is not connected. This
is a contradiction. Therefore S is an interval. �

We now see a reason for the name “connected”. Subspaces of R such as [a, b],

(a, b), etc. are connected, while subspaces like X = [0, 1] ∪ [2, 3] ∪ [5, 6], which is a
union of “disconnected” pieces, are not connected.

Now let us turn to the problem of showing that (0, 1) 6∼= [0, 1]. Firstly, we present
a seemingly trivial observation.
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4.3.6 Remark. Let f : (X,τ )→ (Y,τ 1) be a homeomorphism. Let a ∈ X, so
that X \ {a} is a subspace of X and has induced topology τ 2. Also Y \ {f(a)} is a
subspace of Y and has induced topology τ 3. Then (X \ {a},τ 2) is homeomorphic
to (Y \ {f(a)},τ 3).

Outline Proof. Define g : X\{a} → Y \{f(a)} by g(x) = f(x), for all x ∈ X\{a}.
Then it is easily verified that g is a homeomorphism. (Write down a proof of this.)�

As an immediate consequence of this we have:

4.3.7 Corollary. If a, b, c, and d are real numbers with a < b and c < d,
then

(i) (a, b) 6∼= [c, d),

(ii) (a, b) 6∼= [c, d], and

(iii) [a, b) 6∼= [c, d].

Proof. (i) Let (X,τ ) = [c, d) and (Y,τ 1) = (a, b). Suppose that (X,τ ) ∼=
(Y,τ 1). Then X \ {c} ∼= Y \ {y}, for some y ∈ Y . But, X \ {c} = (c, d) is an
interval, and so is connected, while no matter which point we remove from (a, b)

the resultant space is disconnected. Hence by Proposition 4.3.2,

X \ {c} 6∼= Y \ {y}, for each y ∈ Y.

This is a contradiction. So [c, d) 6∼= (a, b).

(ii) [c, d] \ {c} is connected, while (a, b) \ {y} is disconnected for all y ∈ (a, b).
Thus (a, b) 6∼= [c, d].

(iii) Suppose that [a, b) ∼= [c, d]. Then [c, d] \ {c} ∼= [a, b) \ {y} for some
y ∈ [a, b). Therefore ([c, d]\{c})\{d} ∼= ([a, b)\{y})\{z}, for some z ∈ [a, b)\{y};
that is, (c, d) ∼= [a, b) \ {y, z}, for some distinct y and z in [a, b). But (c, d) is
connected, while [a, b) \ {y, z}, for any two distinct points y and z in [a, b), is
disconnected. So we have a contradiction. Therefore [a, b) 6∼= [c, d]. �
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Exercises 4.3

1. Deduce from the above that every interval is homeomorphic to one and only
one of the following spaces:

{0}; (0, 1); [0, 1]; [0, 1).

2. Deduce from Proposition 4.3.5 that every countable subspace of R with more
than one point is disconnected. (In particular, Z and Q are disconnected.)

3. Let X be the unit circle in R2; that is, X = {〈x, y〉 : x2 + y2 = 1} and has the
subspace topology.

(i) Show that X \ {〈1, 0〉} is homeomorphic to the open interval (0, 1).

(ii) Deduce that X 6∼= (0, 1) and X 6∼= [0, 1].

(iii) Observing that for every point a ∈ X, the subspace X \ {a} is connected,
show that X 6∼= [0, 1).

(iv) Deduce that X is not homeomorphic to any interval.

4. Let Y be the subspace of R2 given by

Y = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 2)2 + y2 = 1}

(i) Is Y homeomorphic to the space X in Exercise 3 above?

(ii) Is Y homeomorphic to an interval?

5. Let Z be the subspace of R2 given by

Z = {〈x, y〉 : x2 + y2 = 1} ∪ {〈x, y〉 : (x− 3/2)2 + y2 = 1}.

Show that

(i) Z is not homeomorphic to any interval, and

(ii) Z is not homeomorphic to X or Y , the spaces described in Exercises 3 and
Exercise 4 above.

6. Prove that the Sorgenfrey line is not homeomorphic to R, R2, or any subspace
of either of these spaces.
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7. (i) Prove that the topological space in Exercises 1.1 #5 (i) is not homeomorphic
to the space in Exercises 1.1 #9 (ii).

(ii)* In Exercises 1.1 #5, is (X,τ 1) ∼= (X,τ 2)?

(iii)* In Exercises 1.1 # 9, is (X,τ 2) ∼= (X,τ 9)?

Initial Segment Topology and Final Segment Topology

8. Let (X,τ ) be a topological space, where X is an infinite set. Prove each of the
following statements (originally proved by Ginsburg and Sands [154]).

(i)* (X,τ ) has a subspace homeomorphic to (N,τ 1), where either τ 1 is the
indiscrete topology or (N,τ 1) is a T0-space.

(ii)** Let (X,τ ) be a T1-space. Then (X,τ ) has a subspace homeomorphic to
(N,τ 2), where τ 2 is either the finite-closed topology or the discrete topology.

(iii) Deduce from (ii), that any infinite Hausdorff space contains an infinite
discrete subspace and hence a subspace homeomorphic to N with the discrete
topology.

(iv)** Let (X,τ ) be a T0-space which has no infinite T1-subspaces. Then the
space (X,τ ) has a subspace homeomorphic to (N,τ 3), where τ 3 consists
of N, Ø,and all of the sets {1, 2, . . . , n}, n ∈ N or τ 3 consists of N, Ø, and
all of the sets {n, n+ 1, . . . }, n ∈ N.

(v) Deduce from the above that every infinite topological space has a subspace
homeomorphic to (N,τ 4) where τ 4 is the indiscrete topology, the discrete
topology, the finite-closed topology, or one of the two topologies described
in (iv), known as the initial segment topology and the final segment
topology, respectively. Further, no two of these five topologies on N are
homeomorphic.
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Local Homeomorphism

9. Let (X,τ ) and (Y,τ 1) be topological spaces. A map f : X → Y is said to be a
local homeomorphism if each point x ∈ X has an open neighbourhood U such
that the restriction of f to U maps U homeomorphically onto an open subspace
V of (Y,τ 1); that is, if the topology induced on U by τ is τ 2 and the topology
induced on V = f(U) by τ 1 is τ 3, then f is a homeomorphism of (U,τ 2) onto
(V,τ 3). The topological space (X,τ ) is said to be locally homeomorphic to
(Y,τ 1) if there exists a local homeomorphism of (X,τ ) into (Y,τ 1).

(i) If (X,τ ) and (Y,τ 1) are homeomorphic topological spaces, verify that
(X,τ ) is locally homeomorphic to (Y,τ 1).

(ii) If (X,τ ) is an open subspace of (Y,τ 1), prove that (X,τ ) is locally
homeomorphic to (Y,τ 1).

(iii)* Prove that if f : (X,τ )→ (Y,τ 1) is a local homeomorphism, then f maps
every open subset of (X,τ ) onto an open subset of (Y,τ 1).

10. A subset A of a topological space (X,τ ) is said to be semi-open if there exists
an open set O ∈ (X,τ ) such that O ⊆ A ⊆ O. Verify the following:

(i) every open set is a semi-open set;

(ii) a closed set is not necessarily a semi-open set;

(iii) if A is an interval other than a singleton set in R, then A is a semi-open
subset of R;

(iv) if τ is the finite-closed topology, the discrete topology or the indiscrete
topology then the semi-open sets are precisely the open sets.
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4.4 Postscript

There are three important ways of creating new topological spaces from old ones:
forming subspaces, products, and quotient spaces. We examine all three in due
course. Forming subspaces was studied in this chapter. This allowed us to introduce
the important spaces Q, [a, b], (a, b), etc.

We defined the central notion of homeomorphism. We noted that “∼=” is an
equivalence relation. A property is said to be topological if it is preserved by
homeomorphisms; that is, if (X,τ ) ∼= (Y,τ 1) and (X,τ ) has the property then
(Y,τ 1) must also have the property. Connectedness was shown to be a topological
property. So any space homeomorphic to a connected space is connected. (A
number of other topological properties were also identified.) We formally defined the
notion of an interval in R, and showed that the intervals are precisely the connected
subspaces of R.

Given two topological spaces (X,τ ) and (Y,τ 1) it is an interesting task to
show whether they are homeomorphic or not. We proved that every interval in R
is homeomorphic to one and only one of [0, 1], (0, 1), [0, 1), and {0}. In the next
section we show that R is not homeomorphic to R2. A tougher problem is to show
that R2 is not homeomorphic to R3. This will be done later via the Jordan curve
theorem. Still the crème de la crème is the fact that Rn ∼= Rm if and only if n = m.
This is best approached via algebraic topology, which is only touched upon in this
book.

Exercises 4.2 #6 introduced the notion of group of homeomorphisms, which is
an interesting and important topic in its own right.



Chapter 5

Continuous Mappings

Introduction

In most branches of pure mathematics we study what in category theory are called
“objects” and “arrows”. In linear algebra the objects are vector spaces and the
arrows are linear transformations. In group theory the objects are groups and the
arrows are homomorphisms, while in set theory the objects are sets and the arrows
are functions. In topology the objects are the topological spaces. We now introduce
the arrows . . . the continuous mappings.

5.1 Continuous Mappings

Of course we are already familiar1 with the notion of a continuous function from R
into R.

A function f : R → R is said to be continuous if for each a ∈ R and each
positive real number ε, there exists a positive real number δ such that | x− a |< δ

implies | f(x)− f(a) |< ε.

It is not at all obvious how to generalize this definition to general topological
spaces where we do not have “absolute value” or “subtraction”. So we shall seek
another (equivalent) definition of continuity which lends itself more to generalization.

1The early part of this section assumes that you have some knowledge of real analysis and, in
particular, the ε–δ definition of continuity. If this is not the case, then proceed directly to Definition
5.1.3. If you would like to refresh your knowledge in this area, you might like to look at the classic
book “A course of pure mathematics” by G.H. Hardy, which is available to download at no cost from
Project Gutenberg at http://www.gutenberg.org/ebooks/38769.
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It is easily seen that f : R→ R is continuous if and only if for each a ∈ R
and each interval (f(a)− ε, f(a) + ε), for ε > 0, there exists a δ > 0 such
that f(x) ∈ (f(a)− ε , f(a) + ε) for all x ∈ (a− δ , a+ δ).

This definition is an improvement since it does not involve the concept “absolute
value” but it still involves “subtraction”. The next lemma shows how to avoid
subtraction.

5.1.1 Lemma. Let f be a function mapping R into itself. Then f is
continuous if and only if for each a ∈ R and each open set U containing f(a),
there exists an open set V containing a such that f(V ) ⊆ U .

Proof. Assume that f is continuous. Let a ∈ R and let U be any open set
containing f(a). Then there exist real numbers c and d such that f(a) ∈ (c, d) ⊆ U .
Put ε equal to the smaller of the two numbers d− f(a) and f(a)− c, so that

(f(a)− ε , f(a) + ε) ⊆ U.

As the mapping f is continuous there exists a δ > 0 such that f(x) ∈ (f(a) −
ε , f(a) + ε) for all x ∈ (a− δ , a+ δ). Let V be the open set (a− δ , a+ δ). Then
a ∈ V and f(V ) ⊆ U , as required.

Conversely assume that for each a ∈ R and each open set U containing f(a)

there exists an open set V containing a such that f(V ) ⊆ U . We have to
show that f is continuous. Let a ∈ R and ε be any positive real number. Put
U = (f(a) − ε , f(a) + ε). So U is an open set containing f(a). Therefore there
exists an open set V containing a such that f(V ) ⊆ U . As V is an open set
containing a, there exist real numbers c and d such that a ∈ (c, d) ⊆ V . Put δ equal
to the smaller of the two numbers d−a and a− c, so that (a− δ , a+ δ) ⊆ V . Then
for all x ∈ (a− δ , a+ δ), f(x) ∈ f(V ) ⊆ U , as required. So f is continuous. �

We could use the property described in Lemma 5.1.1 to define continuity,
however the following lemma allows us to make a more elegant definition.



5.1. CONTINUOUS MAPPINGS 111

5.1.2 Lemma. Let f be a mapping of a topological space (X,τ ) into a
topological space (Y,τ ′). Then the following two conditions are equivalent:

(i) for each U ∈ τ ′, f−1(U) ∈ τ ;

(ii) for each a ∈ X and each U ∈ τ ′ with f(a) ∈ U , there exists a V ∈ τ such
that a ∈ V and f(V ) ⊆ U .

Proof. Assume that condition (i) is satisfied. Let a ∈ X and U ∈ τ ′ with
f(a) ∈ U . Then f−1(U) ∈ τ . Put V = f−1(U), and we have that a ∈ V, V ∈ τ ,
and f(V ) ⊆ U . So condition (ii) is satisfied.

Conversely, assume that condition (ii) is satisfied. Let U ∈ τ ′. If f−1(U) = Ø

then clearly f−1(U) ∈ τ . If f−1(U) 6= Ø, let a ∈ f−1(U). Then f(a) ∈ U .
Therefore there exists a V ∈ τ such that a ∈ V and f(V ) ⊆ U . So for each
a ∈ f−1(U) there exists a V ∈ τ such that a ∈ V ⊆ f−1(U). By Corollary 3.2.9
this implies that f−1(U) ∈ τ . So condition (i) is satisfied. �

Putting together Lemmas 5.1.1 and 5.1.2 we see that f : R→ R is continuous
if and only if for each open subset U of R, f−1(U) is an open set.

This leads us to define the notion of a continuous function between two
topological spaces as follows:

5.1.3 Definition. Let (X,τ ) and (Y,τ 1) be topological spaces and f a
function from X into Y . Then f : (X,τ )→ (Y,τ 1) is said to be a continuous
mapping if for each U ∈ τ 1, f

−1(U) ∈ τ .

From the above remarks we see that this definition of continuity coincides with
the usual definition when (X,τ ) = (Y,τ 1) = R.
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Let us go through a few easy examples to see how nice this definition of
continuity is to apply in practice.

5.1.4 Example. Consider f : R → R given by f(x) = x, for all x ∈ R; that
is, f is the identity function. Then for any open set U in R, f−1(U) = U and so is
open. Hence f is continuous. �

5.1.5 Example. Let f : R→ R be given by f(x) = c, for c a constant, and all
x ∈ R. Then let U be any open set in R. Clearly f−1(U) = R if c ∈ U and Ø if
c 6∈ U . In both cases, f−1(U) is open. So f is continuous. �

5.1.6 Example. Consider f : R→ R defined by

f(x) =

{
x− 1, if x 6 3
1
2(x+ 5), if x > 3.
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Recall that a mapping is continuous if and only if the inverse image of every
open set is an open set.

Therefore, to show f is not continuous we have to find only one set U
such that f−1(U) is not open.

Then f−1((1, 3)) = (2, 3], which is not an open set. Therefore f is not
continuous. �
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Note that Lemma 5.1.2 can now be restated in the following way.2

5.1.7 Proposition. Let f be a mapping of a topological space (X,τ ) into
a space (Y,τ ′). Then f is continuous if and only if for each x ∈ X and each
U ∈ τ ′ with f(x) ∈ U , there exists a V ∈ τ such that x ∈ V and f(V ) ⊆ U .�

5.1.8 Proposition. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces.
If f : (X,τ ) → (Y,τ 1) and g : (Y,τ 1) → (Z,τ 2) are continuous mappings,
then the composite function g ◦ f : (X,τ )→ (Z,τ 2) is continuous.

Proof.

To prove that the composite function g◦f : (X, τ )→ (Z, τ 2) is continuous,
we have to show that if U ∈ τ 2, then (g ◦ f)−1(U) ∈ τ .

But (g ◦ f)−1(U) = f−1(g−1(U)).

Let U be open in (Z,τ 2). Since g is continuous, g−1(U) is open in τ 1. Then
f−1(g−1(U)) is open in τ as f is continuous. But f−1(g−1(U)) = (g ◦ f)−1(U).
Thus g ◦ f is continuous. �

The next result shows that continuity can be described in terms of closed sets
instead of open sets if we wish.

5.1.9 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces. Then
f : (X,τ )→ (Y,τ 1) is continuous if and only if for every closed subset S of Y,
f−1(S) is a closed subset of X.

Proof. This result follows immediately once you recognize that

f−1(complement of S) = complement of f−1(S). �
2If you have not read Lemma 5.1.2 and its proof you should do so now.
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5.1.10 Remark. Of course here is a relationship between continuous maps
and homeomorphisms: if f : (X,τ ) → (Y,τ 1) is a homeomorphism then it is a
continuous map. Of course not every continuous map is a homeomorphism.

However the following proposition, whose proof follows from the definitions of
“continuous” and “homeomorphism” tells the full story.

5.1.11 Proposition. Let (X,τ ) and (Y,τ ′) be topological spaces and f
a function from X into Y . Then f is a homeomorphism if and only if

(i) f is continuous,

(ii) f is one-to-one and onto; that is, the inverse function f−1 : Y → X exists,
and

(iii) f−1 is continuous. �

A useful result is the following proposition which tells us that the restriction of
a continuous map is a continuous map. Its routine proof is left to the reader – see
also Exercises 5.1 #8.

5.1.12 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces, f :

(X,τ )→ (Y,τ 1) a continuous mapping, A a subset of X, and τ 2 the induced
topology on A. Further let g : (A,τ 2) → (Y,τ 1) be the restriction of f to A;
that is, g(x) = f(x), for all x ∈ A. Then g is continuous.

Exercises 5.1

1. (i) Let f : (X,τ )→ (Y,τ 1) be a constant function. Show that f is continuous.

(ii) Let f : (X,τ )→ (X,τ ) be the identity function. Show that f is continuous.

2. Let f : R→ R be given by

f(x) =

{
−1, x 6 0

1, x > 0.

(i) Prove that f is not continuous using the method of Example 5.1.6.
(ii) Find f−1{1} and, using Proposition 5.1.9, deduce that f is not continuous.
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3. Let f : R→ R be given by

f(x) =

{
x, x 6 1
x+ 2, x > 1.

Is f continuous? (Justify your answer.)

4. Let (X,τ ) be the subspace of R given by X = [0, 1] ∪ [2, 4].
Define f : (X,τ )→ R by

f(x) =

{
1, if x ∈ [0, 1]
2, if x ∈ [2, 4].

Prove that f is continuous. (Does this surprise you?)

5. Let (X,τ ) and (Y,τ 1) be topological spaces and B1 a basis for the topology τ 1.
Show that a map f : (X,τ )→ (Y,τ 1) is continuous if and only if f−1(U) ∈ τ ,
for every U ∈ B1.

6. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If
(X,τ ) is a discrete space, prove that f is continuous.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f a mapping of X into Y . If
(Y,τ 1) is an indiscrete space, prove that f is continuous.

8. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a
continuous mapping. Let A be a subset of X, τ 2 the induced topology on
A, B = f(A), τ 3 the induced topology on B and g : (A,τ 2) → (B,τ 3) the
restriction of f to A. Prove that g is continuous.

9. Let f be a mapping of a space (X,τ ) into a space (Y,τ ′). Prove that f is
continuous if and only if for each x ∈ X and each neighbourhood N of f(x)

there exists a neighbourhood M of x such that f(M) ⊆ N .
Coarser Topology and Finer Topology

10. Let τ 1 and τ 2 be two topologies on a set X. Then τ 1 is said to be a finer
topology than τ 2 (and τ 2 is said to be a coarser topology than τ 1) if
τ 1 ⊇ τ 2. Prove that

(i) the Euclidean topology R is finer than the finite-closed topology on R;
(ii) the identity function f : (X,τ 1) → (X,τ 2) is continuous if and only if τ 1

is a finer topology than τ 2.
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11. Let f : R → R be a continuous function such that f(q) = 0 for every rational
number q. Prove that f(x) = 0 for every x ∈ R.

12. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a
continuous map. If f is one-to-one, prove that

(i) (Y,τ 1) Hausdorff implies (X,τ ) Hausdorff.

(ii) (Y,τ 1) a T1-space implies (X,τ ) is a T1-space.

13. Let (X,τ ) and (Y,τ 1) be topological spaces and let f be a mapping of (X,τ )

into (Y,τ 1). Prove that f is continuous if and only if for every subset A of X,
f(A) ⊆ f(A).

[Hint: Use Proposition 5.1.9.]

5.2 Intermediate Value Theorem

5.2.1 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces and
f : (X,τ ) → (Y,τ 1) surjective and continuous. If (X,τ ) is connected, then
(Y,τ 1) is connected.

Proof. Suppose (Y,τ 1) is not connected. Then it has a clopen subset U such
that U 6= Ø and U 6= Y . Then f−1(U) is an open set, since f is continuous, and
also a closed set, by Proposition 5.1.9; that is, f−1(U) is a clopen subset of X.
Now f−1(U) 6= Ø as f is surjective and U 6= Ø. Also f−1(U) 6= X, since if it were
U would equal Y , by the surjectivity of f . Thus (X,τ ) is not connected. This is a
contradiction. Therefore (Y,τ 1) is connected. �

5.2.2 Remarks. (i) The above proposition would be false if the condition
“surjective” were dropped. (Find an example of this.)

(ii) Simply put, Proposition 5.2.1 says: any continuous image of a connected
space is connected.
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(iii) Proposition 5.2.1 tells us that if (X,τ ) is a connected space and (Y,τ ′) is not
connected (i.e. disconnected) then there exists no mapping of (X,τ ) onto
(Y,τ ′) which is continuous. For example, while there are an infinite number of
mappings of R onto Q (or onto Z), none of them are continuous. Indeed in
Exercises 5.2 # 10 we observe that the only continuous mappings of R into Q
(or into Z) are the constant mappings. �

The following strengthened version of the notion of connectedness is often
useful.

5.2.3 Definition. A topological space (X,τ ) is said to be path-connected
(or pathwise connected) if for each pair of (distinct) points a and b of X
there exists a continuous mapping f : [0, 1] → (X,τ ), such that f(0) = a and
f(1) = b. The mapping f is said to be a path joining a to b.

5.2.4 Example. It is readily seen that every interval is path-connected. �

5.2.5 Example. For each n > 1, Rn is path-connected. �

5.2.6 Proposition. Every path-connected space is connected.

Proof. Let (X,τ ) be a path-connected space and suppose that it is not
connected.

Then it has a proper non-empty clopen subset U . So there exist a and b such
that a ∈ U and b ∈ X \ U . As (X,τ ) is path-connected there exists a continuous
function f : [0, 1]→ (X,τ ) such that f(0) = a and f(1) = b.

However, f−1(U) is a clopen subset of [0, 1]. As a ∈ U, 0 ∈ f−1(U) and so
f−1(U) 6= Ø. As b 6∈ U, 1 6∈ f−1(U) and thus f−1(U) 6= [0, 1]. Hence f−1(U) is
a proper non-empty clopen subset of [0, 1], which contradicts the connectedness of
[0, 1].

Consequently (X,τ ) is connected. �
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5.2.7 Remark. The converse of Proposition 5.2.6 is false; that is, not every
connected space is path-connected. An example of such a space is the following
subspace of R2:

X = {〈x, y〉 : y = sin(1/x), 0 < x 6 1} ∪ {〈0, y〉 : −1 6 y 6 1}.

[Exercises 5.2 #6 shows that X is connected. That X is not path-connected can
be seen by showing that there is no path joining 〈0, 0〉 to, say, the point 〈1/π, 0〉.
Draw a picture and try to convince yourself of this.] �

We can now show that R 6∼= R2.

5.2.8 Example. Clearly R2\{〈0, 0〉} is path-connected and hence, by Proposition
5.2.6, is connected. However, by Proposition 4.3.5, R \ {a}, for any a ∈ R, is
disconnected. Hence R 6∼= R2. �

We now present the Weierstrass Intermediate Value Theorem which is a beautiful
application of topology to the theory of functions of a real variable. The topological
concept crucial to the result is that of connectedness.

5.2.9 Theorem. (Weierstrass Intermediate Value Theorem)
Let f : [a, b]→ R be continuous and let f(a) 6= f(b). Then for every number p
between f(a) and f(b) there is a point c ∈ [a, b] such that f(c) = p.

Proof. As [a, b] is connected and f is continuous, Proposition 5.2.1 says that
f([a, b]) is connected. By Proposition 4.3.5 this implies that f([a, b]) is an interval.
Now f(a) and f(b) are in f([a, b]). So if p is between f(a) and f(b), p ∈ f([a, b]),
that is, p = f(c), for some c ∈ [a, b]. �

5.2.10 Corollary. If f : [a, b] → R is continuous and such that f(a) > 0

and f(b) < 0, then there exists an x ∈ [a, b] such that f(x) = 0. �
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5.2.11 Corollary. (Fixed Point Theorem) Let f be a continuous
mapping of [0, 1] into [0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z.
(The point z is called a fixed point.)

Proof. If f(0) = 0 or f(1) = 1, the result is obviously true. Thus it suffices to
consider the case when f(0) > 0 and f(1) < 1.

Let g : [0, 1] → R be defined by g(x) = x − f(x). Clearly g is continuous,
g(0) = −f(0) < 0, and g(1) = 1 − f(1) > 0. Consequently, by Corollary 5.2.10,
there exists a z ∈ [0, 1] such that g(z) = 0; that is, z − f(z) = 0 or f(z) = z. �

5.2.12 Remark. Corollary 5.2.11 is a special case of a very important theorem
called the Brouwer Fixed Point Theorem which says that if you map an n-
dimensional cube continuously into itself then there is a fixed point. [There
are many proofs of this theorem, but most depend on methods of algebraic topology.
An unsophisticated proof is given in Kuratowski [235] on pp. 238–239.]

Exercises 5.2

1. Prove that a continuous image of a path-connected space is path-connected.

2. Let f be a continuous mapping of the interval [a, b] into itself, where a and
b ∈ R and a < b. Prove that there is a fixed point.

Fixed Point Property

3. (i) Give an example which shows that Corollary 5.2.11 would be false if we
replaced [0, 1] everywhere by (0, 1).

(ii) A topological space (X,τ ) is said to have the fixed point property if every
continuous mapping of (X,τ ) into itself has a fixed point. Show that the
only intervals in R having the fixed point property are the closed intervals.

(iii) Let X be a set with at least two points. Prove that the discrete space (X,τ )

and the indiscrete space (X,τ ′) do not have the fixed-point property.
(iv) Does a space which has the finite-closed topology have the fixed-point

property?
(v) Prove that if the space (X,τ ) has the fixed-point property and (Y,τ 1) is a

space homeomorphic to (X,τ ), then (Y,τ 1) has the fixed-point property.
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4. Let {Aj : j ∈ J} be a family of connected subspaces of a topological space
(X,τ ). If

⋂
j∈J

Aj 6= Ø, show that
⋃
j∈J

Aj is connected.

5. Let A be a connected subspace of a topological space (X,τ ). Prove that A is
also connected. Indeed, show that if A ⊆ B ⊆ A, then B is connected.

6. (i) Show that the subspace Y = {〈x, y〉 : y = sin (1/x) , 0 < x 6 1} of R2 is
connected.
[Hint: Use Proposition 5.2.1.]

(ii) Verify that Y = Y ∪ {〈0, y〉 : −1 6 y 6 1}
(iii) Using Exercise 5, observe that Y is connected.

7. Let E be the set of all points in R2 having both coordinates rational. Prove
that the space R2 \ E is path-connected.

8.* Let C be any countable subset of R2. Prove that the space R2 \ C is path-
connected.

Connected Component

9. Let (X,τ ) be a topological space and a any point in X. The component in
X of a, CX(a), is defined to be the union of all connected subsets of X which
contain a. Show that
(i) CX(a) is connected. (Use Exercise 4 above.)
(ii) CX(a) is the largest connected set containing a.
(iii) CX(a) is closed in X. (Use Exercise 5 above.)

Totally Disconnected Spaces

10. A topological space (X,τ ) is said to be totally disconnected if every non-empty
connected subset is a singleton set. Prove the following statements.
(i) (X,τ ) is totally disconnected if and only if for each a ∈ X, CX(a) = {a}.

(See the notation in Exercise 9.)
(ii) The set Q of all rational numbers with the usual topology is totally

disconnected.
(iii) Indiscrete spaces with more than one point are not totally disconnected.
(iv) If f is a continuous mapping of R into Q, prove that there exists a c ∈ Q

such that f(x) = c, for all x ∈ R; that is, the only continuous functions from
R to Q are the constant functions.

(v) Every subspace of a totally disconnected space is totally disconnected.
(vi) Every countable subspace of R2 is totally disconnected.
(vii) The Sorgenfrey line is totally disconnected.



5.2. INTERMEDIATE VALUE THEOREM 121

11. (i) Using Exercise 9, define, in the natural way, the “path-component” of a

point in a topological space.

(ii) Prove that, in any topological space, every path-component is a path-
connected space.

(iii) If (X,τ ) is a topological space with the property that every point in X has a
neighbourhood which is path-connected, prove that every path-component
is an open set. Deduce that every path-component is also a closed set.

(iv) Using (iii), show that an open subset of R2 is connected if and only if it is
path-connected.

12.* Let A and B be subsets of a topological space (X,τ ). If A and B are both
open or both closed, and A ∪ B and A ∩ B are both connected, show that A
and B are connected.

Zero-Dimensional Spaces

13. A topological space (X,τ ) is said to be zero-dimensional if there is a basis for
the topology consisting of clopen sets. Prove the following statements.

(i) Q and I are zero-dimensional spaces.

(ii) A subspace of a zero-dimensional space is zero-dimensional.

(iii) A zero-dimensional Hausdorff space is totally disconnected. (See Exercise
10 above.)

(iv) Every indiscrete space is zero-dimensional.

(v) Every discrete space is zero-dimensional.

(vi) A zero-dimensional T0-space is Hausdorff.

(vii)* A subspace of R is zero-dimensional if and only if it is totally disconnected.

14. Show that every local homeomorphism is a continuous mapping. (See Exercises
4.3#9.)
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5.3 Postscript

In this chapter we said that a mapping3 between topological spaces is called
“continuous” if it has the property that the inverse image of every open set is
an open set. This is an elegant definition and easy to understand. It contrasts
with the one we meet in real analysis which was mentioned at the beginning of
this section. We have generalized the real analysis definition, not for the sake of
generalization, but rather to see what is really going on.

The Weierstrass Intermediate Value Theorem seems intuitively obvious, but we
now see it follows from the fact that R is connected and that any continuous image
of a connected space is connected.

We introduced a stronger property than connected, namely path-connected.
In many cases it is not sufficient to insist that a space be connected, it must be
path-connected. This property plays an important role in algebraic topology.

We shall return to the Brouwer Fixed Point Theorem in due course. It is a
powerful theorem. Fixed point theorems play important roles in various branches
of mathematics including topology, functional analysis, and differential equations.
They are still a topic of research activity today.

In Exercises 5.2 #9 and #10 we met the notions of “component” and “totally
disconnected”. Both of these are important for an understanding of connectedness.

3Warning: Some books use the terms “mapping” and “map” to mean continuous mapping. We
do not.



Chapter 6

Metric Spaces

Introduction

The most important class of topological spaces is the class of metric spaces. Metric
spaces provide a rich source of examples in topology. But more than this, most of
the applications of topology to analysis are via metric spaces.

The notion of metric space was introduced in 1906 by Maurice Fréchet and
developed and named by Felix Hausdorff in 1914 (Hausdorff [167]).

6.1 Metric Spaces

6.1.1 Definition. Let X be a non-empty set and d a real-valued function
defined on X ×X such that for a, b ∈ X:

(i) d(a, b) > 0 and d(a, b) = 0 if and only if a = b;

(ii) d(a, b) = d(b, a); and

(iii) d(a, c) 6 d(a, b) + d(b, c), [the triangle inequality] for all a, b and c in X.

Then d is said to be a metric on X, (X, d) is called a metric space and d(a, b)

is referred to as the distance between a and b.

123
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6.1.2 Example. The function d : R× R→ R given by

d(a, b) = |a− b|, a, b ∈ R

is a metric on the set R since

(i) |a− b| > 0, for all a and b in R, and |a− b| = 0 if and only if a = b,

(ii) |a− b| = |b− a|, and

(iii) |a− c| 6 |a− b|+ |b− c|. (Deduce this from |x+ y| 6 |x|+ |y|.)

We call d the euclidean metric on R. �

6.1.3 Example. The function d : R2 × R2 → R given by

d(〈a1, a2〉, 〈b1, b2〉) =
√

(a1 − b1)2 + (a2 − b2)2

is a metric on R2 called the euclidean metric on R2.
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6.1.4 Example. Let X be a non-empty set and d the function from X × X
into R defined by

d(a, b) =

{
0, if a = b
1, if a 6= b.

Then d is a metric on X and is called the discrete metric. �
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Many important examples of metric spaces are “function spaces". For these the
set X on which we put a metric is a set of functions.

6.1.5 Example. Let C[0, 1] denote the set of continuous functions from [0, 1]

into R. A metric is defined on this set by

d(f, g) =

∫ 1

0
|f(x)− g(x)| dx

where f and g are in C[0, 1].

A moment’s thought should tell you that d(f, g) is precisely the area of the
region which lies between the graphs of the functions and the lines x = 0 and x = 1,
as illustrated below.

�
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6.1.6 Example. Again let C[0, 1] be the set of all continuous functions from
[0, 1] into R. Another metric is defined on C[0, 1] as follows:

d∗(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}.

Clearly d∗(f, g) is just the largest vertical gap between the graphs of the functions
f and g.

�

6.1.7 Example. We can define another metric on R2 by putting

d∗(〈a1, a2〉, 〈b1, b2〉) = max{|a1 − b1|, |a2 − b2|}

where max{x, y} equals the larger of the two numbers x and y. �

6.1.8 Example. Yet another metric on R2 is given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|. �
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A rich source of examples of metric spaces is the family of normed vector spaces.

6.1.9 Example. Let V be a vector space over the field of real or complex
numbers. A norm ‖ ‖ on V is a map : V → R such that for all a, b ∈ V and λ in
the field

(i) ‖ a ‖> 0 and ‖ a ‖= 0 if and only if a = 0,

(ii) ‖ a+ b ‖6 ‖ a ‖ + ‖ b ‖, and

(iii) ‖ λa ‖= |λ| ‖ a ‖.

A normed vector space (V, ‖ ‖) is a vector space V with a norm ‖ ‖.
Let (V, ‖ ‖) be any normed vector space. Then there is a corresponding metric,

d, on the set V given by d(a, b) =‖ a− b ‖, for a and b in V .

It is easily checked that d is indeed a metric. So every normed vector space
is also a metric space in a natural way.

For example, R3 is a normed vector space if we put

‖ 〈x1, x2, x3〉 ‖=
√
x2

1 + x2
2 + x2

3 , for x1, x2, and x3 in R.

So R3 becomes a metric space if we put

d(〈a1, b1, c1〉, 〈a2, b2, c2〉) = ‖ (a1 − a2, b1 − b2, c1 − c2) ‖

=
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 .

Indeed Rn, for any positive integer n, is a normed vector space if we put

‖ 〈x1, x2, . . . , xn〉 ‖=
√
x2

1 + x2
2 + · · ·+ x2

n .

So Rn becomes a metric space if we put

d(〈a1, a2, . . . , an〉, 〈b1, b2, . . . , bn〉) = ‖ 〈a1 − b1, a2 − b2, . . . , an − bn〉 ‖

=
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2 .

�
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In a normed vector space (N, ‖ ‖) the open ball with centre a and radius r
is defined to be the set

Br(a) = {x : x ∈ N and ‖ x− a ‖< r}.

This suggests the following definition for metric spaces:

6.1.10 Definition. Let (X, d) be a metric space and r any positive
real number. Then the open ball about a ∈ X of radius r is the set
Br(a) = {x : x ∈ X and d(a, x) < r}.

6.1.11 Example. In R with the euclidean metric Br(a) is the open interval
(a− r, a+ r). �

6.1.12 Example. In R2 with the euclidean metric, Br(a) is the open disc with
centre a and radius r.

�
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6.1.13 Example. In R2 with the metric d∗ given by

d∗(〈a1, a2〉, 〈b1, b2〉) = max{|a1 − b1|, |a2 − b2|},

the open ball B1(〈0, 0〉) looks like

�

6.1.14 Example. In R2 with the metric d1 given by

d1(〈a1, a2〉, 〈b1, b2〉) = |a1 − b1|+ |a2 − b2|,

the open ball B1(〈0, 0〉) looks like

�
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The proof of the following Lemma is quite easy (especially if you draw a diagram)
and so is left for you to supply.

6.1.15 Lemma. Let (X, d) be a metric space and a and b points of X.
Further, let δ1 and δ2 be positive real numbers. If c ∈ Bδ1(a) ∩ Bδ2(b), then
there exists a δ > 0 such that Bδ(c) ⊆ Bδ1(a) ∩Bδ2(b). �

The next Corollary follows in a now routine way from Lemma 6.1.15.

6.1.16 Corollary. Let (X, d) be a metric space and B1 and B2 open balls
in (X, d). Then B1 ∩B2 is a union of open balls in (X, d). �

Finally we are able to link metric spaces with topological spaces.

6.1.17 Proposition. Let (X, d) be a metric space. Then the collection of
open balls in (X, d) is a basis for a topology τ on X.

[The topology τ is referred to as the topology induced by the metric d, and
(X,τ ) is called the induced topological space or the corresponding topological
space or the associated topological space.]

Proof. This follows from Proposition 2.2.8 and Corollary 6.1.16. �

6.1.18 Example. If d is the euclidean metric on R then a basis for the topology
τ induced by the metric d is the set of all open balls. But Bδ(a) = (a− δ , a + δ).
From this it is readily seen that τ is the euclidean topology on R. So the euclidean
metric on R induces the euclidean topology on R. �
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6.1.19 Example. From Exercises 2.3 #1 (ii) and Example 6.1.12, it follows
that the euclidean metric on the set R2 induces the euclidean topology on R2. �

6.1.20 Example. From Exercises 2.3 #1 (i) and Example 6.1.13 it follows
that the metric d∗ also induces the euclidean topology on the set R2. �

It is left as an exercise for you to prove that the metric d1 of Example 6.1.14
also induces the euclidean topology on R2.

6.1.21 Example. If d is the discrete metric on a set X then for each
x ∈ X,B1

2
(x) = {x}. So all the singleton sets are open in the topology τ induced

on X by d. Consequently, τ is the discrete topology. �

We saw in Examples 6.1.19, 6.1.20, and 6.1.14 three different metrics on the
same set which induce the same topology.

6.1.22 Definition. Metrics on a set X are said to be equivalent if they
induce the same topology on X.

So the metrics d, d∗, and d1, of Examples 6.1.3, 6.1.13, and 6.1.14 on R2 are
equivalent.

6.1.23 Proposition. Let (X, d) be a metric space and τ the topology
induced on X by the metric d. Then a subset U of X is open in (X,τ ) if and
only if for each a ∈ U there exists an ε > 0 such that the open ball Bε(a) ⊆ U .

Proof. Assume that U ∈ τ . Then, by Propositions 2.3.2 and 6.1.17, for any
a ∈ U there exists a point b ∈ X and a δ > 0 such that a ∈ Bδ(b) ⊆ U.

Let ε = δ − d(a, b). Then it is readily seen that

a ∈ Bε(a) ⊆ U.

Conversely, assume that U is a subset of X with the property that for each a ∈ U
there exists an εa > 0 such that Bεa(a) ⊆ U . Then, by Propositions 2.3.3 and
6.1.17, U is an open set. �
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We have seen that every metric on a set X induces a topology on the set X.
However, we shall now show that not every topology on a set is induced by a metric.
First, a definition which you have already met in the exercises. (See Exercises 4.1
#13. )

6.1.24 Definition. A topological space (X,τ ) is said to be a Hausdorff
space (or a T2-space) if for each pair of distinct points a and b in X, there
exist open sets U and V such that a ∈ U, b ∈ V , and U ∩ V = Ø.

Of course R, R2 and all discrete spaces are examples of Hausdorff spaces, while
any set with at least 2 elements and which has the indiscrete topology is not a
Hausdorff space. With a little thought we see that Z with the finite-closed topology
is also not a Hausdorff space. (Convince yourself of all of these facts.)

6.1.25 Proposition. Let (X, d) be any metric space and τ the topology
induced on X by d. Then (X,τ ) is a Hausdorff space.

Proof. Let a and b be any points of X, with a 6= b. Then d(a, b) > 0. Put
ε = d(a, b). Consider the open balls Bε/2(a) and Bε/2(b). Then these are open sets
in (X,τ ) with a ∈ Bε/2(a) and b ∈ Bε/2(b). So to show τ is Hausdorff we have to
prove only that Bε/2(a) ∩Bε/2(b) = Ø.

Suppose x ∈ Bε/2(a) ∩Bε/2(b). Then d(x, a) < ε
2 and d(x, b) < ε

2. Hence

d(a, b) 6 d(a, x) + d(x, b)

<
ε

2
+
ε

2
= ε.

This says d(a, b) < ε, which is false. Consequently there exists no x in Bε/2(a) ∩
Bε/2(b); that is, Bε/2(a) ∩Bε/2(b) = Ø, as required. �

6.1.26 Remark. Putting Proposition 6.1.25 together with the comments which
preceded it, we see that an indiscrete space with at least two points has a topology
which is not induced by any metric. Also Z with the finite-closed topology τ is such
that τ is not induced by any metric on Z. �
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6.1.27 Definition. A space (X,τ ) is said to be metrizable if there exists
a metric d on the set X with the property that τ is the topology induced by d.

So, for example, the set Z with the finite-closed topology is not a metrizable
space.

Warning. One should not be misled by Proposition 6.1.25 into thinking that every
Hausdorff space is metrizable. Later on we shall be able to produce (using infinite
products) examples of Hausdorff spaces which are not metrizable. [Metrizability of
topological spaces is quite a technical topic. For necessary and sufficient conditions
for metrizability see Theorem 9.1, page 195, of the book Dugundji [109].]

Exercises 6.1

1. Prove that the metric d1 of Example 6.1.8 induces the euclidean topology on
R2.

2. Let d be a metric on a non-empty set X.

(i) Show that the function e defined by e(a, b) = min{1, d(a, b)} where a, b ∈ X,
is also a metric on X.

(ii) Prove that d and e are equivalent metrics.

(iii) A metric space (X, d) is said to be bounded, and d is said to be a bounded
metric, if there exists a positive real number M such that d(x, y) < M , for
all x, y ∈ X. Using (ii) deduce that every metric is equivalent to a bounded
metric.

3. (i) Let d be a metric on a non-empty set X. Show that the function e defined

by
e(a, b) =

d(a, b)

1 + d(a, b)

where a, b ∈ X, is also a metric on X.

(ii) Prove that d and e are equivalent metrics.
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4. Let d1 and d2 be metrics on sets X and Y respectively. Prove that

(i) d is a metric on X × Y , where

d(〈x1, y1〉, 〈x2, y2〉) = max{d1(x1, x2), d2(y1, y2)}.

(ii) e is a metric on X × Y , where

e(〈x1, y1〉, 〈x2, y2〉) = d1(x1, x2) + d2(y1, y2).

(iii) d and e are equivalent metrics.

5. Let (X, d) be a metric space and τ the corresponding topology on X. Fix
a ∈ X. Prove that the map f : (X,τ ) → R defined by f(x) = d(a, x) is
continuous.

6. Let (X, d) be a metric space and τ the topology induced on X by d. Let
Y be a subset of X and d1 the metric on Y obtained by restricting d; that
is, d1(a, b) = d(a, b) for all a and b in Y . If τ 1 is the topology induced on
Y by d1 and τ 2 is the subspace topology on Y (induced by τ on X), prove
that τ 1 = τ 2. [This shows that every subspace of a metrizable space is
metrizable.]
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7. (i) Let `1 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞
n=1 |xn| is convergent. If we define

d1(x, y) =
∞∑
n=1

|xn − yn|

for all x and y in `1, prove that (`1, d1) is a metric space.

(ii) Let `2 be the set of all sequences of real numbers

x = (x1, x2, . . . , xn, . . . )

with the property that the series
∑∞
n=1 x

2
n is convergent. If we define

d2(x, y) =

( ∞∑
n=1

|xn − yn|2
)1

2

for all x and y in `2, prove that (`2, d2) is a metric space.

(iii) Let `∞ denote the set of bounded sequences of real numbers
x = (x1, x2, . . . , xn, . . . ). If we define

d∞(x, y) = sup{|xn − yn| : n ∈ N}

where x, y ∈ `∞, prove that (`∞, d∞) is a metric space.

(iv) Let c0 be the subset of `∞ consisting of all those sequences which converge
to zero and let d0 be the metric on c0 obtained by restricting the metric d∞
on `∞ as in Exercise 6. Prove that c0 is a closed subset of (`∞, d∞).

(v) Prove that each of the spaces (`1, d1), (`2, d2), and (c0, d0) is a separable
space.

(vi)* Is (`∞, d∞) a separable space?

(vii) Show that each of the above metric spaces is a normed vector space in a
natural way.

8. Let f be a continuous mapping of a metrizable space (X,τ ) onto a topological
space (Y,τ 1). Is (Y,τ 1) necessarily metrizable? (Justify your answer.)
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Normal Spaces and T4-Spaces

9. A topological space (X,τ ) is said to be a normal space if for each pair of
disjoint closed sets A and B, there exist open sets U and V such that A ⊆ U ,
B ⊆ V , and U ∩ V = Ø. Prove that

(i) Every metrizable space is a normal space.

(ii) Every space which is both a T1-space and a normal space is a Hausdorff
space. [A normal space which is also Hausdorff is called a T4-space.]

Isometry

10. Let (X, d) and (Y, d1) be metric spaces. Then (X, d) is said to be isometric to
(Y, d1) if there exists a surjective mapping f : (X, d)→ (Y, d1) such that for all
x1 and x2 in X,

d(x1, x2) = d1(f(x1), f(x2)).

Such a mapping f is said to be an isometry. Prove that every isometry is a
homeomorphism of the corresponding topological spaces. (So isometric metric
spaces are homeomorphic!)

First Axiom of Countability

11. A topological space (X,τ ) is said to satisfy the first axiom of countability or
be first countable if for each x ∈ X there exists a countable family {Ui(x)}
of open sets containing x with the property that every open set V containing
x has (at least) one of the Ui(x) as a subset. The countable family {Ui(x)} is
said to be a countable base at x. Prove the following:

(i) Every metrizable space satisfies the first axiom of countability.

(ii) Every topological space satisfying the second axiom of countability also
satisfies the first axiom of countability.
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12. Let X be the set (R \ N) ∪ {1}. Define a function f : R→ X by

f(x) =

{
x, if x ∈ R \ N
1, if x ∈ N.

Further, define a topology τ on X by

τ = {U : U ⊆ X and f−1(U) is open in the euclidean topology on R.}

Prove the following:

(i) f is continuous.

(ii) Every open neighbourhood of 1 in (X,τ ) is of the form (U \N)∪{1}, where
U is open in R.

(iii) (X,τ ) is not first countable.

[Hint: Suppose (U1 \ N) ∪ {1}, (U2 \ N) ∪ {1}, . . . , (Un \ N) ∪ {1}, . . . is a
countable base at 1. Show that for each positive integer n, we can choose

xn ∈ Un \N such that xn > n. Verify that the set U = R \
∞⋃
n=1
{xn} is open

in R. Deduce that V = (U \ N) ∪ {1} is an open neighbourhood of 1 which
contains none of the sets (Un \N)∪{1}, which is a contradiction. So (X,τ )

is not first countable.]

(iv) (X,τ ) is a Hausdorff space.

(v) A Hausdorff continuous image of R is not necessarily first countable.
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Total Boundedness

13. A subset S of a metric space (X, d) is said to be totally bounded if for each

ε > 0, there exist x1, x2, . . . , xn in X, such that S ⊆
n⋃
i=1

Bε(xi); that is, S can

be covered by a finite number of open balls of radius ε.

(i) Show that every totally bounded metric space is a bounded metric space.
(See Exercise 2 above.)

(ii) Prove that R with the euclidean metric is not totally bounded, but for each
a, b ∈ R with a < b, the closed interval [a, b] is totally bounded.

(iii) Let (Y, d) be a subspace of the metric space (X, d1) with the induced metric.
If (X, d1) is totally bounded, then (Y, d) is totally bounded; that is, every
subspace of a totally bounded metric space is totally bounded.

[Hint: Assume X =
n⋃
i=1

Bε(xi). If yi ∈ Bε(xi) ∩ Y , then by the triangle

inequality Bε(xi) ⊆ B2ε(yi).]

(iv) From (iii) and (ii) deduce that the totally bounded metric space (0, 1) is
homeomorphic to R which is not totally bounded. Thus “totally bounded”
is not a topological property.

(v) From (i) deduce that, for each n > 1, Rn with the euclidean metric is not
totally bounded.

(vi) Noting that for each a, b ∈ R, the closed interval is totally bounded, show
that a metric subspace of R is bounded if and only if it is totally bounded.

(vii) Show that for each n > 1, a metric subspace of Rn is bounded if and only
if it is totally bounded.

14. Show that every totally bounded metric space is separable. (See Exercise 13
above and Exercises 3.2#4.)
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Locally Euclidean Spaces and Topological Manifolds

15. A topological space (X,τ ) is said to be locally euclidean if there exists a
positive integer n such that each point x ∈ X has an open neighbourhood
homeomorphic to an open ball about 0 in Rn with the euclidean metric. A
Hausdorff locally euclidean space is said to be a topological manifold.1

(i) Prove that every non-trivial interval (a, b), a, b ∈ R, is locally euclidean.

(ii) Let S1 be the subspace of R2 consisting of all x ∈ R2 such that d(x, 0) = 1,
where d is the Euclidean metric. Show that the space S1 is locally euclidean.

(iii) Show that every topological space locally homeomorphic to Rn, for any
positive integer n, is locally euclidean. (See Exercises 4.3 #9.)

(iv)* Find an example of a locally euclidean space which is not a topological
manifold.

1There are different definitions of topological manifold in the literature (cf. Kunen and Vaughan
[234]; Lee [240]). In particular some definitions require the space to be connected – what we call a
connected manifold – and older definitions require the space to be metrizable. A Hausdorff space in
which each point has an open neighbourhood homeomorphic either to Rn or to the closed half-space
{< x1, x2, . . . , xn >: xi > 0, i = 1, 2, . . . , n} of Rn, for some positive integer n, is said to be a topological
manifold with boundary. There is a large literature on manifolds with more structure, especially
differentiable manifolds (Gadea and Masque [143]; Barden and Thomas [32]), smooth manifolds
(Lee [241]) and Riemannian manifolds or Cauchy-Riemann manifolds or CR-manifolds.
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6.2 Convergence of Sequences

You are familiar with the notion of a convergent sequence of real numbers. It
is defined as follows. The sequence x1, x2, . . . , xn, . . . of real numbers is said to
converge to the real number x if given any ε > 0 there exists an integer n0 such
that for all n > n0, |xn − x| < ε.

It is obvious how this definition can be extended from R with the euclidean
metric to any metric space.

6.2.1 Definitions. Let (X, d) be a metric space and x1, . . . , xn, . . . a
sequence of points in X. Then the sequence is said to converge to x ∈ X if
given any ε > 0 there exists an integer n0 such that for all n > n0, d(x, xn) < ε.
This is denoted by xn → x.
The sequence y1, y2, . . . , yn, . . . of points in (X, d) is said to be convergent if
there exists a point y ∈ X such that yn → y.

The next Proposition is easily proved, so its proof is left as an exercise.

6.2.2 Proposition. Let x1, x2, . . . , xn, . . . be a sequence of points in a
metric space (X, d). Further, let x and y be points in (X, d) such that xn → x

and xn → y. Then x = y. �

For convenience we say that a subset A of a metric space (X, d) is closed
(respectively, open) in the metric space (X, d) if it is closed (respectively, open) in
the topology τ induced on X by the metric d.
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The following proposition tells us the surprising fact that the topology of a
metric space can be described entirely in terms of its convergent sequences.

6.2.3 Proposition. Let (X, d) be a metric space. A subset A of X is closed
in (X, d) if and only if every convergent sequence of points in A converges to a
point in A. (In other words, A is closed in (X, d) if and only if an → x, where
x ∈ X and an ∈ A for all n, implies x ∈ A.)

Proof. Assume that A is closed in (X, d) and let an → x, where an ∈ A for
all positive integers n. Suppose that x ∈ X \ A. Then, as X \ A is an open set
containing x, there exists an open ball Bε(x) such that x ∈ Bε(x) ⊆ X \A. Noting
that each an ∈ A, this implies that d(x, an) > ε for each n. Hence the sequence
a1, a2, . . . , an, . . . does not converge to x. This is a contradiction. So x ∈ A, as
required.

Conversely, assume that every convergent sequence of points in A converges to
a point of A. Suppose that X \A is not open. Then there exists a point y ∈ X \A
such that for each ε > 0, Bε(y)∩A 6= Ø. For each positive integer n, let xn be any
point in B1/n(y)∩A. Then we claim that xn → y. To see this let ε be any positive
real number, and n0 any integer greater than 1/ε. Then for each n > n0,

xn ∈ B1/n(y) ⊆ B1/n0
(y) ⊆ Bε(y).

So xn → y and, by our assumption, y /∈ A. This is a contradiction and so X \ A is
open and thus A is closed in (X, d). �
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Having seen that the topology of a metric space can be described in terms of
convergent sequences, we should not be surprised that continuous functions can also
be so described.

6.2.4 Proposition. Let (X, d) and (Y, d1) be metric spaces and f a
mapping of X into Y . Let τ and τ 1 be the topologies determined by d

and d1, respectively. Then f : (X,τ ) → (Y,τ 1) is continuous if and only if
xn → x⇒ f(xn)→ f(x); that is, if x1, x2, . . . , xn, . . . is a sequence of points in
(X, d) converging to x, then the sequence of points f(x1), f(x2), . . . , f(xn), . . .

in (Y, d1) converges to f(x).

Proof. Assume that xn → x ⇒ f(xn) → f(x). To verify that f is continuous
it suffices to show that the inverse image of every closed set in (Y,τ 1) is closed
in (X,τ ). So let A be closed in (Y,τ 1). Let x1, x2, . . . , xn, . . . be a sequence of
points in f−1(A) convergent to a point x ∈ X. As xn → x, f(xn) → f(x). But
since each f(xn) ∈ A and A is closed, Proposition 6.2.3 then implies that f(x) ∈ A.
Thus x ∈ f−1(A). So we have shown that every convergent sequence of points
from f−1(A) converges to a point of f−1(A). Thus f−1(A) is closed, and hence f
is continuous.

Conversely, let f be continuous and xn → x. Let ε be any positive real
number. Then the open ball Bε(f(x)) is an open set in (Y,τ 1). As f is continuous,
f−1(Bε(f(x)) is an open set in (X,τ ) and it contains x. Therefore there exists a
δ > 0 such that

x ∈ Bδ(x) ⊆ f−1(Bε(f(x))).

As xn → x, there exists a positive integer n0 such that for all n > n0, xn ∈ Bδ(x).
Therefore

f(xn) ∈ f(Bδ(x)) ⊆ Bε(f(x)), for all n > n0.

Thus f(xn)→ f(x). �

The Corollary below is easily deduced from Proposition 6.2.4.
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6.2.5 Corollary. Let (X, d) and (Y, d1) be metric spaces, f a mapping of X
into Y , and τ and τ 1 the topologies determined by d and d1, respectively. Then
f : (X,τ ) → (Y,τ 1) is continuous if and only if for each x0 ∈ X and ε > 0,
there exists a δ > 0 such that x ∈ X and d(x, x0) < δ ⇒ d1(f(x), f(x0)) < ε. �

In this section we have discussed the convergence of
sequences in metric spaces. You might ask why we have
not previously discussed the convergence of sequences
in general topological spaces. In this context it would
be helpful to watch the YouTube videos on Sequences
and Nets. These are called
“Topology Without Tears – Video 3a – Sequences and
Nets” and
“Topology Without Tears – Video 3b – Sequences and
Nets”
and can be found on YouTube at
http://youtu.be/wXkNgyVgOJE and http://youtu.be/xNqLF8GsRFE

and on the Chinese Youku site at
http://tinyurl.com/kxdefsm and http://tinyurl.com/kbh93so

or by following the relevant link from
http://www.topologywithouttears.net.

Exercises 6.2

1. Let C[0, 1] and d be as in Example 6.1.5. Define a sequence of functions
f1, f2, . . . , fn, . . . in (C[0, 1], d) by

fn(x) =
sin(nx)

n
, n = 1, 2, . . . , x ∈ [0, 1].

Verify that fn → f0, where f0(x) = 0, for all x ∈ [0, 1].

http://youtu.be/wXkNgyVgOJE
http://youtu.be/xNqLF8GsRFE
 http://tinyurl.com/kxdefsm
http://tinyurl.com/kbh93so
http://www.topologywithouttears.net
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2. Let (X, d) be a metric space and x1, x2, . . . , xn, . . . a sequence such that xn → x

and xn → y. Prove that x = y.

3. (i) Let (X, d) be a metric space, τ the induced topology onX, and x1, x2, . . . , xn, . . .

a sequence of points in X. Prove that xn → x if and only if for every open
set U 3 x, there exists a positive integer n0 such that xn ∈ U for all n > n0.

(ii) Let X be a set and d and d1 equivalent metrics on X. Deduce from (i) that
if xn → x in (X, d), then xn → x in (X, d1).

4. Write a proof of Corollary 6.2.5.

5. Let (X,τ ) be a topological space and let x1, x2, . . . , xn, . . . be a sequence of
points in X. We say that xn → x if for each open set U 3 x there exists a
positive integer n0, such that xn ∈ U for all n > n0. Find an example of a
topological space and a sequence such that xn → x and xn → y but x 6= y.

6. (i) Let (X, d) be a metric space and xn → x where each xn ∈ X and x ∈ X.
Let

A be the subset of X which consists of x and all of the points xn. Prove
that A is closed in (X, d).

(ii) Deduce from (i) that the set {2} ∪ {2− 1
n : n = 1, 2, . . . } is closed in R.

(iii) Verify that the set {2− 1
n : n = 1, 2, . . . } is not closed in R.

7. (i) Let d1, d2, . . . , dm be metrics on a set X and a1, a2, . . . am positive real
numbers.

Prove that d is a metric on X, where d is defined by

d(x, y) =
m∑
i=1

aidi(x, y), for all x, y ∈ X.

(ii) If x ∈ X and x1, x2, . . . , xn, . . . is a sequence of points in X such that
xn → x in each metric space (X, di) prove that xn → x in the metric space
(X, d).

8. Let X, Y, d1, d2 and d be as in Exercises 6.1 #4. If xn → x in (X, d1) and
yn → y in (Y, d2), prove that

〈xn, yn〉 → 〈x, y〉 in (X × Y, d).
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Distance between Two Sets

9. Let A and B be non-empty sets in a metric space (X, d). Define

ρ(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

[ρ(A,B) is referred to as the distance between the sets A and B.]

(i) If S is any non-empty subset of (X, d), prove that S = {x : x ∈ X and
ρ({x}, S) = 0}.

(ii) If S is any non-empty subset of (X, d) prove that the function f : (X, d)→ R
defined by

f(x) = ρ({x}, S), x ∈ X

is continuous.

10. (i) For each positive integer n let fn be a continuous function of [0, 1] into
itself and let a ∈ [0, 1] be such that fn(a) = a, for all n. Further let f be a
continuous function of [0, 1] into itself. If fn → f in (C[0, 1], d∗) where d∗ is
the metric of Example 6.1.6, prove that a is also a fixed point of f .

(ii) Show that (i) would be false if d∗ were replaced by the metric d, of Example
6.1.5.

Sequentially Closed Sets, Sequential Spaces, and Frechet-Urysohn Spaces

11 (i) Let S be a subset of a topological space (X,τ ). Then S is said to be
sequentially closed if for every a ∈ X for which there exists sn ∈ S, n ∈ N,
such that sn → a, the point a ∈ S; that is, if a sequence in S converges
to a point a in X, then a is in S. (See Exercise #5 above for convergence
in a topological space.) A subset T of (X,τ ) is said to be sequentially
open if its complement X \ T is sequentially closed. Prove that if (X,τ )

is a metrizable space, then every sequentially closed set is closed and every
sequentially open set is open.

(ii)∗ Find an example of a (nonmetrizable) topological space in which not every
sequentially closed subset is closed.

(iii) A topological space (X,τ ) is said to be a sequential space if every
sequentially closed set is closed. Prove that a topological space is a sequential
space if and only if every sequentially open set is open. Deduce from this
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that if X is an uncountable set and τ is the countable-closed topology on
X of Exercises 1.1 #6, then (X,τ ) is not a sequential space.

(iv) Verify that every metrizable space is a sequential space. (See Engelking
[127], Example 1.6.19 for an example of a sequential space which is not
metrizable, indeed not a Frechet-Urysohn space which is defined in (vi)
below.)

(v) Prove thatevery open subspace and every closed subspace of a sequential
space is a sequential space. (See Engelking [127], Examples 1.6.19 and
1.6.20 for examples of a subspace of a sequential space which is not a
sequential space. This is in contrast with (vii) below.)

(vi) A topological space (X,τ ) is said to be a Frechet-Urysohn space (or a
Frechet space) if for every subset S of (X,τ ) and every a in the closure,
S, of S there is a sequence sn → a, for sn ∈ S, n ∈ N. Prove that every first
countable space (and hence also every metrizable space) is a Frechet-Urysohn
space and every Frechet-Urysohn space is a sequential space. (See Exercises
6.1 #11 for the definition of a first countable space.) (See Exercises 11.2
#6 for an example of a sequential space which is not first countable and
Engelking [127], Example 1.4.17 for an example of a Frechet-Urysohn space
which is not first countable.)

(vii) Prove that every subspace of a Frechet-Urysohn space is a Frechet-
Urysohn space and hence also a sequential space.

(vii)∗ Provide the appropriate definition of a function f : (X,τ )→ (Y,τ 1) between
two topological spaces being sequentially continuous. Show that if (X,τ )

and (Y,τ 1) are metrizable spaces, then every sequentially continuous map
between them is continuous.

Countable Tightness

12 A topological space (X,τ ) is said to have countable tightness if for each subset
S of X and each x ∈ S, there exists a countable set C ⊆ S, such that x ∈ C.
Prove that if (X,τ ) is a sequential space, then it has countable tightness.
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13. Using the above exercises verify the implications and picture below:

metrizable⇒ first countable⇒ Frechet-Urysohn⇒ sequential⇒ countable tightness

6.3 Completeness

6.3.1 Definition. A sequence x1, x2, . . . , xn, . . . of points in a metric space
(X, d) is said to be a Cauchy sequence if given any real number ε > 0, there
exists a positive integer n0, such that for all integers m > n0 and n > n0,
d(xm, xn) < ε.
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6.3.2 Proposition. Let (X, d) be a metric space and x1, x2, . . . , xn, . . .

a sequence of points in (X, d). If there exists a point a ∈ X, such that the
sequence converges to a, that is, xn → a, then the sequence is a Cauchy
sequence.

Proof. Let ε be any positive real number. Put δ = ε/2. As xn → a, there exists
a positive integer n0, such that for all n > n0, d(xn, a) < δ.

So let m > n0 and n > n0. Then d(xn, a) < δ and d(xm, a) < δ.

By the triangle inequality for metrics,

d(xm, xn) 6 d(xm, a) + d(xn, a)

< δ + δ

= ε

and so the sequence is indeed a Cauchy sequence. �

This naturally leads us to think about the converse statement and to ask if every
Cauchy sequence is a convergent sequence. The following example shows that this
is not true.

6.3.3 Example. Consider the open interval (0, 1) with the euclidean metric d.
It is clear that the sequence 0.1, 0.01, 0.001, 0.0001, . . . is a Cauchy sequence but it
does not converge to any point in (0, 1). �

6.3.4 Definition. A metric space (X, d) is said to be complete if every
Cauchy sequence in (X, d) converges to a point in (X, d).

We immediately see from Example 6.3.3 that the unit interval (0,1) with the
euclidean metric is not a complete metric space. On the other hand, if X is any
finite set and d is the discrete metric on X, then obviously (X, d) is a complete
metric space.
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We shall show that R with the euclidean metric is a complete metric space.
First we need to do some preparation.

As a shorthand, we shall denote the sequence x1, x2, . . . , xn, . . . , by {xn}.

6.3.5 Definition. If {xn} is any sequence, then the sequence xn1, xn2, . . .
is said to be a subsequence if n1 < n2 < n3 < . . . .

6.3.6 Definitions. Let {xn} be a sequence in R. Then it is said to be an
increasing sequence if xn 6 xn+1, for all n ∈ N. It is said to be a decreasing
sequence if xn > xn+1, for all n ∈ N. A sequence which is either increasing or
decreasing is said to be monotonic.

Most sequences are of course neither increasing nor decreasing.

6.3.7 Definition. Let {xn} be a sequence in R. Then n0 ∈ N is said to
be a peak point if xn 6 xn0, for every n > n0.

6.3.8 Lemma. Let {xn} be any sequence in R. Then {xn} has a
monotonic subsequence.

Proof. Assume firstly that the sequence {xn} has an infinite number of peak
points. Then choose a subsequence {xnk}, where each nk is a peak point. This
implies, in particular, that xnk > xnk+1, for each k ∈ N; that is, {xnk} is a decreasing
subsequence of {xn}; so it is a monotonic subsequence.

Assume then that there are only a finite number of peak points. So there exists
an integer N , such that there are no peak points n > N . Choose any n1 > N . Then
n1 is not a peak point. So there is an n2 > n1 with xn2 > xn1. Now n2 > N and so
it too is not a peak point. Hence there is an n3 > n2, with xn3 > xn2. Continuing
in this way (by mathematical induction), we produce a subsequence {xnk} of {xn}
with xnk < xnk+1, for all k ∈ N; that is, {xnk} is an increasing subsequence of {xn}.
This completes the proof of the Lemma. �
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6.3.9 Proposition. Let {xn} be a monotonic sequence in R with the
euclidean metric. Then {xn} converges to a point in R if and only if {xn} is
bounded.

Proof. Recall that “bounded” was defined in Remark 3.3.1.

Clearly if {xn} is unbounded, then it does not converge.

Assume then that {xn} is an increasing sequence which is bounded. By the
Least Upper Bound Axiom, there is a least upper bound L of the set {xn : n ∈ N}.
If ε is any positive real number, then there exists a positive integer N such that
d(xN , L) < ε; indeed, xN > L− ε.

But as {xn} is an increasing sequence and L is an upper bound, we have

L− ε < xn < L, for all n > N.

That is xn → L.

The case that {xn} is a decreasing sequence which is bounded is proved in an
analogous fashion, which completes the proof. �

As a corollary to Lemma 6.3.8 and Proposition 6.3.9, we obtain immediately
the following:

6.3.10 Theorem. (Bolzano-Weierstrass Theorem) Every bounded
sequence in R with the euclidean metric has a convergent subsequence. �

At long last we are able to prove that R with the euclidean metric is a complete
metric space.
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6.3.11 Corollary. The metric space R with the euclidean metric is a
complete metric space.

Proof. Let {xn} be any Cauchy sequence in (R, d).

If we show that this arbitrary Cauchy sequence converges in R, we shall
have shown that the metric space is complete. The first step will be to
show that this sequence is bounded.

As {xn} is a Cauchy sequence, there exists a positive integer N , such that
for any n > N and m > N , d(xn, xm) < 1; that is, |xn − xm| < 1. Put
M = |x1| + |x2| + · · · + |xN | + 1. Then |xn| < M, for all n ∈ N; that is, the
sequence {xn} is bounded.

So by the Bolzano-Weierstrass Theorem 6.3.10, this sequence has a convergent
subsequence; that is, there is an a ∈ R and a subsequence {xnk} with xnk → a.

We shall show that not only does the subsequence converge to a, but also
that the sequence {xn} itself converges to a.

Let ε be any positive real number. As {xn} is a Cauchy sequence, there exists
a positive integer N0 such that

|xn − xm| <
ε

2
, for all m > N0 and n > N0.

Since xnk → a, there exists a positive integer N1, such that

|xnk − a| <
ε

2
, for all nk > N1.

So if we choose N2 = max{N0, N1}, combining the above two inequalities yields

|xn − a| 6 |xn − xnk |+ |xnk − a|

<
ε

2
+
ε

2
, for n > N2 and nk > N2

= ε.
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Hence xn → a, which completes the proof of the Corollary. �

6.3.12 Corollary. For each positive integer m, the metric space Rm with
the euclidean metric is a complete metric space.

Proof. See Exercises 6.3 #4. �

6.3.13 Proposition. Let (X, d) be a metric space, Y a subset of X, and
d1 the metric induced on Y by d.

(i) If (X, d) is a complete metric space and Y is a closed subspace of (X, d),
then (Y, d1) is a complete metric space.

(ii) If (Y, d1) is a complete metric space, then Y is a closed subspace of (X, d).

.
Proof. See Exercises 6.3 #5. �

6.3.14 Remark. Note that Example 6.3.3 showed that (0, 1) with the euclidean
metric is not a complete metric space. However, Corollary 6.3.11 showed that R with
the euclidean metric is a complete metric space. And we know that the topological
spaces (0, 1) and R are homeomorphic. So completeness is not preserved by
homeomorphism and so is not a topological property.

6.3.15 Definition. A topological space (X,τ ) is said to be completely
metrizable if there exists a metric d on X such that τ is the topology on X
determined by d and (X, d) is a complete metric space.

6.3.16 Remark. Note that being completely metrizable is indeed a topological
property. Further, it is easy to verify (see Exercises 6.3 #7) that every discrete
space and every interval of R with the induced topology is completely metrizable.
So for a, b ∈ R with a < b, the topological spaces R, [a, b], (a, b), [a, b), (a, b],
(−∞, a), (−∞, a], (a,∞), [a,∞), and {a} with their induced topologies are all
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completely metrizable. Somewhat surprisingly we shall see later that even the space
P of all irrational numbers with its induced topology is completely metrizable. Also
as (0, 1) is a completely metrizable subspace of R which is not a closed subset, we
see that Proposition 6.3.13(ii) would not be true if complete metric were replaced
by completely metrizable. �

6.3.17 Definition. A topological space is said to be separable if it has a
countable dense subset.

It was seen in Exercises 3.2 #4 that R and every countable topological space is
a separable space. Other examples are given in Exercises 6.1 #7.

6.3.18 Definition. A topological space (X,τ ) is said to be a Polish space
if it is separable and completely metrizable.

It is clear that R is a Polish space. By Exercises 6.3 #6, Rn is a Polish space,
for each positive integer n.

6.3.19 Definition. A topological space (X,τ ) is said to be a Souslin
space (or Suslin space) if it is Hausdorff and a continuous image of a Polish
space. If A is a subset of a topological space (Y,τ 1) such that with the induced
topology τ 2, the space (A,τ 2) is a Souslin space, then A is said to be an
analytic set in (Y,τ 1).

Obviously every Polish space is a Souslin 2 space. Exercises 6.1 #12 and #11
show that the converse is false as a Souslin space need not be metrizable. However,
we shall see that even a metrizable Souslin space is not necessarily a Polish space.
To see this we note that every countable topological space is a Souslin space
as it is a continuous image of the discrete space N; one such space is the metrizable
space Q which we shall see in Example 6.5.8 is not a Polish space.

2Souslin is sometimes transliterated from Russian as Suslin. Andrei Suslin (1950– ) proved Serre’s
“conjecture” on algebraic vector bundles, as did Daniel Quillen (1940–2011). Jean-Pierre Serre
(1926– ) mentioned this problem in a paper in 1955.
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We know that two topological spaces are equivalent if they are homeomorphic.
It is natural to ask when are two metric spaces equivalent (as metric spaces)? The
relevant concept was introduced in Exercises 6.1 #10, namely that of isometric.

6.3.20 Definition. Let (X, d) and (Y, d1) be metric spaces. Then (X, d)

is said to be isometric to (Y, d1) if there exists a surjective mapping f : X → Y

such that for all x1 and x2 in X, d(x1, x2) = d1(f(x1), f(x2)). Such a mapping
f is said to be an isometry.

Let d be any metric on R and a any positive real number. If d1 is defined by
d1(x, y) = a.d(x, y), for all x, y ∈ R, then it is easily shown that (R, d1) is a metric
space isometric to (R, d).

It is also easy to verify that any two isometric metric spaces have their associated
topological spaces homeomorphic and every isometry is also a homeomorphism of
the associated topological spaces.

6.3.21 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping
of X into Y . Let Z = f(X), and d2 be the metric induced on Z by d1. If
f : (X, d)→ (Z, d2) is an isometry, then f is said to be an isometric embedding
of (X, d) in (Y, d1).

Of course the natural embedding of Q with the euclidean metric in R with the
euclidean metric is an isometric embedding. It is also the case that N with the
euclidean metric has a natural isometric embedding into both R and Q with the
euclidean metric.

6.3.22 Definition. Let (X, d) and (Y, d1) be metric spaces and f a mapping
of X into Y . If (Y, d1) is a complete metric space, f : (X, d) → (Y, d1) is
an isometric embedding and f(X) is a dense subset of Y in the associated
topological space, then (Y, d1) is said to be a completion of (X, d).

Clearly R with the euclidean metric is a completion of Q, the set of rationals
with the euclidean metric. Also R with the euclidean metric is a completion of I,



6.3. COMPLETENESS 155

the set of irrationals with the euclidean metric. Two questions immediately jump to
mind: (1) Does every metric space have a completion? (2) Is the completion of a
metric space unique in some sense? We shall see that the answer to both questions
is “yes”.
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6.3.23 Proposition. If (X, d) is a metric space, then it has a completion.

Outline Proof. We begin by saying that two Cauchy sequences {yn} and {zn} in
(X, d) are equivalent if d(yn, zn) → 0 in R. This is indeed an equivalence relation;
that is, it is reflexive, symmetric and transitive. Now let X̃ be the set of all
equivalence classes of equivalent Cauchy sequences in (X, d). We wish to put a
metric on X̃.

Let ỹ and z̃ be any two points in X̃. Let Cauchy sequences {yn} ∈ ỹ and
{zn} ∈ z̃. Now the sequence {d(yn, zn)} is a Cauchy sequence in R. (See Exercises
6.3 #8.) As R is a complete metric space, this Cauchy sequence in R converges to
some number, which we shall denote by d1(ỹ, z̃). It is straightforward to show that
d1(ỹ, z̃) is not dependent on the choice of the sequence {yn} in ỹ and {zn} in z̃.

For each x ∈ X, the constant sequence x, x, . . . , x, . . . is a Cauchy sequence in
(X, d) converging to x. Let x̃ denote the equivalence class of all Cauchy sequences
converging to x ∈ X. Define the subset Y of X̃ to be {x̃ : x ∈ X}. If d2 is
the metric on Y induced by the metric d1 on X̃, then it is clear that the mapping
f : (X, d)→ (Y, d2), given by f(x) = x̃, is an isometry.

Now we show that Y is dense in X̃. To do this we show that for any given real
number ε > 0, and z ∈ X̃, there is an x̃ ∈ Y , such that d1(z, x̃) < ε. Note that
z is an equivalence class of Cauchy sequences. Let {xn} be a Cauchy sequence in
this equivalence class z. There exists a positive integer n0, such that for all n > n0,
d1(xn, xn0) < ε. We now consider the constant sequence xn0, xn0, . . . , xn0, . . . . This
lies in the equivalence class x̃n0, which is in Y . Further, d1(x̃n0, z) < ε. So Y is
indeed dense in X̃.

Finally, we show that (X̃, d1) is a complete metric space. Let {zn} be a Cauchy
sequence in this space. We are required to show that it converges in X̃. As Y is
dense, for each positive integer n, there exists x̃n ∈ Y , such that d1(x̃n, zn) < 1/n.
We show that {x̃n} is a Cauchy sequence in Y .

Consider a real number ε > 0. There exists a positive integer N , such that
d1(zn, zm) < ε/2 for n,m > N . Now take a positive integer n1, with 1/n1 < ε/4.
For n,m > n1 +N , we have

d1(x̃n, x̃m) < d1(x̃n, zn) + d1(zn, zm) + d1(zm, x̃m) < 1/n+ ε/2 + 1/m < ε.

So {x̃n} is a Cauchy sequence in Y . This implies that {xn} is a Cauchy sequence
in (X, d). Hence {xn} ∈ z, for some z ∈ X̃. It is now straightforward to show first
that x̃n → z and then that zn → z, which completes the proof. �
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6.3.24 Proposition. Let (A, d1) and (B, d2) be complete metric spaces.
Let X be a subset of (A, d1) with induced metric d3, and Y a subset of (B, d2)

with induced metric d4. Further, let X be dense in (A, d1) and Y dense in
(B, d2). If there is an isometry f : (X, d3) → (Y, d4), then there exists an
isometry g : (A, d1)→ (B, d2), such that g(x) = f(x), for all x ∈ X.

Outline Proof. Let a ∈ A. As X is dense in (A, d1), there exists a sequence
xn → a, where each xn ∈ X. So {xn} is a Cauchy sequence. As f is an isometry,
{f(xn)} is a Cauchy sequence in (Y, d4) and hence also a Cauchy sequence in (B, d2).
Since (B, d2) is a complete metric space, there exists a b ∈ B, such that f(xn)→ b.
So we define g(a) = b.

To show that g is a well-defined map of A into B, it is necessary to verify that if
{zn} is any other sequence in X converging to a, then f(zn)→ b. This follows from
the fact that d1(xn, zn)→ 0 and thus d2(f(xn), f(zn)) = d4(f(xn), f(zn))→ 0.

Next we need to show that g : A → B is one-to-one and onto. This is left as
an exercise as it is routine.

Finally, let a1, a2 ∈ A and a1n → a1 and a2n → a2, where each a1n and each
a2n is in X. Then

d1(a1, a2) = lim
n→∞

d3(a1n, a2n) = lim
n→∞

d4(f(a1n), f(a2n)) = d2(g(a1), g(a2))

and so g is indeed an isometry, as required. �

Proposition 6.3.24 says that, up to isometry, the completion of a metric spaces
is unique.

We conclude this section with another concept. Recall that in Example 6.1.9 we
introduced the concept of a normed vector space. We now define a very important
class of normed vector spaces.

6.3.25 Definition. Let (N, || ||) be a normed vector space and d the
associated metric on the set N . Then (N, || ||) is said to be a Banach space
if (N, d) is a complete metric space.
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6.3.26 Example. In Exercises 6.1 #7 and #8 we introduced the metric spaces
(`1, d1), (`2, d2), (`∞, d∞), and (c0, d0) and recorded that each can be made into
a normed vector space in a natural way. We use the notation `1, `∞, `2 and c0 to
denote these normed spaces. Indeed each of these is a Banach space, and `1, `2,
and c0 are separable Banach spaces. (See Exercises 6.3 #11.)

From Proposition 6.3.23 we know that every normed vector space has a
completion. However, the rather pleasant feature is that this completion is in fact
also a normed vector space and so is a Banach space. (See Exercises 6.3 #12.)

Exercises 6.3

1. Verify that the sequence {xn =
n∑
i=0

1
i!} is a Cauchy sequence in Q with the

euclidean metric. [This sequence does not converge in Q. In R it converges to
the number e, which is known to be irrational. For a proof that e is irrational,
indeed transcendental, see Jones et al. [210].]

2. Prove that every subsequence of a Cauchy sequence is a Cauchy sequence.

3. Give an example of a sequence in R with the euclidean metric which has no
subsequence which is a Cauchy sequence.

4. Using Corollary 6.3.11, prove that, for each positive integer m, the metric space
Rm with the euclidean metric is a complete metric space.

[Hint: Let {< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } be a Cauchy sequence in Rm.
Prove that, for each i = 1, 2, . . . ,m, the sequence {xin : n = 1, 2, . . . } in R with
the euclidean metric is a Cauchy sequence and so converges to a point ai. Then
show that the sequence {< x1n, x2n, . . . , xmn >: n = 1, 2, . . . } converges to the
point < a1, a2, . . . , am >.]

5. Prove that every closed subspace of a complete metric space is complete
and that every complete metric subspace of a metric space is closed.

6. Prove that for each positive integer n, Rn is a Polish space.
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7. Let a, b ∈ R, with a < b. Prove that each discrete subspace of R and each of
the spaces [a, b], (a, b), [a, b), (a, b], (−∞, a), (−∞, a], (a,∞), [a,∞), and {a},
with the topology induced as a subspace of R, is a Polish Space.

8. If (X, d) is a metric space and {xn} and {yn} are Cauchy sequences, prove that
{d(xn, yn)} is a Cauchy sequence in R.

9. Fill in the missing details in the proof of Proposition 6.3.23.

10. Fill in the missing details in the proof of Proposition 6.3.24.

11*. Show that each of the spaces (`1, d1), (`2, d2), (c0, d0), and (`∞, d∞) of Exercises
6.1 #7 is a complete metric space. Indeed, show that each of these spaces is a
Banach space in a natural way.

12*. Let X be any normed vector space. Prove that it is possible to put a
normed vector space structure on X̃, the complete metric space constructed
in Proposition 6.3.23. So every normed vector space has a completion
which is a Banach space.

13. Let (X, d) be a metric space and S a subset of X. Then the set S is said to
be bounded if there exists a positive integer M such that d(x, y) < M , for all
x, y ∈ S.

(i) Show that if S is a bounded set in (X, d) and S = X, then (X, d) is a
bounded metric space. (See Exercises 6.1 # 2.)

(ii) Let a1, a2, . . . , an, . . . be a convergent sequence in a metric space (X, d). If
the set S consists of the (distinct) points in this sequence, show that S is a
bounded set.

(iii) Let b1, b2, . . . , bn, . . . be a Cauchy sequence in a complete metric space
(X, d). If T is the set of points in this sequence, show that T is a bounded
set.

(iv) Is (iii) above still true if we do not insist that (X, d) is complete?

14. Prove that a metric space (X, d) is separable if and only if the associated
topological space (X,τ ) satisfies the second axiom of countability. (See
Exercises 2.2 #4.)
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15. Deduce from Exercise 14 above that if (X, d) is a separable metric space, and
d1 is the metric induced on a subset Y of X by d, then (Y, d1) is separable; in
other words every subspace of a separable metric space is separable. (It
should be noted that it is not necessarily true that a subspace of a separable
topological space is separable.)

6.4 Contraction Mappings

In Chapter 5 we had our first glimpse of a fixed point theorem. In this section we shall
meet another type of fixed point theorem. This section is very much part of metric
space theory rather than general topology. Nevertheless the topic is important for
applications.

6.4.1 Definition. Let f be a mapping of a set X into itself. Then a point
x ∈ X is said to be a fixed point of f if f(x) = x.

6.4.2 Definition. Let (X, d) be a metric space and f a mapping of X into
itself. Then f is said to be a contraction mapping if there exists an r ∈ (0, 1),
such that

d(f(x1), f(x2)) 6 r.d(x1, x2), for all x1, x2 ∈ X.

6.4.3 Proposition. Let f be a contraction mapping of the metric space
(X, d). Then f is a continuous mapping.

Proof. See Exercises 6.4 #1. �
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6.4.4 Theorem. (Contraction Mapping Theorem or Banach Fixed
Point Theorem) Let (X, d) be a complete metric space and f a contraction
mapping of (X, d) into itself. Then f has precisely one fixed point.

Proof. Let x be any point in X and consider the sequence

x, f(x), f2(x) = f(f(x)), f3(x) = f(f(f(x))), . . . , fn(x), . . . .

We shall show this is a Cauchy sequence. Put a = d(x, f(x)). As f is a contraction
mapping, there exists r ∈ (0, 1), such that d(f(x1), f(x2)) 6 r.d(x1, x2), for all x1, x2 ∈ X.

Clearly d(f(x), f2(x)) 6 r.d(x, f(x)) = r.a, d(f2(x), f3(x)) 6 r2.d(x, f(x)) =

r2.a, and by induction we obtain that, for each k ∈ N, d(fk(x), fk+1(x)) 6

rk.d(x, f(x)) = rk.a.

Let m and n be any positive integers, with n > m. Then

d(fm(x), fn(x)) = d(fm(x), fm(fn−m(x)))

6 rm.d(x, fn−m(x))

6 rm.[d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−m−1(x), fn−m(x))]

6 rm.d(x, f(x))[1 + r + r2 + · · ·+ rn−m−1]

6
rm.a

1− r
.

As r < 1, it is clear that {fn(x)} is a Cauchy sequence. Since (X, d) is complete,
there is a z ∈ X, such that fn(x)→ z.

By Proposition 6.4.3, f is continuous and so

f(z) = f
(

lim
n→∞

fn(x)
)

= lim
n→∞

fn+1(x) = z (6.1)

and so z is indeed a fixed point of f .

Finally, let t be any fixed point of f . Then

d(t, z) = d(f(t), f(z)) 6 r.d(t, z). (6.2)

As r < 1, this implies d(t, z) = 0 and thus t = z and f has only one fixed point. �
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It is worth mentioning that the Contraction Mapping Theorem provides not only
an existence proof of a fixed point but also a construction for finding it; namely,
let x be any point in X and find the limit of the sequence {fn(x)}. This method
allows us to write a computer program to approximate the limit point to any desired
accuracy.

Exercises 6.4

1. Prove Proposition 6.4.3.

2. Extend the Contraction Mapping Theorem 6.4.4 by showing that if f is a
mapping of a complete metric space (X, d) into itself and fN is a contraction
mapping for some positive integer N , then f has precisely one fixed point.

Mean Value Theorem

3. TheMean Value Theorem says: Let f be a real-valued function on a closed
unit interval [a, b] which is continuous on [a, b] and differentiable on (a, b).
Then there exists a point c ∈ [a, b] such that f(b)− f(a) = f ′(c)(b− a).

(Recall that f is said to be differentiable at a point s if lim
x→s

f(x)−f(s)
x−s = f ′(s)

exists.)

Using the Mean Value Theorem prove the following:

Let f : [a, b] → [a, b] be differentiable. Then f is a contraction if and only if
there exists r ∈ (0, 1) such that |f ′(x)| 6 r, for all x ∈ [a, b].

4. Using Exercises 3 and 2 above, show that while f : R → R given by
f(x) = cos x does not satisfy the conditions of the Contraction Mapping
Theorem, it nevertheless has a unique fixed point.
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6.5 Baire Spaces

6.5.1 Theorem. (Baire Category Theorem) Let (X, d) be a complete
metric space. If X1, X2, . . . , Xn, . . . is a sequence of open dense subsets of X,
then the set

⋂∞
n=1Xn is also dense in X.

Proof. It suffices to show that if U is any non-empty open subset of (X, d), then
U ∩

⋂∞
n=1Xn 6= Ø.

As X1 is open and dense in X, the set U ∩X1 is a non-empty open subset of
(X, d). Let U1 be an open ball of radius at most 1, such that U1 ⊂ U ∩X1.

Inductively define for each positive integer n > 1, an open ball Un of radius at
most 1/n such that Un ⊂ Un−1 ∩Xn.

For each positive integer n, let xn be any point in Un. Clearly the sequence
{xn} is a Cauchy sequence. As (X, d) is a complete metric space, this sequence
converges to a point x ∈ X.

Observe that for every positive integer m, every member of the sequence {xn}
is in the closed set Um, and so the limit point x is also in the set Um.

Then x ∈ Un, for all n ∈ N. Thus x ∈
⋂∞
n=1 Un.

But as U ∩
⋂∞
n=1Xn ⊃

⋂∞
n=1 Un 3 x, this implies that U ∩

⋂∞
n=1Xn 6= Ø, which

completes the proof of the theorem. �

In Exercises 3.2 #5 we introduced the notion of interior of a subset of a
topological space. We now formally define that term as well as exterior and boundary.

6.5.2 Definitions. Let (X,τ ) be any topological space and A any subset
of X. The largest open set contained in A is called the interior of A and is
denoted by Int(A). Each point x ∈ Int(A) is called an interior point of A.
The set Int(X \ A), that is the interior of the complement of A, is denoted by
Ext(A), and is called the exterior of A and each point in Ext(A) is called an
exterior point of A. The set A \ Int(A) is called the boundary of A. Each
point in the boundary of A is called a boundary point of A.
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In Definitions 6.5.2, the set X is the union of the interior of A, the exterior of
A, and the boundary of A, and each of these three sets is disjoint from each of the
other two sets.

6.5.3 Definition. A subset A of a topological space (X,τ ) is said to be
nowhere dense if the set A has empty interior.

These definitions allow us to rephrase Theorem 6.5.1.

6.5.4 Corollary. (Baire Category Theorem) Let (X, d) be a complete
metric space. If X1, X2, . . . , Xn, . . . is a sequence of subsets of X such that
X =

⋃∞
n=1Xn, then for at least one n ∈ N, the set Xn has non-empty interior;

that is, Xn is not nowhere dense.

Proof. Exercises 6.5 #2. �

6.5.5 Definition. A topological space (X, d) is said to be a Baire space
if for every sequence {Xn} of open dense subsets of X, the set

⋂∞
n=1Xn is also

dense in X.

6.5.6 Corollary. Every complete metrizable space is a Baire space. �

6.5.7 Remarks. It is important to note that Corollary 6.5.6 is a result in
topology, rather than a result in metric space theory.

Note also that there are Baire spaces which are not completely metrizable. (See
Exercises 6.5 #6(iv).) �
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6.5.8 Example. The topological space Q is not a Baire space and so is not
completely metrizable. To see this, note that the set of rational numbers is countable
and let
Q = {x1, x2, . . . , xn, . . . }. Each of the sets Xn = Q \ {xn} is open and dense in Q,
however

⋂∞
n=1Xn = Ø. Thus Q does not have the Baire space property. �

6.5.9 Remark. You should note that (once we had the Baire Category Theorem
6.5.4) it was harder to prove that Q is not completely metrizable than the more
general result that Q is not a Baire space.

It is a surprising and important feature not only of topology, but of mathematics
generally, that a more general result is sometimes easier to prove. �

6.5.10 Definitions. Let Y be a subset of a topological space (X,τ ). If
Y is a union of a countable number of nowhere dense subsets of X, then Y is
said to be a set of the first category or meager in (X,τ ). If Y is not first
category, it is said to be a set of the second category in (X,τ ).

The Baire Category Theorem 6.5.4 has many applications in analysis, but these
lie outside our study of Topology. However, we shall conclude this section with an
important theorem in Banach space theory, namely the Open Mapping Theorem.
This theorem is a consequence of the Baire Category Theorem 6.5.4.
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6.5.11 Proposition. If Y is a first category subset of a Baire space (X,τ ),
then the interior of Y is empty.

Proof. As Y is first category, Y =
∞⋃
n=1

Yn, where each Yn, n ∈ N, is nowhere

dense.

Let U ∈ τ be such that U ⊆ Y . Then U ⊆
∞⋃
n=1

Yn ⊆
∞⋃
n=1

Yn.

So X \ U ⊇
∞⋂
n=1

(X \ Yn), and each of the sets X \ Yn is open and dense in

(X,τ ). As (X,τ ) is Baire,
∞⋂
n=1

(X \Yn) is dense in (X,τ ). So the closed set X \U

is dense in (X,τ ). This implies X \ U = X. Hence U = Ø. This completes the
proof. �

6.5.12 Corollary. If Y is a first category subset of a Baire space (X,τ ),
then X \ Y is a second category set.

Proof. If this were not the case, then the Baire space (X,τ ) would be a countable
union of nowhere dense sets. �

6.5.13 Remark. As Q is a first category subset of R, it follows from Corollary
6.5.12 that the set P of irrationals is a second category set. �

6.5.14 Definition. Let S be a subset of a real vector space V . The set S
is said to be convex if for each x, y ∈ S and every real number 0 < λ < 1, the
point λx+ (1− λ)y is in S.

Clearly every subspace of a vector space is convex. Also in any normed vector
space, every open ball and every closed ball is convex.
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6.5.15 Theorem. (Open Mapping Theorem) Let (B, || ||) and
((B1, || ||1) be Banach spaces and L : B → B1 a continuous linear (in the
vector space sense) mapping of B onto B1. Then L is an open mapping.

Proof. By Exercises 6.5 #1(iv), it suffices to show that there exists an N ∈ N
such that L(BN (0)) ⊃ Bs(0), for some s > 0.

Clearly B =
∞⋃
n=1

Bn(0) and as L is surjective we have B1 = L(B) =
∞⋃
n=1

L(Bn(0)).

As B1 is a Banach space, by Corollary 6.5.4 of the Baire Category Theorem,
there is an N ∈ N, such that L(BN (0)) has non-empty interior.

So there is a z ∈ B1 and t > 0, such that Bt(z)) ⊆ L(BN (0)).

By Exercises 6.5 #3 there is no loss of generality in assuming that z ∈ L(BN (0)).

But Bt(z) = Bt(0) + z, and so

Bt(0) ⊆ L(BN (0))− z = L(BN (0))− z ⊆ L(BN (0))− L(BN (0)) ⊆ L(B2N (0)).

which, by the linearity of L, implies that Bt/2(0) ⊆ L(BN (0)).

We shall show that this implies that Bt/4(0) ⊆ L(BN (0)).

Let w ∈ Bt/2(0). Then there is an x1 ∈ BN (0), such that ||w − L(x1)||1 < t
4.

Note that by linearity of the mapping L, for each integer k > 0

Bt/2(0) ⊆ L(BN (0)) =⇒ Bt/(2k)(0) ⊆ L(BN/k(0)).

So there is an x2 ∈ BN/2(0), such that

||(w − L(x1))− L(x2)||1 = ||w − L(x1)− L(x2)||1 <
t

8
.

Continuing in this way, we obtain by induction a sequence {xm} such that
||xm|| < N

2m−1
and

||w − L(x1 + x2 + · · ·+ xm)||1 = ||w − L(x1)− L(x2)− · · · − L(xm)||1 <
t

2m
.

Since B is complete, the series
∑∞
m=1 xm converges to a limit a.

Clearly ||a|| < 2N and by continuity of L, we have w = L(a) ∈ L(B2N (0)).

So Bt/2(0) ⊆ L(B2N (0)) and thus Bt/4(0) ⊆ L(BN (0)) which completes the
proof. �
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The following Corollary of the Open Mapping Theorem follows immediately and
is a very important special case.

6.5.16 Corollary. A one-to-one continuous linear map of one Banach space
onto another Banach space is a homeomorphism. In particular, a one-to-one
continuous linear map of a Banach space onto itself is a homeomorphism. �

Exercises 6.5

Open Mapping

1. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ )→ (Y,τ 1)

is said to be an open mapping if for every open subset A of (X,τ ), the set
f(A) is open in (Y,τ 1).

(i) Show that f is an open mapping if and only if for each U ∈ τ and each
x ∈ U , the set f(U) is a neighbourhood of f(x).

(ii) Let (X, d) and (Y, d1) be metric spaces and f a mapping of X into Y . Prove
that f is an open mapping if and only if for each n ∈ N and each x ∈ X,
f(B1/n(x)) ⊇ Br(f(x)), for some r > 0.

(iii) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping
of N into N1. Prove that f is an open mapping if and only if for each n ∈ N,
f(B1/n(0)) ⊇ Br(0), for some r > 0.

(iv) Let (N, || ||) and (N1, || ||1) be normed vector spaces and f a linear mapping
of N into N1. Prove that f is an open mapping if and only if there exists an
s > 0 such that f(Bs(0)) ⊇ Br(0), for some r > 0.

2. Using the Baire Category Theorem 6.5.4, prove Corollary 6.5.4.

3. Let A be a subset of a Banach space B. Prove the following are equivalent:

(i) the set A has non-empty interior;

(ii) there exists a z ∈ A and t > 0 such that Bt(z) ⊆ A;

(ii) there exists a y ∈ A and r > 0 such that Br(y) ⊆ A.
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Isolated Points, Derived Sets, and Perfect Spaces

4. A point x in a topological space (X,τ ) is said to be an isolated point if
{x} ∈ τ . If S is a subset of X, then the set of all limit points of S, denoted by
S′, is said to be the derived set of S. The set S is said to be a perfect set
if S′ = S; in the case that S = X, the topological space (X,τ ) is said to be a
perfect space.

(i) Prove that if (X,τ ) is a countable T1-space with no isolated points, then it
is not a Baire space.

(ii) Prove that a set S in a topological space(X,τ ) is a perfect set if and only
if it is closed and has no isolated points. Deduce that (X,τ ) is a perfect
space if and only if it has no isolated points.

(iii) If (X,τ ) is a perfect space and A is either an open set or a dense set in
(X,τ ), then A has no isolated points.

Function Continuous at a Point

5. (i) Using the version of the Baire Category Theorem in Corollary 6.5.4, prove
that P is not an Fσ-set and Q is not a Gδ-set in R.
[Hint: Suppose that P =

⋃∞
n=1 Fn, where each Fn is a closed subset of R.

Then apply Corollary 6.5.4 to R =
∞⋃
n=1

Fn ∪
⋃
q∈Q
{q}.]

(ii) Let f : R → R be a function mapping R into itself. Then f is said to be
continuous at a point a ∈ R if for each open set U containing f(a), there
exists an open set V containing a such that f(V ) ⊆ U . Prove that the set
of points in R at which f is continuous is a Gδ-set.

(iii) Deduce from (i) and (ii) that there is no function f : R → R which is
continuous precisely at the set of all rational numbers.
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6. (i) Let (X,τ ) be any topological space, and Y and S dense subsets of X. If S
is also open in (X,τ ), prove that S ∩ Y is dense in both X and Y .

(ii) Let τ 1 be the topology induced on Y by τ on X. Let {Xn} be a sequence
of open dense subsets of X. Using (i), show that {Xn ∩ Y } is a sequence
of open dense subsets of (Y,τ 1).

(iii) Deduce from Definition 6.5.5 and (ii) above, that if (Y,τ 1) is a Baire space,
then (X,τ ) is also a Baire space. [So the closure of a Baire space is a
Baire space.]

(iv) Using (iii), show that the subspace (Z,τ 2) of R2 given by

Z = {〈x, y〉 : x, y ∈ R, y > 0} ∪ {〈x, 0〉 : x ∈ Q},

is a Baire space, but is not completely metrizable as the closed subspace
{〈x, 0〉 : x ∈ Q} is homeomorphic to Q which is not completely metrizable.
This also shows that a closed subspace of a Baire space is not necessarily
a Baire space.

7. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) be a
continuous open mapping. If (X,τ ) is a Baire space, prove that (Y,τ 1) is a
Baire space. [So an open continuous image of a Baire space is a Baire
space.]

8. Let (Y,τ 1) be an open subspace of the Baire space (X,τ ). Prove that (Y,τ 1)

is a Baire space. [So an open subspace of a Baire space is a Baire space.]
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Upper and Lower Semicontinuous Functions

9. Let (X,τ ) be a topological space. A function f : (X,τ ) → R is said to be
lower semicontinuous if for each r ∈ R, the set f−1((−∞, r]) is closed in
(X,τ ). A function f : (X,τ ) → R is said to be upper semicontinuous if for
each r ∈ R, the set f−1((−∞, r)) is open in (X,τ ).

(i) Prove that f is continuous if and only if it is lower semicontinuous and upper
semicontinuous.

(ii) Let (X,τ ) be a Baire space, I an index set and for each x ∈ X, let the set
{fi(x) : i ∈ I} be bounded above, where each mapping fi : (X,τ ) → R is
lower semicontinuous. Using the Baire Category Theorem prove that there
exists an open subset O of (X,τ ) such that the set {fi(x) : x ∈ O, i ∈ I}
is bounded above.

[Hint: Let Xn =
⋂
i∈I

f−1
i ((−∞, n]).]

10. Let B be a Banach space where the dimension of the underlying vector space
is countable. Using the Baire Category Theorem, prove that the dimension of
the underlying vector space is, in fact, finite.

11. Let (N, || ||) be a normed vector space and (X, τ) a convex subset of (N, || ||)
with its induced topology. Show that (X, τ) is path-connected, and hence also
connected. Deduce that every open ball in (N, || ||) is path-connected as is
(N, || ||) itself.

12. Find a subset S of R such that S is a proper subset of the boundary of S.
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6.6 Postscript

If you have not already done so, you should watch the
YouTube videos on Sequences and Nets. These are
called
“Topology Without Tears – Video 3a & 3b– Sequences
and Nets”
and can be found on YouTube at
http://youtu.be/wXkNgyVgOJE and http://youtu.be/xNqLF8GsRFE

and on the Chinese Youku site at
http://tinyurl.com/kxdefsm and http://tinyurl.com/kbh93so

or by following the relevant link from
http://www.topologywithouttears.net.

Metric space theory is an important topic in its own right. As well, metric spaces
hold an important position in the study of topology. Indeed many books on topology
begin with metric spaces, and motivate the study of topology via them.

We saw that different metrics on the same set can give rise to the same topology.
Such metrics are called equivalent metrics. We were introduced to the study of
function spaces, and in particular, C[0, 1]. En route we met normed vector spaces,
a central topic in functional analysis.

Not all topological spaces arise from metric spaces. We saw this by observing
that topologies induced by metrics are Hausdorff.

We saw that the topology of a metric space can be described entirely in terms
of its convergent sequences and that continuous functions between metric spaces
can also be so described.

Exercises 6.2 #9 introduced the interesting concept of distance between sets in
a metric space.

http://youtu.be/wXkNgyVgOJE
http://youtu.be/xNqLF8GsRFE
 http://tinyurl.com/kxdefsm
http://tinyurl.com/kbh93so
http://www.topologywithouttears.net
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We met the concepts of Cauchy sequence, complete metric space, completely
metrizable space, Banach space, Polish space, and Souslin space. Completeness is
an important topic in metric space theory because of the central role it plays in
applications in analysis. Banach spaces are complete normed vector spaces and are
used in many contexts in analysis and have a rich structure theory. We saw that
every metric space has a completion, that is can be embedded isometrically in a
complete metric space. For example every normed vector space has a completion
which is a Banach space.

Contraction mappings were introduced in the concept of fixed points and we
saw the proof of the Contraction Mapping Theorem 6.4.4 which is also known as
the Banach Fixed Point Theorem 6.4.4. This is a very useful theorem in applications
for example in the proof of existence of solutions of differential equations.

Another powerful theorem proved in this chapter was the Baire Category
Theorem 6.5.1. We introduced the topological notion of a Baire space and saw
that every completely metrizable space is a Baire space. En route the notion of
first category or meager was introduced. And then we proved the Open Mapping
Theorem 6.5.15 which says that a continuous linear map from a Banach space onto
another Banach space must be an open mapping.



Chapter 7

Compactness

Introduction

The most important topological property is compactness. It plays a key role in
many branches of mathematics. It would be fair to say that until you understand
compactness you do not understand topology!

So what is compactness? It could be described as the topologists generalization
of finiteness. The formal definition says that a topological space is compact if
whenever it is a subset of a union of an infinite number of open sets then it is also a
subset of a union of a finite number of these open sets. Obviously every finite subset
of a topological space is compact. And we quickly see that in a discrete space a set
is compact if and only if it is finite. When we move to topological spaces with richer
topological structures, such as R, we discover that infinite sets can be compact.
Indeed all closed intervals [a, b] in R are compact. But intervals of this type are the
only ones which are compact.

So we are led to ask: precisely which subsets of R are compact? The Heine-
Borel Theorem 7.2.9 will tell us that the compact subsets of R are precisely the sets
which are both closed and bounded.

As we go farther into our study of topology, we shall see that compactness plays
a crucial role. This is especially so of applications of topology to analysis.

174
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7.1 Compact Spaces

7.1.1 Definition. Let A be a subset of a topological space (X,τ ). Then
A is said to be compact if for every set I and every family of open sets, Oi,
i ∈ I, such that A ⊆

⋃
i∈I Oi there exists a finite subfamily Oi1, Oi2. . . . , Oin

such that A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

7.1.2 Example. If (X,τ ) = R and A = (0,∞), then A is not compact.

Proof. For each positive integer i, let Oi be the open interval (0, i). Then,
clearly, A ⊆

⋃∞
i=1Oi.

But there do not exist i1, i2, . . . in such that A ⊆ (0, i1) ∪ (0, i2) ∪ · · · ∪ (0, in).
Therefore A is not compact. �

7.1.3 Example. Let (X,τ ) be any topological space and A = {x1, x2, . . . , xn}
any finite subset of (X,τ ). Then A is compact.

Proof. Let Oi, i ∈ I, be any family of open sets such that A ⊆
⋃
i∈I Oi. Then for

each xj ∈ A, there exists an Oij , such that xj ∈ Oij . Thus A ⊆ Oi1∪Oi2∪· · ·∪Oin.
So A is compact. �

7.1.4 Remark. So we see from Example 7.1.3 that every finite set (in a
topological space) is compact. Indeed “compactness” can be thought of as a
topological generalization of “finiteness”. �

7.1.5 Example. A subset A of a discrete space (X,τ ) is compact if and only
if it is finite.

Proof. If A is finite then Example 7.1.3 shows that it is compact.

Conversely, let A be compact. Then the family of singleton sets Ox = {x}, x ∈ A
is such that each Ox is open and A ⊆

⋃
x∈AOx. As A is compact, there exist

Ox1, Ox2, . . . , Oxn such that A ⊆ Ox1 ∪ Ox2 ∪ · · · ∪ Oxn; that is, A ⊆ {x1, . . . , xn}.
Hence A is a finite set. �
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Of course if all compact sets were finite then the study of “compactness” would
not be interesting. However we shall see shortly that, for example, every closed
interval [a, b] is compact. Firstly, we introduce a little terminology.

7.1.6 Definitions. Let I be a set and Oi, i ∈ I, a family of subset of
X. Let A be a subset of X. Then Oi, i ∈ I, is said to be a covering (or
a cover) of X if A ⊆

⋃
i∈I Oi. If each Oi, i ∈ I, is an open set in (X,τ ),

then Oi, i ∈ I is saisd to be an open covering of A if A ⊆
⋃
i∈I Oi. A finite

subfamily, Oi1, Oi2, . . . , Oin, of Oi, i ∈ I, is called a finite subcovering (of A)
if A ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oin.

So we can rephrase the definition of compactness as follows:

7.1.7 Definitions. A subset A of a topological space (X,τ ) is said to be
compact if every open covering of A has a finite subcovering. If the compact
subset A equals X, then (X,τ ) is said to be a compact space.

7.1.8 Remark. We leave as an exercise the verification of the following
statement:
Let A be a subset of (X, τ ) and τ1 the topology induced on A by τ . Then
A is a compact subset of (X, τ ) if and only if (A, τ1) is a compact space.

[This statement is not as trivial as it may appear at first sight.] �
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7.1.9 Proposition. The closed interval [0, 1] is compact.

Proof. Let Oi, i ∈ I be any open covering of [0, 1]. Then for each x ∈ [0, 1],
there is an Oi such that x ∈ Oi. As Oi is open about x, there exists an interval Ux,
open in [0, 1] such that x ∈ Ux ⊆ Oi.

Now define a subset S of [0, 1] as follows:

S = {z : [0, z] can be covered by a finite number of the sets Ux}.

[So z ∈ S ⇒ [0, z] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn, for some x1, x2, . . . , xn.]

Now let x ∈ S and y ∈ Ux. Then as Ux is an interval containing x and y,
[x, y] ⊆ Ux. (Here we are assuming, without loss of generality that x 6 y.) So

[0, y] ⊆ Ux1 ∪ Ux2 ∪ · · · ∪ Uxn ∪ Ux

and hence y ∈ S.
So for each x ∈ [0, 1], Ux ∩ S = Ux or Ø.

This implies that
S =

⋃
x∈S

Ux

and
[0, 1] \ S =

⋃
x/∈S

Ux.

Thus we have that S is open in [0, 1] and S is closed in [0, 1]. But [0, 1] is connected.
Therefore S = [0, 1] or Ø.

However 0 ∈ S and so S = [0, 1]; that is, [0, 1] can be covered by a finite number
of Ux. So [0, 1] ⊆ Ux1 ∪ Ux2 ∪ . . . Uxm. But each Uxi is contained in an Oi, i ∈ I.
Hence [0, 1] ⊆ Oi1 ∪Oi2 ∪ · · · ∪Oim and we have shown that [0, 1] is compact. �



178 CHAPTER 7. COMPACTNESS

Exercises 7.1

1. Let (X,τ ) be an indiscrete space. Prove that every subset of X is compact.

2. Let τ be the finite-closed topology on any set X. Prove that every subset of
(X,τ ) is compact.

3. Prove that each of the following spaces is not compact.

(i) (0, 1);

(ii) [0, 1);

(iii) Q;

(iv) P;
(v) R2;

(vi) the open disc D = {〈x, y〉 : x2 + y2 < 1} considered as a subspace of R2;

(vii) the Sorgenfrey line;

(viii) C[0, 1] with the topology induced by the metric d of Example 6.1.5:

(ix) `1, `2, `∞, c0 with the topologies induced respectively by the metrics d1, d2,
d∞, and d0 of Exercises 6.1 #7.

4. Is [0, 1] a compact subset of the Sorgenfrey line?

5. Is [0, 1] ∩Q a compact subset of Q?

6. Verify that S = {0} ∪
∞⋃
n=1
{ 1
n} is a compact subset of R while

∞⋃
n=1
{ 1
n} is not.

Alexander Subbasis Theorem

7*. Prove the Alexander Subbasis Theorem which says that a topological space
(X, τ ) is compact if and only if every subbasis cover has a finite subcover.
In other words, if S is a subbasis of the topology τ , and Oi : i ∈ I, I an index
set, is such that each Oi ∈ S and X ⊆

⋃
i∈I Oi, then there is a finite subcover

of X by members of Oi ∈ I.
[Hint: Use Zorn’s Lemma 10.2.16 to find an open subbasis cover which has no
finite subcover and is maximal amongst such covers.]
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7.2 The Heine-Borel Theorem

The next proposition says that “a continuous image of a compact space is
compact”.

7.2.1 Proposition. Let f : (X,τ ) → (Y,τ 1) be a continuous surjective
map. If (X,τ ) is compact, then (Y,τ 1) is compact.

Proof. Let Oi, i ∈ I, be any open covering of Y ; that is Y ⊆
⋃
i∈I Oi.

Then f−1(Y ) ⊆ f−1(
⋃
i∈I Oi); that is, X ⊆

⋃
i∈I f

−1(Oi).

So f−1(Oi), i ∈ I, is an open covering of X.

As X is compact, there exist i1, i2, . . . , in in I such that

X ⊆ f−1(Oi1) ∪ f
−1(Oi2) ∪ · · · ∪ f

−1(Oin).

So Y = f(X)

⊆ f(f−1(Oi1) ∪ f
−1(Oi2) ∪ · · · ∪ f

−1(Oin))

= f(f−1(Oi1) ∪ f(f−1(Oi2)) ∪ · · · ∪ f(f−1(Oin))

= Oi1 ∪Oi2 ∪ · · · ∪Oin , since f is surjective.

So we have Y ⊆ Oi1
⋃
Oi2

⋃
· · ·
⋃
Oin; that is, Y is covered by a finite number

of Oi.

Hence Y is compact. �

7.2.2 Corollary. Let (X,τ ) and (Y,τ 1) be homeomorphic topological
spaces. If (X,τ ) is compact, then (Y,τ 1) is compact. �
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7.2.3 Corollary. For a and b in R with a < b, [a, b] is compact while (a, b)

is not compact.

Proof. The space [a, b] is homeomorphic to the compact space [0, 1] and so, by
Proposition 7.2.1, is compact.

The space (a, b) is homeomorphic to (0,∞). If (a, b) were compact, then (0,∞)

would be compact, but we saw in Example 7.1.2 that (0,∞) is not compact. Hence
(a, b) is not compact. �

7.2.4 Proposition. Every closed subset of a compact space is compact.

Proof. Let A be a closed subset of a compact space (X,τ ). Let Ui ∈ τ , i ∈ I,
be any open covering of A. Then

X ⊆ (
⋃
i∈I

Ui) ∪ (X \ A);

that is, Ui, i ∈ I, together with the open set X \ A is an open covering of X.
Therefore there exists a finite subcovering Ui1, Ui2, . . . , Uik , X \A. [If X \A is not
in the finite subcovering then we can include it and still have a finite subcovering of
X.]

So
X ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A).

Therefore,
A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik ∪ (X \ A)

which clearly implies
A ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uik

since A ∩ (X \ A) = Ø. Hence A has a finite subcovering and so is compact. �
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7.2.5 Proposition. A compact subset of a Hausdorff topological space is
closed.

Proof. Let A be a compact subset of the Hausdorff space (X,τ ). We shall show
that A contains all its limit points and hence is closed. Let p ∈ X \A. Then for each
a ∈ A, there exist open sets Ua and Va such that a ∈ Ua, p ∈ Va and Ua ∩ Va = Ø.

Then A ⊆
⋃
a∈A Ua. As A is compact, there exist a1, a2, . . . , an in A such that

A ⊆ Ua1 ∪ Ua2 ∪ · · · ∪ Uan.

Put U = Ua1
⋃
Ua2

⋃
· · ·
⋃
Uan and V = Va1 ∩ Va2 ∩ · · · ∩ Van. Then p ∈ V and

Va ∩ Ua = Ø implies V ∩ U = Ø which in turn implies V ∩ A = Ø. So p is not a
limit point of A, and V is an open set containing p which does not intersect A.

Hence A contains all of its limit points and is therefore closed. �

7.2.6 Corollary. A compact subset of a metrizable space is closed. �

7.2.7 Example. For a and b in R with a < b, the intervals [a, b) and (a, b] are
not compact as they are not closed subsets of the metrizable space R. �

7.2.8 Proposition. A compact subset of R is bounded.

Proof. Let A ⊆ R be unbounded. Then A ⊆
⋃∞
n=1(−n, n), but {(−n, n) : n =

1, 2, 3, . . . } does not have any finite subcovering of A as A is unbounded. Therefore
A is not compact. Hence all compact subsets of R are bounded. �

7.2.9 Theorem. (Heine-Borel Theorem) Every closed bounded subset
of R is compact.

Proof. If A is a closed bounded subset of R, then A ⊆ [a, b], for some a and b in
R. As [a, b] is compact and A is a closed subset, A is compact. �
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The Heine-Borel Theorem 7.2.9 is an important result. The proof above is short
only because we extracted and proved Proposition 7.1.9 first.

7.2.10 Proposition. (Converse of Heine-Borel Theorem) Every
compact subset of R is closed and bounded.

Proof. This follows immediately from Propositions 7.2.8 and 7.2.5. �

7.2.11 Definition. A subset A of a metric space (X, d) is said to be
bounded if there exists a real number r such that d(a1, a2) 6 r, for all a1 and
a2 in A.

7.2.12 Proposition. Let A be a compact subset of a metric space (X, d).
Then A is closed and bounded.

Proof. By Corollary 7.2.6, A is a closed set. Now fix x0 ∈ X and define the
mapping f : (A,τ )→ R by

f(a) = d(a, x0), for every a ∈ A,

where τ is the induced topology on A. Then f is continuous and so, by Proposition
7.2.1, f(A) is compact. Thus, by Proposition 7.2.10, f(A) is bounded; that is,
there exists a real number M such that

f(a) 6M, for all a ∈ A.

Thus d(a, x0) 6M , for all a ∈ A. Putting r = 2M , we see by the triangle inequality
that d(a1, a2) 6 r, for all a1 and a2 in A. �

Recalling that Rn denotes the n-dimensional euclidean space with the topology
induced by the euclidean metric, it is possible to generalize the Heine-Borel Theorem
and its converse from R to Rn, n > 1. We state the result here but delay its proof
until the next chapter.
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7.2.13 Theorem. (Generalized Heine-Borel Theorem) A subset of
Rn, n > 1, is compact if and only if it is closed and bounded.

Warning. Although Theorem 7.2.13 says that every closed bounded subset of Rn

is compact, closed bounded subsets of other metric spaces need not be compact.
(See Exercises 7.2 #9.)

7.2.14 Proposition. Let (X,τ ) be a compact space and f a continuous
mapping from (X,τ ) into R. Then the set f(X) has a greatest element and a
least element.

Proof. As f is continuous, f(X) is compact. Therefore f(X) is a closed bounded
subset of R. As f(X) is bounded, it has a supremum. Since f(X) is closed, Lemma
3.3.2 implies that the supremum is in f(X). Thus f(X) has a greatest element –
namely its supremum. Similarly it can be shown that f(X) has a least element. �

7.2.15 Proposition. Let a and b be in R and f a continuous function from
[a, b] into R. Then f([a, b]) = [c, d], for some c and d in R.

Proof. As [a, b] is connected, f([a, b]) is a connected subset of R and hence is an
interval. As [a, b] is compact, f([a, b]) is compact. So f([a, b]) is a closed bounded
interval. Hence

f([a, b]) = [c, d]

for some c and d in R. �
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Exercises 7.2

1. Which of the following subsets of R are compact? (Justify your answers.)

(i) Z;
(ii) {

√
2
n : n = 1, 2, 3, . . . };

(iii) {x : x = cos y, y ∈ [0, 1]};
(iv) {x : x = tan y, y ∈ [0, π/2)}.

2. Which of the following subsets of R2 are compact? (Justify your answers.)

(i) {〈x, y〉 : x2 + y2 = 4}
(ii) {〈x, y〉 : x > y + 1}
(iii) {〈x, y〉 : 0 6 x 6 2, 0 6 y 6 4}
(iv) {〈x, y〉 : 0 < x < 2, 0 6 y 6 4}

3. Let (X,τ ) be a compact space. If {Fi : i ∈ I} is a family of closed subsets of
X such that

⋂
i∈I Fi = Ø, prove that there is a finite subfamily

Fi1, Fi2, . . . , Fim such that Fi1 ∩ Fi2 ∩ · · · ∩ Fim = Ø.

4. Corollary 4.3.7 says that for real numbers a, b, c and d with a < b and c < d,

(i) (a, b) 6∼= [c, d]

(ii) [a, b) 6∼= [c, d].

Prove each of these using a compactness argument (rather than a connectedness
argument as was done in Corollary 4.3.7).
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Closed Mapping

5. Let (X,τ ) and (Y,τ 1) be topological spaces. A mapping f : (X,τ )→ (Y,τ 1)

is said to be a closed mapping if for every closed subset A of (X,τ ), f(A)

is closed in (Y,τ 1). A function f : (X,τ ) → (Y,τ 1) is said to be an open
mapping if for every open subset A of (X,τ ), f(A) is open in (Y,τ 1).

(a) Find examples of mappings f which are

(i) open but not closed

(ii) closed but not open

(iii) open but not continuous

(iv) closed but not continuous

(v) continuous but not open

(vi) continuous but not closed.

(b) If (X,τ ) and (Y,τ 1) are compact Hausdorff spaces and f : (X,τ )→ (Y,τ 1)

is a continuous mapping, prove that f is a closed mapping.

6. Let f : (X,τ ) → (Y,τ 1) be a continuous bijection. If (X,τ ) is compact and
(Y,τ 1) is Hausdorff, prove that f is a homeomorphism.

7. Let {Cj : j ∈ J} be a family of closed compact subsets of a topological space
(X,τ ). Prove that

⋂
j∈J Cj is compact.

8. Let n be a positive integer, d the euclidean metric on Rn, and X a subset of
Rn. Prove that X is bounded in (Rn, d) if and only if there exists a positive real
numberM such that for all 〈x1, x2, . . . , xn〉 ∈ X, −M 6 xi 6M , i = 1, 2, . . . , n.



186 CHAPTER 7. COMPACTNESS

9. Let (C[0, 1], d∗) be the metric space defined in Example 6.1.6. Let B = {f :

f ∈ C[0, 1] and d∗(f, 0) 6 1} where 0 denotes the constant function from [0, 1]

into R which maps every element to zero. (The set B is called the closed unit
ball.)

(i) Verify that B is closed and bounded in (C[0, 1], d∗).

(ii) Prove that B is not compact. [Hint: Let {Bi : i ∈ I} be the family of all
open balls of radius 1

2 in (C[0, 1], d∗). Then {Bi : i ∈ I} is an open covering
of B. Suppose there exists a finite subcovering B1, B2, . . . BN . Consider
the (N + 1) functions fα : [0, 1] → R given by fα(x) = sin(2N−α.π.x),
α = 1, 2, . . . N + 1.

(a) Verify that each fα ∈ B.
(b) Observing that fN+1(1) = 1 and fm(1) = 0, for all m 6 N , deduce that

if fN+1 ∈ B1 then fm 6∈ B1, m = 1, . . . , N .

(c) Observing that fN (1
2) = 1 and fm(1

2) = 0, for all m 6 N − 1, deduce
that if fN ∈ B2 then fm 6∈ B2, m = 1, . . . , N − 1.

(d) Continuing this process, show that f1, f2, . . . , fN+1 lie in distinct Bi – a
contradiction.]

10. Prove that every compact Hausdorff space is a normal space.

11.* Let A and B be disjoint compact subsets of a Hausdorff space (X,τ ). Prove
that there exist disjoint open sets G and H such that A ⊆ G and B ⊆ H.

12. Let (X,τ ) be an infinite topological space with the property that every subspace
is compact. Prove that (X,τ ) is not a Hausdorff space.

13. Prove that every uncountable topological space which is not compact has an
uncountable number of subsets which are compact and an uncountable number
which are not compact.

14. If (X,τ ) is a Hausdorff space such that every proper closed subspace is compact,
prove that (X,τ ) is compact.
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Relatively Compact Spaces

15. A subset A of a topological space (X,τ ) is said to be relatively compact if its
closure, A, is compact. If (X,τ ) is a Hausdorff space, verify the following:

(i) every compact subset of (X,τ ) is relatively compact;

(ii) every subset of a compact subset of (X,τ ) is relatively compact;

(iii) if (X,τ ) is R with the euclidean topology, then the open interval (0, 1) is
relatively compact;

(iv) if (X,τ ) is R with the euclidean topology, then Z is not a relatively compact
subset;

(v) is the set Q a relatively compact subset of R?
(vi) there is an uncountable number of relatively compact subsets of R which are

not compact;

(vii) an infinite discrete space can be a relatively compact subset of a compact
Hausdorff space.

[Hint: Consider an infinite convergent sequence in R or use Definition 10.4.1.]

(viii) an infinite discrete subgroup cannot be a relatively compact subset of a
Hausdorff topological group.

[Hint: Use Proposition A5.2.8.]

Supercompact Spaces

16.* A topological space (X,τ ) is said to be supercompact if there is a subbasis S
for the topology τ such that if Oi, i ∈ I is any open cover of X with Oi ∈ S,
for all i ∈ I, then there exist j, k ∈ I such that X = Oj ∪ Ok. Prove that [0, 1]

with the euclidean topology is supercompact.
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Countably Compact Spaces and Locally Compact Spaces

17. A topological space (X,τ ) is said to be countably compact if every countable
open covering of X has a finite subcovering.

(i) Show that every compact space is countably compact.

(ii) Prove that a metrizable space is countably compact if and only if it is
compact.

(iii) A topological space (X,τ ) is said to be locally compact if each point
x ∈ X has at least one neighbourhood which is compact. Find an example
of a locally compact Hausdorff space which is not countably compact.

(iv) Show that every continuous image of a countably compact space is countably
compact.

(v) Using (iv) and (ii) above and Proposition 7.2.14, prove that if f is a
continuous mapping of a countably compact space (X,τ ) into R, then f(X)

has a greatest element and a least element.

(vi) Show that a closed subspace of a countably compact space is countably
compact.

(vii) Prove that a topological space (X,τ ) is countably compact if and only if
every countable family of closed subsets which has the finite intersection
property has non-empty intersection.

(viii) Prove that the topological space (X,τ ) is countably compact if and only if
for every decreasing sequence S1 ⊃ S2 ⊃ · · · ⊃ Sn . . . of nonempty closed

subsets of (X,τ ) the interesection
∞⋂
i=1

Si is non-empty.

(ix) Using (vii), prove that a topological space(X,τ ) is countably compact space
if and only if every countably infinite subset of X has a limit point.
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Convergent Sequences

18. In Definitions 6.2.1 we defined the notion of a convergent sequence in a metric
space. We now generalize this to a convergent sequence in a topological space.
Let (X,τ ) be a topological space and x1, x2, . . . xn . . . be a sequence of points
in X. Then the sequence is said to converge to x if, for each open set U
in (X,τ ), there exists an N ∈ N such that xn ∈ U , for every n > N ; this is
denoted by xn → x. The sequence y1, y2, . . . , yn, . . . of points in X is said to
be convergent if there exists a pont y ∈ Y such that yn → y.

(i) Let (X,τ ) be a Hausdorff space. Prove that every convergent sequence in
(X,τ ) converges to precisly one point.

(ii) Give an example of a sequence in some topological space (Z,τ ) which
converges to an infinite number of points.

Sequentially Compact Spaces

19. A topological space (X,τ ) is said to be sequentially compact if every sequence
in (X,τ ) has a convergent subsequence. Prove that every sequentially
compact space is countably compact.

Pseudocompact Spaces

20. A topological space (X,τ ) is said to be pseudocompact if every continuous
function (X,τ )→ R is bounded.

(i) Verify that every compact space is pseudocompact.

(ii) Using Exercise #17 above, show that any countably compact space is
pseudocompact.

(iii) Show that every continuous image of a pseudocompact space is
pseudocompact.
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21.* Let (X,τ ) be a normal Hausdorff topological space which is not countably
compact.

(i) Using Exercise 17 (ix) above show that there is a subset A = {x1, x2, . . . , xn, . . . }
of X with xi 6= xj, for i 6= j, such that A has no limit points in (X,τ ) and
deduce that A with its induced topology τA is a discrete closed subspace of
(X,τ ).

(ii) Using Tietze’s Extension Theorem 10.3.51, which is proved in Chapter 10,
show that there exists a continuos function f : (X,τ )→ R with f(xn) = n,
for each n ∈ N.

(iii) Deduce from (ii) above that a normal Hausdorff topological space which
is not countably compact is also not pseudocompact and hence that any
pseudocompact Hausdorff normal space is countably compact.

22. Verify that for metrizable spaces
sequentially compact ⇐⇒ compact ⇐⇒ countably compact ⇐⇒ pseudocompact.
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7.3 Postscript

Compactness plays a key role in applications of topology to all branches of analysis.
As noted in Remark 7.1.4 it can be thought as a topological generalization of
finiteness.

The Generalized Heine-Borel Theorem 7.2.13 characterizes the compact subsets
of Rn as those which are closed and bounded.

Compactness is a topological property. Indeed any continuous image of a
compact space is compact.

Closed subsets of compact spaces are compact and compact subspaces of
Hausdorff spaces are closed.

Exercises 7.2 #5 introduces the notions of open mappings and closed mappings.
Exercises 7.2 #10 notes that a compact Hausdorff space is a normal space (indeed a
T4-space). That the closed unit ball in each Rn is compact contrasts with Exercises
7.2 #9. This exercise points out that the closed unit ball in the metric space
(C[0, 1], d∗) is not compact. Though we shall not prove it here, it can be shown
that a normed vector space is finite-dimensional if and only if its closed unit ball is
compact.

In Exercise 7.2 #17, 19 and 20 the concepts of countably compact, sequentially
compact and pseudocompact are introduced and in Exercise 7.2 #22 they are shown
to be equivalent to the concept of compact for metrizable spaces.

Warning. It is unfortunate that “compact” is defined in different ways in different
books and some of these are not equivalent to the definition presented here. Firstly
some books include Hausdorff in the definition of compact and use quasicompact
to denote what we have called compact. Some books, particularly older ones, use
“compact” to mean sequentially compact. Finally the term “bikompakt” is often
used to mean compact or compact Hausdorff in our sense. So one needs to be
careful to see what the author actually means.



Chapter 8

Finite Products

Introduction

There are three important ways of creating new topological spaces from old ones.
They are by forming “subspaces”, “quotient spaces”, and “product spaces”. The
next three chapters are devoted to the study of product spaces. Quotient spaces are
dealt with in Chapter 11. In this chapter we investigate finite products and prove
Tychonoff’s Theorem. This seemingly innocuous theorem says that any product of
compact spaces is compact. So we are led to ask: precisely which subsets of Rn,
n ∈ N, are compact? The Generalized Heine-Borel Theorem 8.3.3 will tell us that
the compact subsets of Rn are precisely the sets which are both closed and bounded.

As we go farther into our study of topology, we shall see that compactness plays
a crucial role. This is especially so of applications of topology to analysis.

192
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8.1 The Product Topology

If X1, X2, . . . , Xn are sets then the product X1×X2×· · ·×Xn is the set consisting
of all the ordered n-tuples 〈x1, x2 . . . , xn〉, where xi ∈ Xi, i = 1, . . . , n.

The problem we now discuss is:

Given topological spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) how do we define a
reasonable topology τ on the product set X1 ×X2 × · · · ×Xn?
An obvious (but incorrect!) candidate for τ is the set of all sets O1×O2×· · ·×On,
where Oi ∈ τ i, i = 1, . . . , n. Unfortunately this is not a topology.

For example, if n = 2 and (X, T1) = (X,τ 2) = R then τ would contain the
rectangles (0, 1)× (0, 1) and (2, 3)× (2, 3) but not the set [(0, 1)× (0, 1)]∪ [(2, 3)×
(2, 3)], since this is not O1 ×O2 for any choice of O1 and O2.

[If it were O1 ×O2 for some O1 and O2, then
1
2 ∈ (0, 1) ⊆ O1 and 21

2 ∈ (2, 3) ⊆ O2

and so the ordered pair 〈12 , 2
1
2〉 ∈ O1×O2 but 〈12 , 2

1
2〉 /∈ [(0, 1)×(0, 1)]∪[(2, 3)×(2, 3)].]

Thus τ is not closed under unions and so is not a topology.

However we have already seen how to put a topology (the euclidean topology)
on R2 = R×R. This was done in Example 2.2.9. Indeed this example suggests how
to define the product topology in general.

8.1.1 Definitions. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological
spaces. Then the product topology τ on the set X1 ×X2 × · · · ×Xn is the
topology having the family {O1 × O2 × · · · × On, Oi ∈ τ i, i = 1, . . . , n} as
a basis. The set X1 × X2 × · · · × Xn with the topology τ is said to be the
product of the spaces (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) and is denoted by
(X1 ×X2 × · · · ×Xn, τ ) or (X1, τ1)× (X2, τ2)× · · · × (Xn, τn).

Of course it must be verified that
the family {O1 ×O2 × · · · ×On : Oi ∈ τ i, i = 1, . . . , n} is a basis for a topology;
that is, it satisfies the conditions of Proposition 2.2.8. (This is left as an exercise.)
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8.1.2 Proposition. Let B1, B2, . . . ,Bn be bases for the topological spaces
(X1,τ 1), (X2,τ 2), . . . , (Xn,τn), respectively. Then the family of sets
{O1×O2× · · ·×On : Oi ∈ Bi, i = 1, . . . , n} is a basis for the product topology
on X1 ×X2 × · · · ×Xn.

The proof of Proposition 8.1.2 is straightforward and is also left as an exercise
for you.

8.1.3 Observations (i) We now see that the euclidean topology on Rn, n > 2,
is just the product topology on the set R× R× · · · × R = Rn. (See Example 2.2.9
and Remark 2.2.10.)

(ii) It is clear from Definitions 8.1.1 that any product of open sets is an open
set or more precisely: if O1, O2, . . . , On are open subsets of topological spaces
(X1,τ 1), (X2,τ 2), . . . , (Xn,τn), respectively, then O1 × O2 × · · · × On is an open
subset of (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τn). The next proposition says that any
product of closed sets is a closed set.

8.1.4 Proposition. Let C1, C2, . . . , Cn be closed subsets of the topological
spaces (X1,τ 1), (X2,τ 2),. . . , (Xn,τn), respectively. Then C1×C2× · · · ×Cn
is a closed subset of the product space (X1 ×X2 × · · · ×Xn,τ ).

Proof. Observe that

(X1 ×X2 × · · · ×Xn) \ (C1 × C2 × · · · × Cn)

= [(X1 \ C1)×X2 × · · · ×Xn] ∪ [X1 × (X2 \ C2)×X3 × · · · ×Xn] ∪
· · · ∪ [X1 ×X2 × · · · ×Xn−1 × (Xn \ Cn)]

which is a union of open sets (as a product of open sets is open) and so is an open set
in (X1,τ 1)×(X2,τ 2)×· · ·×(Xn,τn). Therefore its complement, C1×C2×· · ·×Cn,
is a closed set, as required. �
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Exercises 8.1

1. Prove Proposition 8.1.2.

2. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) are discrete spaces, prove that the product
space (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τn) is also a discrete space.

3. Let X1 and X2 be infinite sets and τ 1 and τ 2 the finite-closed topology on X1

and X2, respectively. Show that the product topology, τ , on X1 × X2 is not
the finite-closed topology.

4. Prove that the product of any finite number of indiscrete spaces is an indiscrete
space.

5. Prove that the product of any finite number of Hausdorff spaces is Hausdorff.

6. Let (X,τ ) be a topological space and D = {(x, x) : x ∈ X} the diagonal in the
product space (X,τ )× (X,τ ) = (X ×X,τ 1). Prove that (X,τ ) is a Hausdorff
space if and only if D is closed in (X ×X,τ 1).

7. Let (X1,τ 1), (X2,τ 2) and (X3,τ 3) be topological spaces. Prove that

[(X1,τ 1)× (X2,τ 2)]× (X3, T3) ∼= (X1,τ 1)× (X2,τ 2)× (X3,τ 3).

8. (i) Let (X1,τ 1) and (X2,τ 2) be topological spaces. Prove that

(X1,τ 1)× (X2,τ 2) ∼= (X2,τ 2)× (X1,τ 1).

(ii) Generalize the above result to products of any finite number of topological
spaces.
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9. Let C1, C2, . . . , Cn be subsets of the topological spaces (X1,τ 1), (X2,τ 2),

. . . ,(Xn,τn), respectively, so that C1 × C2 × · · · × Cn is a subset of the space
(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τn). Prove each of the following statements.

(i) (C1 × C2 × · · · × Cn)′ ⊇ C ′1 × C
′
2 × · · · × C

′
n ;

(ii) C1 × C2 × · · · × Cn = C1 × C2 × · · · × Cn ;

(iii) if C1, C2, . . . , Cn are dense in (X1,τ 1), (X2,τ 2) , . . . , (Xn,τn), respectively,
then C1×C2×· · ·×Cn is dense in the product space (X1,τ 1)× (X2,τ 2)×
· · · × (Xn,τn) ;

(iv) if (X1,τ 1), (X2, T2), . . . , (Xn,τn) are separable spaces, then (X1,τ 1) ×
(X2, T2)× · · · × (Xn,τn) is a separable space;

(v) for each n > 1, Rn is a separable space.

10. Show that the product of a finite number of T1-spaces is a T1-space.

11. If (X1,τ 1), . . . , (Xn,τn) satisfy the second axiom of countability, show that
(X1,τ 1)× (X2,τ 2)× · · · × (Xn,τn) satisfies the second axiom of countability
also.

12. Let (R,τ 1) be the Sorgenfrey line, defined in Exercises 3.2 #11, and (R2,τ 2)

be the product space (R,τ 1)× (R,τ 1). Prove the following statements.

(i) {〈x, y〉 : a 6 x < b, c 6 y < d, a, b, c, d ∈ R} is a basis for the topology τ 2.

(ii) (R2,τ 2) is a regular separable totally disconnected Hausdorff space.

(iii) Let L = {〈x, y〉 : x, y ∈ R and x + y = 0}. Then the line L is closed in the
euclidean topology on the plane and hence also in (R2,τ 2).

(iv) If τ 3 is the subspace topology induced on the line L by τ 2, then τ 3 is the
discrete topology, and hence (L,τ 3) is not a separable space. [As (L,τ 3)

is a closed subspace of the separable space (R2,τ 2), we now know that a
closed subspace of a separable space is not necessarily separable.]

[Hint: show that L ∩ {〈x, y〉 : a 6 x < a+ 1, −a 6 y < −a+ 1, a ∈ R} is a
singleton set.]
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8.2 Projections onto Factors of a Product

Before proceeding to our next result we need a couple of definitions.

8.2.1 Definitions. Let τ 1 and τ 2 be topologies on a set X. Then τ 1 is
said to be a finer topology than τ 2 (and τ 2 is said to be a coarser topology
than τ 1) if τ 1 ⊇ τ 2.

8.2.2 Example. The discrete topology on a set X is finer than any other
topology on X. The indiscrete topology on X is coarser than any other topology
on X. [See also Exercises 5.1 #10.] �

8.2.3 Definitions. Let (X,τ ) and (Y,τ 1) be topological spaces and f a
mapping from X into Y . Then f is said to be an open mapping if for every
A ∈ τ , f(A) ∈ τ 1. The mapping f is said to be a closed mapping if for every
closed set B in (X,τ ), f(B) is closed in (Y,τ 1).

8.2.4 Remark. In Exercises 7.2 #5, you were asked to show that none of
the conditions “continuous mapping”, “open mapping”, “closed mapping”, implies
either of the other two conditions. Indeed no two of these conditions taken together
implies the third. (Find examples to verify this.) �
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8.2.5 Proposition. Let (X1,τ 1, ), (X2,τ 2), . . . , (Xn,τn) be topological
spaces and (X1 ×X2 × · · · ×Xn,τ ) their product space.
For each i ∈ {1, . . . , n}, let pi : X1 × X2 × · · · × Xn → Xi be
the projection mapping; that is, pi(〈x1, x2, . . . , xi, . . . , xn〉) = xi, for each
〈x1, x2, . . . , xi, . . . , xn〉 ∈ X1 ×X2 × · · · ×Xn. Then
(i) each pi is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set X1 ×X2 × · · · ×Xn such that each
pi is continuous.

Proof. Clearly each pi is surjective. To see that each pi is continuous, let U be
any open set in (Xi,τ i). Then

p−1
i (U) = X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn

which is a product of open sets and so is open in (X1 ×X2 × · · · ×Xn,τ ). Hence
each pi is continuous.

To show that pi is an open mapping it suffices to verify that for each basic open set
U1 × U2 × · · · × Un, where Uj is open in (Xj ,τ j), for j = 1, . . . , n, the set
pi(U1 × U2 × · · · × Un) is open in (Xi,τ i). But pi(U1 × U2 × · · · × Un) = Ui
which is, of course, open in (Xi,τ i). So each pi is an open mapping. We have now
verified part (i) of the proposition.

Now let τ ′ be any topology on the set X1 × X2 × · · · × Xn such that each
projection mapping pi : (X1×X2×· · ·×Xn,τ ′)→ (Xi,τ i) is continuous. We have
to show that τ ′ ⊇ T .

Recalling the definition of the basis for the topology τ (given in Definition
8.1.1) it suffices to show that if O1, O2, . . . , On are open sets in (X1,τ 1),
(X2,τ 2), . . . , (Xn,τn) respectively, then O1 × O2 × · · · × On ∈ τ ′. To show this,
observe that as pi is continuous, p

−1
i (Oi) ∈ τ ′, for each i = 1, . . . , n. Now

p−1
i (Oi) = X1 ×X2 × · · · ×Xi−1 ×Oi ×Xi+1 × · · · ×Xn,

so that
n⋂
i=1

p−1
i (Oi) = O1 ×O2 × · · · ×On.

Then p−1
i (Oi) ∈ τ ′ for i = 1, . . . , n, implies

⋂n
i=1 p

−1
i (Oi) ∈ τ ′ ;

that is, O1 ×O2 × · · · ×On ∈ τ ′, as required. �
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8.2.6 Remark. Proposition 8.2.5 (ii) gives us another way of defining the
product topology. Given topological spaces (X1, τ1), (X2, τ2), . . . , (Xn, τn)

the product topology can be defined as the coarsest topology onX1 ×X2 × · · · ×Xn
such that each projection pi : X1 ×X2 × . . . Xn → Xi is continuous. This
observation will be of greater significance in the next section when we proceed to a
discussion of products of an infinite number of topological spaces. �

8.2.7 Corollary. For n > 2, the projection mappings of Rn onto R are
continuous open mappings. �
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8.2.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) be topological
spaces and
(X1 × X2 × · · · × Xn,τ ) the product space. Then each (Xi,τ i) is
homeomorphic to a subspace of (X1 ×X2 × · · · ×Xn,τ ).

Proof. For each j, let aj be any (fixed) element in Xj. For each i, define a
mapping
fi : (Xi,τ i)→ (X1 ×X2 × · · · ×Xn,τ ) by

fi(x) = 〈a1, a2, . . . , ai−1, x, ai+1, . . . , an〉.
We claim that fi : (Xi,τ i) → (fi(Xi),τ ′) is a homeomorphism, where τ ′ is the
topology induced on fi(Xi) by τ . Clearly this mapping is one-to-one and onto. Let
U ∈ τ i. Then

fi(U) = {a1} × {a2} × · · · × {ai−1} × U × {ai+1} × · · · × {an}
= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩

({a1} × {a2} × · · · × {ai−1} ×Xi × {ai+1} × · · · × {an})
= (X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn) ∩ fi(Xi)
∈ τ ′

since X1 ×X2 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xn ∈ τ . So U ∈ τ i implies that
fi(U) ∈ τ ′.

Finally, observe that the family
{(U1 × U2 × · · · × Un) ∩ fi(Xi) : Ui ∈ Ti, i = 1, . . . , n}

is a basis for τ ′, so to prove that fi is continuous it suffices to verify that the
inverse image under fi of every member of this family is open in (Xi,τ i). But

f−1
i [(U1 × U2 × . . . Un) ∩ fi(Xi)] = f−1

i (U1 × U2 × · · · × Un) ∩ f−1
i (fi(Xi))

=

{
Ui ∩Xi, if aj ∈ Uj , j 6= i
Ø, if aj /∈ Uj, for some j 6= i.

As Ui ∩ Xi = Ui ∈ τ i and Ø ∈ τ i we infer that fi is continuous, and so we
have the required result. �

Notation. IfX1, X2, . . . , Xn are sets then the productX1×X2×· · ·×Xn is denoted
by
∏n
i=1Xi. If (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) are topological spaces, then the

product space (X1,τ 1)× (X2,τ 2)× · · · × (Xn,τn) is denoted by
∏n
i=1(Xi,τ i).�
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Exercises 8.2

1. Prove that the euclidean topology on R is finer than the finite-closed topology.

2. Let (Xi,τ i) be a topological space, for i = 1, . . . , n. Prove that

(i) if
∏n
i=1(Xi,τ i) is connected, then each (Xi,τ i) is connected;

(ii) if
∏n
i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact;

(iii) if
∏n
i=1(Xi,τ i) is path-connected, then each (Xi,τ i) is path-connected;

(iv) if
∏n
i=1(Xi,τ i) is Hausdorff, then each (Xi,τ i) is Hausdorff;

(v) if
∏n
i=1(Xi,τ i) is a T1-space, then each (Xi,τ i) is a T1-space.

3. Let (Y,τ ) and (Xi,τ i), i = 1, 2, ..., n be topological spaces. Further for
each i, let fi be a mapping of (Y,τ ) into (Xi,τ i). Prove that the mapping
f : (Y,τ )→

∏n
i=1(Xi,τ i), given by

f(y) = 〈f1(y), f2(y), . . . , fn(y)〉,

is continuous if and only if every fi is continuous.

[Hint: Observe that fi = pi ◦ f , where pi is the projection mapping of∏n
j=1(Xj ,τ j) onto (Xi, Ti).]

4. Let (X, d1) and (Y, d2) be metric spaces. Further let e be the metric on X × Y
defined in Exercises 6.1 #4. Also let τ be the topology induced on X×Y by e.
If d1 and d2 induce the topologies τ 1 and τ 2 on X and Y , respectively, and τ 3

is the product topology of (X,τ 1) × (Y,τ 2), prove that τ = τ 3. [This shows
that the product of any two metrizable spaces is metrizable.]

5. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological spaces. Prove that
∏n
i=1(Xi,τ i)

is a metrizable space if and only if each (Xi,τ i) is metrizable.

[Hint: Use Exercises 6.1 #6, which says that every subspace of a metrizable
space is metrizable, and Exercise 4 above.]
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8.3 Tychonoff’s Theorem for Finite Products

8.3.1 Theorem. (Tychonoff’s Theorem for Finite Products) If
(X1,τ 1), (X2,τ 2), . . . , (Xn,τn) are compact spaces, then

∏n
i=1(Xi,τ i) is a

compact space.

Proof. Consider first the product of two compact spaces (X,τ 1) and (Y,τ 2).
Let Ui, i ∈ I be any open covering of X×Y . Then for each x ∈ X and y ∈ Y , there
exists an i ∈ I such that 〈x, y〉 ∈ Ui. So there is a basic open set V (x, y)×W (x, y),
such that V 〈x, y〉 ∈ τ 1, W (x, y) ∈ τ 2 and 〈x, y〉 ∈ V (x, y)×W (x, y) ⊆ Ui.

As 〈x, y〉 ranges over all points of X × Y we obtain an open covering V (x, y)×
W (x, y), x ∈ X, y ∈ Y , of X × Y such that each V (x, y) ×W (x, y) is a subset of
some Ui, i ∈ I. Thus to prove (X,τ 1) × (Y,τ 2) is compact it suffices to find a
finite subcovering of the open covering V (x, y)×W (x, y), x ∈ X, y ∈ Y .

Now fix x0 ∈ X and consider the subspace {x0} × Y of X × Y . As seen in
Proposition 8.2.8 this subspace is homeomorphic to (Y,τ 2) and so is compact.
As V (x0, y) × W (x0, y), y ∈ Y , is an open covering of {x0} × Y it has a finite
subcovering:

V (x0, y1)×W (x0, y1), V (x0, y2)×W (x0, y2), . . . , V (x0, ym)×W (x0, ym).

Put V (x0) = V (x0, y1) ∩ V (x0, y2) ∩ · · · ∩ V (x0, ym). Then we see that the
set V (x0) × Y is contained in the union of a finite number of sets of the form
V (x0, y)×W (x0, y), y ∈ Y.

Thus to prove X × Y is compact it suffices to show that X × Y is contained in
a finite union of sets of the form V (x)×Y . As each V (x) is an open set containing
x ∈ X, the family V (x), x ∈ X, is an open covering of the compact space (X,τ 1).
Therefore there exist x1, x2, . . . , xk such that X ⊆ V (x1)∪V (x2)∪ . . . V (xk). Thus
X × Y ⊆ (V (x1) × Y ) ∪ (V (x2) × Y ) ∪ · · · ∪ (V (xk) × Y ), as required. Hence
(X,τ 1)× (Y,τ 2) is compact.

The proof is completed by induction. Assume that the product of anyN compact
spaces is compact. Consider the product (X1,τ 1)× (X2,τ 2)×· · ·× (XN+1,τN+1)

of compact spaces (Xi,τ i), i = 1, . . . , N + 1. Then
(X1,τ 1)× (X2,τ 2)× · · · × (XN + 1,τN + 1)

∼=[(X1,τ 1)× · · · × (XN , TN )]× (XN + 1,τN + 1).
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By our inductive hypothesis (X1,τ 1) × · · · × (XN ,τN ) is compact, so the right-
hand side is the product of two compact spaces and thus is compact. Therefore the
left-hand side is also compact. This completes the induction and the proof of the
theorem. �

Using Proposition 7.2.1 and 8.2.5 (i) we immediately obtain:

8.3.2 Proposition. (Converse of Tychonoff’s Theorem) Let (X1,τ 1),

(X2,τ 2), . . . , (Xn,τn) be topological spaces. If
∏n
i=1(Xi,τ i) is compact,

then each (Xi,τ i) is compact. �

We can now prove the previously stated Theorem 7.2.13.

8.3.3 Theorem. (Generalized Heine-Borel Theorem) A subset of Rn,
n > 1 is compact if and only if it is closed and bounded.

Proof. That any compact subset of Rn is bounded can be proved in an analogous
fashion to Proposition 7.2.8. Thus by Proposition 7.2.5 any compact subset of Rn

is closed and bounded.

Conversely let S be any closed bounded subset of Rn. Then, by Exercises 7.2
#8, S is a closed subset of the product

n terms︷ ︸︸ ︷
[−M,M ]× [−M,M ]× · · · × [−M,M ]

for some positive real number M. As each closed interval [−M,M ] is compact, by
Corollary 7.2.3, Tychonoff’s Theorem implies that the product space

[−M,M ]× [−M,M ]× · · · × [−M,M ]

is also compact. As S is a closed subset of a compact set, it too is compact. �
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8.3.4 Example. Define the subspace S1 of R2 by

S1 = {〈x, y〉 : x2 + y2 = 1}.

Then S1 is a closed bounded subset of R2 and thus is compact.

Similarly we define the n-sphere Sn as the subspace of Rn+1 given by

Sn = {〈x1, x2, . . . , xn+1〉 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

Then Sn is a closed bounded subset of Rn+1 and so is compact.

S2

We define S1 × S1 to be the torus.

�
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8.3.5 Example. The subspace S1× [0, 1] of R3 is the product of two compact
spaces and so is compact. (Convince yourself that S1 × [0, 1] is the surface of a
cylinder.)

�
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Exercises 8.3

Locally Compact Spaces

1. A topological space (X,τ ) is said to be locally compact if each point x ∈ X
has at least one neighbourhood which is compact. Prove that

(i) Every compact space is locally compact.

(ii) R and Z are locally compact (but not compact).

(iii) Every discrete space is locally compact.

(iv) If (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) are locally compact spaces, then∏n
i=1(Xi,τ i) is locally compact.

(v) Every closed subspace of a locally compact space is locally compact.

(vi) A continuous image of a locally compact space is not necessarily locally
compact.

(vii) If f is a continuous open mapping of a locally compact space (X,τ ) onto a
topological space (Y,τ 1), then (Y,τ 1) is locally compact.

(viii) If (X1,τ 1), (X2,τ 2), . . . , (Xn, Tn) are topological spaces such that
∏n
i=1(Xiτ i)

is locally compact, then each (Xi,τ i) is locally compact.

2.* Let (Y,τ 1) be a locally compact subspace of the Hausdorff space (X,τ ). If Y
is dense in (X,τ ), prove that Y is open in (X,τ ).
[Hint: Use Exercises 3.2 #9.]

Divisible Groups, Separable Banach Spaces, Locally Convex Spaces,
Compactly Generated Banach Spaces, Topological Vector Spaces,

Seminorms, Convex, Absolutely Convex, Absorbent, and Balanced Sets

3. A group G is said to be divisible if for each g ∈ G and each n ∈ N, there exists
an h ∈ G such that hn = g. Examples of divisible groups include R, Q and
every vector space over R or C, while Z is not a divisble group. (See Definition
A5.3.4.)

(i) Let (G, d) be a metrizable topological group (see Appendix 5) with d a left-
invariant metric (that is, d(ag, ah) = d(g, h), for all a, g, h ∈ G). Verify that
if g ∈ G and h ∈ G satisfies hn = g, then d(h, 1) 6 1

nd(g, 1), where 1 is the
identity element of the group G.
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(ii) Deduce from (i) that if G is separable with {x1, x2, . . . , xn, . . . } dense in G,
and {y1, y2, . . . , yn, . . . } is such that each yn satisfies ymn

n = xn wheremn is n
times (1+ the integer part of d(xn, 1)), then the sequence y1, y2, . . . , yn, . . .

converges to 1 ∈ G.
(iv) Deduce that the set Y = {1, y1, y2, . . . , yn, . . . } is compact and the group

gp(Y ) it generates is dense in G. So every separable metrizable divisible
topological group has a dense subgroup which is generated by a
compact set.

(v) Conversely, prove that if the metrizable topological group G has a dense
subgroup which is generated by a compact set, then G is separable.
(This result should be contrasted with that in Exercises 10.3 #33.)

(vi) A Banach space B is said to be compactly generated if it has a compact
subset Y such that any vector space containing Y is dense in B. Prove
using (iv) and (v) that a Banach space is separable if and only if it
is compactly generated. (This result should be contrasted with that in
Exercises 10.3 #33 (vii).) Deduce that a Banach space is separable if
and only if it is generated by a sequence of elements y1, y2, . . . , yn, . . .

with ||yn|| < 1
n, for each positive integer n, such that the sequence

converges to 0.

(vii) Let F = R or C with its usual topology. A vector space V over the
field F with V having topology τ is said to be a topological vector
space if addition and scalar multiplication are continuous; that is, the map
(x, y) 7→ x + y : V × V → V , for all x, y ∈ V , is continuous, where V × V
has the product topology, and the map (λ, x) 7→ λx : F × V → V , x ∈ V ,
λ ∈ F , where F × V has the product topology, is continuous. Verify each
of the following:
(a) every topological vector space is a topological group;
(b) each Banach space and each normed space determines a topological

vector space;
(c) if V is a vector space over F and 0 6= λ ∈ F , then f : V → V given by

f(x) = λx, for each x ∈ V , is a homeomorphism of V onto V . Deduce
that if U is a neighbourhood of 0 in V , then λU is a neighbourhood of 0.
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(viii) A subset C of a vector space V over F is said to be convex if for each
x, y ∈ C and each t ∈ (0, 1), the point tx + (1 − t)y ∈ C. The subset C
is said to be absolutely convex if for all λ1, λ2 ∈ F , with |λ1| + |λ2| 6 1,
λ1x1 + λ2x2 ∈ C, for all x1, x2 ∈ C. A subset C of a vector space V is said
to be absorbent if for each x ∈ V , there is a λ > 0 such that x ∈ µC for
all µ > λ. If V is a topological vector space, prove each of the following:
(a) any finite intersection of absorbent sets is absorbent;

(b) any intersection of convex sets is convex;

(c) any intersection of absolutely convex sets is absolutely convex;

(d) a union of convex sets is not necessarily convex;

(e) an absolutely convex set C in V is absorbent if and only if C spans V ,
that is, V is the smallest vector space containing C;

(f) if U is any neighbourhood of 0 in the topological vector space V , then U
is absorbent.
[Hint: in (f) use the fact that the function f(λ) = λx is continuous at
λ = 0, for each x ∈ V , and so there is a neighbourhood {λ : |λ| 6 ε}
which is mapped into U .]

(g) each of its convex subsets and each of its its absolutely convex sets is
path-connected;

(h) the interior of each convex set (respectively, absolutely convex set) in V
is convex (respectively, absolutely convex);

(i) the closure of each convex set (respectively, absolutely convex set) in V
is convex (respectively, absolutely convex).
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(ix) A topological vector space V over F = R or C is said to be a locally convex
space if it has a base of neighbourhoods of 0 consisting of convex sets.
For example, in a normed vector space the open balls containing 0 are a base
of neighbourhoods of 0 and each is a convex set. So every normed vector
space and, in particular, every Banach space is a locally convex space.
A subset S of V is said to be balanced if for all x ∈ S and |λ| 6 1, λx ∈ S.
Verify each of the following:

(a) a subset S of V is absolutely convex if and only if it is balanced and
convex;

(b) if U is a convex neighbourhood of 0, then
⋂
|λ)>1

λU , λ ∈ F , is a balanced

convex neighbourhood of 0 contained in U ;

(c) a topological vector space V over F is locally convex if and only if it has
a basis of neighbourhods of 0 each of which is absolutely convex;

(d) if V1 and V2 are topological vector spaces over R, then V1 × V2 with the
product topology is a topological vector space over R;

(e) if V1 and V2 are locally convex spaces, then V1 × V2 with the product
topology is a locally convex space.

(x) Show that a metrizable topological vector space V is separable if
and only if it has a compact subset K such that any vector space
containing K is dense in V .

(xi)(a) Let G be a topological group. Prove that G is separable if and only if
it has subgroups G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ . . . such that the set

⋃∞
i=1Gi

is dense in G, where each Gi is the smallest subgroup of G containing a
finite set of elements.

(b) Let N be a normed vector space. Prove that N is separable and infinite-
dimensional if and only N1 ( N2 ( · · · ( Ni ( . . . with

⋃∞
i=1Ni dense in

N , where each Ni is a finite-dimensional normed vector subspace of N .

(c) If N in (b) is a Banach space, show that
⋃∞
i=1Ni 6= N.
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(xii) Let V be a vector space over F = R or C. A mapping p : V → R is said to
be a seminorm if it satisfies

(α) p(x) > 0, for all x ∈ V ;
(β) p(λx) = |λ|p(x), for all x ∈ V and λ ∈ F ;
(γ) p(x+ y) 6 p(x) + p(y), for all x, y ∈ V .
Obviously if p(x) = 0 implies x = 0, then p is a norm. Verify each of the
following:

(a) If p is a seminorm on V , then for each r ∈ R with r > 0, the sets
{x : x ∈ V, p(x) < r} and {x : x ∈ V, p(x) 6 r} are absolutely convex
and absorbent;

(b) Let S be an absolutely convex absorbent subset of V . Then pS defined
by

pS(x) = inf{λ : λ > 0, x ∈ λS}
is a seminorm on V and

{pS(x) : x ∈ V, pS(x) < 1} ⊆ S ⊆ {pS(x) : x ∈ V, pS(x) 6 1}.

(c) Let {pα : α ∈ I}, for some index set I, be any set of seminorms on
V . Let τ be the coarsest topology on V such that each pα : V → R
is continuous. Then V with the topology τ is a locally convex space.
Conversely, if (V,τ ) is a locally convex space and {pα : α ∈ I}, for
some index set I, is the set of all seminorms on V such that each
pα : (V,τ ) → R is continuous, then τ is the coarsest topology such
that each pα is continuous.

(d) Let (V,τ ) a locally convex space and {pα : α ∈ I}, for some index set I,
the set of all continuous seminorms on (V,τ ). Then τ is Hausdorff if and
only if for each 0 6= x ∈ V , there exists an α ∈ I such that pα(x) 6= 0.

(e)* Let V be the vector space of all continuous functions (−∞,∞) → R.
With the seminorms

pn(x) = sup
−n6t6n

|x(t)| , n ∈ N

V is a locally convex space which is Hausdorff, indeed metrizable. Further,
with this topology it is not a a normable vector space (that is the
topological vector space underlying a normed vector space).
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4. Verify all the containments in the diagram below.
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8.4 Products and Connectedness

8.4.1 Definition. Let (X,τ ) be a topological space and let x be any point
in X. The component in X of x, CX(x), is defined to be the union of all
connected subsets of X which contain x.

8.4.2 Proposition. Let x be any point in a topological space (X,τ ). Then
CX(x) is connected.

Proof. Let {Ci : i ∈ I} be the family of all connected subsets of (X,τ ) which
contain x. (Observe that {x} ∈ {Ci : i ∈ I}.) Then CX(x) =

⋃
i∈I Ci.

Let O be a subset of CX(x) which is clopen in the topology induced on CX(x)

by τ . Then O ∩ Ci is clopen in the induced topology on Ci, for each i.

But as each Ci is connected, O ∩ Ci = Ci or Ø, for each i. If O ∩ Cj = Cj for
some j ∈ I, then x ∈ O. So, in this case, O ∩ Ci 6= Ø, for all i ∈ I as each Ci
contains x. Therefore O ∩ Ci = Ci, for all i ∈ I or O ∩ Ci = Ø, for all i ∈ I; that
is, O = CX(x) or O = Ø.

So CX(x) has no proper non-empty clopen subset and hence is connected. �

8.4.3 Remark. We see from Definition 8.4.1 and Proposition 8.4.2 that CX(x)

is the largest connected subset of X which contains x. �
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8.4.4 Lemma. Let a and b be points in a topological space (X,τ ). If
there exists a connected set C containing both a and b then CX(a) = CX(b).

Proof. By Definition 8.4.1, CX(a) ⊇ C and CX(b) ⊇ C. Therefore a ∈ CX(b).

By Proposition 8.4.2, CX(b) is connected and so is a connected set containing
a. Thus, by Definition 8.4.1, CX(a) ⊇ CX(b).

Similarly CX(b) ⊇ CX(a), and we have shown that CX(a) = CX(b). �

8.4.5 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological
spaces. Then

∏n
i=1(Xi,τ i) is connected if and only if each (Xi,τ i) is

connected.

Proof. To show that the product of a finite number of connected spaces is
connected, it suffices to prove that the product of any two connected spaces is
connected, as the result then follows by induction.

So let (X,τ ) and (Y,τ 1) be connected spaces and 〈x0, y0〉 any point in the
product space (X × Y,τ 2). Let 〈x1, y1〉 be any other point in X × Y . Then the
subspace {x0} × Y of (X × Y,τ ) is homeomorphic to the connected space (Y,τ 1)

and so is connected.

Similarly the subspace X × {y1} is connected. Furthermore, 〈x0, y1〉 lies in
the connected space {x0} × Y , so CX×Y (〈x0, y1〉) ⊇ {x0} × Y 3 〈x0, y0〉, while
〈x0, y1〉 ∈ X × {y1}, and so CX×Y ((x0, y1)) ⊇ X × {y1} 3 (x1, y1).

Thus 〈x0, y0〉 and 〈x1, y1〉 lie in the connected set CX×Y (〈x0, y1〉), and so
by Lemma 8.4.4, CX×Y (〈x0, y0〉) = CX×Y (〈x1, y1〉). In particular, 〈x1, y1〉 ∈
CX×Y (〈x0, y0〉). As 〈x1, y1〉 was an arbitrary point in X × Y , we have that
CX×Y (〈x0, y0〉) = X × Y. Hence (X × Y,τ 2) is connected.

Conversely if
∏n
i=1(Xi,τ i) is connected then Propositions 8.2.5 and 5.2.1 imply

that each (Xi,τ i) is connected. �
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8.4.6 Remark. In Exercises 5.2 #9 the following result appears: For any
point x in any topological space (X, τ ), the component CX(x) is a closed
set. �

8.4.7 Definition. A topological space is said to be a continuum if it is
compact and connected.

As an immediate consequence of Theorem 8.3.1 and Propositions 8.4.5 and
8.3.2 we have the following proposition.

8.4.8 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological
spaces. Then

∏n
i=1(Xi,τ i) is a continuum if and only if each (Xi,τ i) is a

continuum. �

Exercises 8.4

Compactum

1. A topological space (X,τ ) is said to be a compactum if it is compact and
metrizable. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological spaces. Using
Exercises 8.2 #5, prove that

∏n
i=1(Xi,τ i) is a compactum if and only if each

(Xi,τ i) is a compactum.

2. Let (X, d) be a metric space and τ the topology induced on X by d.

(i) Prove that the function d from the product space (X,τ )× (X,τ ) into R is
continuous.

(ii) Using (i) show that if the metrizable space (X,τ ) is connected and X has
at least 2 points, then X has the uncountable number of points.

3. If (X,τ ) and (Y,τ 1) are path-connected spaces, prove that the product space
(X,τ )× (Y,τ 1) is path-connected.
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4. (i) Let x = (x1, x2, . . . , xn) be any point in the product space

(Y,τ ) =
∏n
i=1(Xi,τ i). Prove that

CY (x) = CX1
(x1)× CX2

(x2)× · · · × CXn(xn).

(ii) Deduce from (i) and Exercises 5.2 #10 that
∏n
i=1(Xi,τ i) is totally disconnected

if and only if each (Xi,τ i) is totally disconnected.

Locally Connected Spaces

5. A topological space (X,τ ) is said to be locally connected if it has a basis B
consisting of connected (open) sets.

(i) Verify that Z is a locally connected space which is not connected.

(ii) Show that Rn and Sn are locally connected, for all n > 1.

(iii) Let (X,τ ) be the subspace of R2 consisting of the points in the line segments
joining 〈0, 1〉 to 〈0, 0〉 and to all the points 〈 1n , 0〉, n = 1, 2, 3, . . . . Show that
(X,τ ) is connected but not locally connected.

(iv) Prove that every open subset of a locally connected space is locally connected.

(v) Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn) be topological spaces. Prove that∏n
i=1(Xi,τ i) is locally connected if and only if each (Xi,τ i) is locally

connected.

6. Let A and B be connected subsets of a topological space (X,τ ) such that
A ∩B 6= Ø.

(i) If (X,τ ) = R, prove that A ∩B is connected.

(ii) If (X,τ ) = R2, is A ∩B necessarily connected?
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8.5 Fundamental Theorem of Algebra

In this section we give an application of topology to another branch of mathematics.
We show how to use compactness and the Generalized Heine-Borel Theorem 8.3.3
to prove the Fundamental Theorem of Algebra. (See also Section 13.2.)

8.5.1 Theorem. (The Fundamental Theorem of Algebra) Every
polynomial f(z) = anz

n+an−1z
n−1 + · · ·+a1z+a0, where each ai is a complex

number, an 6= 0, and n > 1, has a root; that is, there exists a complex number
z0 such that f(z0) = 0.

Proof.

|f(z)| = |anzn + an−1z
n−1 + · · ·+ a0|

> |an||z|n − |z|n−1
[
|an−1|+

|an−2|
|z|

+ · · ·+ |a0|
|z|n−1

]
> |an||z|n − |z|n−1 [|an−1|+ |an−2|+ · · ·+ |a0|] , for |z| > 1

= |z|n−1[|an||z| −R], for |z| > 1 and R = |an−1|+ · · ·+ |a0|

> |z|n−1, for |z| > max

{
1,
R + 1

|an|

}
. (1)

If we put p0=|f(0)| = |a0| then, by inequality (1), there exists a T > 0 such that

|f(z)| > p0, for all |z| > T (2)

Consider the set D = {z : z ∈ complex plane and |z| 6 T}. This is a closed
bounded subset of the complex plane C = R2 and so, by the Generalized Heine-Borel
Theorem, is compact. Therefore, by Proposition 7.2.14, the continuous function
|f | : D → R has a least value at some point z0. So

|f(z0)| 6 |f(z)|, for all z ∈ D.

By (2), for all z /∈ D, |f(z)| > p0 = |f(0)| > |f(z0)|. Therefore
|f(z0)| 6 |f(z)|, for all z ∈ C (3)

So we are required to prove that f(z0) = 0. To do this it is convenient to perform
a ‘translation’. Put P (z) = f(z + z0). Then, by (2),

|P (0)| 6 |P (z)|, for all z ∈ C (4)
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The problem of showing that f(z0) = 0 is now converted to the equivalent one of
proving that P (0) = 0.

Now P (z) = bnz
n + bn−1z

n−1 · · ·+ b0, bi ∈ C. So P (0) = b0. We shall show that
b0 = 0.

Suppose b0 6= 0. Then
P (z) = b0 + bkz

k + zk+1Q(z), (5)

where Q(z) is a polynomial and k is the smallest i > 0 with bi 6= 0.

e.g. if P (z) = 10z7 +6z5 +3z4 +4z3 +2z2 +1, then b0 = 1, bk = 2, (b1 = 0),
and

P (z) = 1 + 2z2 + z3

Q(z)︷ ︸︸ ︷
(4 + 3z + 6z2 + 10z4) .

Let w ∈ C be a kth root of the number −b0/bk; that is, wk = −b0/bk.
As Q(z) is a polynomial, for t a real number,

t |Q(tw)| → 0, as t→ 0

This implies that t |wk+1Q(tw)| → 0 as t→ 0.

So there exists a real number t0 with 0 < t0 < 1 such that

t0 |wk+1Q(t0w)| < |b0| (6)

So, by (5), P (t0w) = b0 + bk(t0w)k + (t0w)k+1Q(t0w)

= b0 + bk

[
t0
k
(
−b0
bk

)]
+ (t0w)k+1Q(t0w)

= b0(1− t0k) + (t0w)k+1Q(t0w)

Therefore |P (t0w)| 6 (1− t0k)|b0|+ t0
k+1|wk+1Q(t0w)|

< (1− t0k) |b0|+ t0
k |b0|, by (6)

= |b0|
= |P (0)| (7)

But (7) contradicts (4). Therefore the supposition that b0 6= 0 is false; that is,
P (0) = 0, as required. �



218 CHAPTER 8. FINITE PRODUCTS

8.6 Postscript

As mentioned in the Introduction, this is one of three chapters devoted to product
spaces. The easiest case is that of finite products. In the next chapter we study
countably infinite products and in Chapter 10, the general case. The most important
result proved in this section is Tychonoff’s Theorem 8.3.11. In Chapter 10 this is
generalized to arbitrary sized products.

The second result we called a theorem here is the Generalized Heine-Borel
Theorem 8.3.3 which characterizes the compact subsets of Rn as those which are
closed and bounded.

Exercises 8.3 #1 introduced the notion of locally compact topological space.
Such spaces play a central role in topological group theory. (See Appendix 5.)

Our study of connectedness has been furthered in this section by defining the
component of a point. This allows us to partition any topological space into
connected sets. In a connected space like Rn the component of any point is the whole
space. At the other end of the scale, the components in any totally disconnected
space, for example, Q, are all singleton sets.

As mentioned above, compactness has a local version. So too does connectedness.
Exercises 8.4 #5 defined locally connected. However, while every compact space
is locally compact, not every connected space is locally connected. Indeed many
properties P have local versions called locally P, and P usually does not imply
locally P and locally P usually does not imply P.

Towards the end of the chapter we gave a topological proof of the Fundamental
Theorem of Algebra 8.5.1. The fact that a theorem in one branch of mathematics
can be proved using methods from another branch is but one indication of why
mathematics should not be compartmentalized. While you may have separate
courses on algebra, complex analysis, and number theory these topics are, in fact,
interrelated.

In Appendix 5 we introduce the notion of a topological group, that is a set with
the structure of both a topological space and a group, and with the two structures
related in an appropriate manner. Topological group theory is a rich and interesting

1You should have noticed how sparingly we use the word “theorem”, so when we do use that term
it is because the result is important.
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branch of mathematics. Appendix 5 can be studied using the prerequisite knowledge
in this chapter.

For those who know some category theory, we observe that the category of
topological spaces and continuous mappings has both products and coproducts.
The products in the category are indeed the products of the topological spaces.
You may care to identify the coproducts.



Chapter 9

Countable Products

Introduction

Intuition tells us that a curve has zero area. Thus you should be astonished to learn
of the existence of space-filling curves. We attack this topic using the curious space
known as the Cantor Space. It is surprising that an examination of this space leads
us to a better understanding of the properties of the unit interval [0, 1].

Previously we have studied finite products of topological spaces. In this chapter
we extend our study to countably infinite products of topological spaces. This leads
us into wonderfully rich territory of which space-filling curves is but one example.

220



9.1. THE CANTOR SET 221

9.1 The Cantor Set

9.1.1 Remark. We now construct a very curious (but useful) set known as
the Cantor Set. Consider the closed unit interval [0,1] and delete from it the open
interval (1

3 ,
2
3), which is the middle third, and denote the remaining closed set by

G1. So

G1 = [0, 1
3 ] ∪ [2

3 , 1].

Next, delete from G1 the open intervals (1
9 ,

2
9) and (7

9 ,
8
9) which are the middle

third of its two pieces and denote the remaining closed set by G2. So

G2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1].

0 1
• •

• • • •
0 11

3
2
3

• • • • • • • •
0 1

3
1
3

2
3

1
9

2
9

7
9

8
9 1

• • • • • • • • • • • •• • • •

G1

G2

G3

If we continue in this way, at each stage deleting the open middle third of each
closed interval remaining from the previous stage we obtain a descending sequence
of closed sets

G1 ⊃ G2 ⊃ G3 ⊃ . . . Gn ⊃ . . . .

The Cantor Set, G, is defined by

G =
∞⋂
n=1

Gn

and, being the intersection of closed sets, is a closed subset of [0,1]. As [0,1] is
compact, the Cantor Space, (G, τ ), (that is, G with the subspace topology) is
compact. [The Cantor Set is named after the famous set theorist, Georg Cantor
(1845–1918).]
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It is useful to represent the Cantor Set in terms of real numbers written to base
3; that is, ternaries. You are familiar with the decimal expansion of real numbers
which uses base 10. Today one cannot avoid computers which use base 2. But for
the Cantor Set, base 3 is what is best.

In the ternary system, 76 5
81 would be written as 2211·0012, since this represents

2.33 + 2.32 + 1.31 + 1.30 + 0.3−1 + 0.3−2 + 1.3−3 + 2.3−4.

So a number x in [0, 1] is represented by the base 3 number ·a1a2a3 . . . an . . . , where

x =
∞∑
n=1

an
3n
, an ∈ {0, 1, 2}, for each n ∈ N.

So as 1
2 =

∑∞
n=1

1
3n ,

1
3 =

∑∞
n=2

2
3n , and 1 =

∑∞
n=1

2
3n , we see that their ternary

forms are given by
1

2
= 0·11111 . . . ;

1

3
= 0·02222 . . . ; 1 = 0·2222 . . . .

(Of course another ternary expression for 1
3 is 0·10000 . . . and another for 1 is

1·0000 . . . .)

Turning again to the Cantor Set, G, it should be clear that an element of [0, 1]

is in G if and only if it can be written in ternary form with an 6= 1, for every n ∈ N.
So 1

2 /∈ G, 5
81 /∈ G, 1

3 ∈ G, and 1 ∈ G.
Thus we have a function f from the Cantor Set into the set of all sequences

of the form 〈a1, a2, a3, . . . , an, . . . 〉, where each ai ∈ {0, 2} and f is one-to-one and
onto. Later on we shall make use of this function f . �

Exercises 9.1

1. (a) Write down ternary expansions for the following numbers:

(i) 21 5
243 ; (ii) 7

9 ; (iii) 1
13.

(b) Which real numbers have the following ternary expressions:

(i) 0·02 = 0·020202 . . . ; (ii) 0·110 ; (iii) 0·012?

(c) Which of the numbers appearing in (a) and (b) lie in the Cantor Set?
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2. Let x be a point in a topological space (X,τ ). Then x is said to be an isolated
point if x ∈ X \X ′; that is, x is not a limit point of X. The space (X,τ ) is
said to be perfect if it has no isolated points. Prove that the Cantor Space is
a compact totally disconnected perfect space.

[It can be shown that any non-empty compact totally disconnected metrizable
perfect space is homeomorphic to the Cantor Space. See, for example, Exercise
6.2A(c) of Engelking [126].

9.2 The Product Topology

9.2.1 Definition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn), . . . be a countably
infinite family of topological spaces. Then the product,

∏∞
i=1Xi, of the sets

Xi, i ∈ N consists of all the infinite sequences 〈x1, x2, x3, . . . , xn, . . . 〉, where
xi ∈ Xi for all i. (The infinite sequence 〈x1, x2, . . . , xn, . . . 〉 is sometimes
written as

∏∞
i=1 xi.) The product space,

∏∞
i=1(Xi, τ i), consists of the

product
∏∞
i=1Xi with the topology τ having as its basis the family

B =

{∞∏
i=1

Oi : Oi ∈ τ i and Oi = Xi for all but a finite number of i.

}
The topology τ is called the product topology.

So a basic open set is of the form

O1 ×O2 × · · · ×On ×Xn+1 ×Xn+2 × . . . .

Warning. It should be obvious that a product of open sets need not be open
in the product topology τ . In particular, if O1, O2, O3, . . . , On, . . . are such that
each Oi ∈ τ i, and Oi 6= Xi for all i, then

∏∞
i=1Oi cannot be expressed as a union

of members of B and so is not open in the product space (
∏∞
i=1Xi,τ ).

9.2.2 Remark. Why do we choose to define the product topology as in
Definition 9.2.1? The answer is that only with this definition do we obtain
Tychonoff’s Theorem (for infinite products), which says that any product of compact
spaces is compact. And this result is extremely important for applications.
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9.2.3 Example. Let (X1,τ 1), , . . . , (Xn,τn), . . . be a countably infinite family
of topological spaces. Then the box topology τ ′ on the product

∏∞
i=1Xi, is that

topology having as its basis the family

B′ =
{ ∞∏
i=1

Oi : Oi ∈ τ i
}
.

It is readily seen that if each (Xi,τ i) is a discrete space, then the box product
(
∏∞
i=1Xi,τ ′) is a discrete space. So if each (Xi,τ ) is a finite set with the discrete

topology, then (
∏∞
i=1Xi,τ ′) is an infinite discrete space, which is certainly not

compact. So we have a box product of the compact spaces (Xi,τ i) being a non-
compact space.

Another justification for our choice of definition of the product topology is the
next proposition which is the analogue for countably infinite products of Proposition
8.2.5.

9.2.4 Proposition. Let (X1,τ 1), (X2,τ 2), . . . , (Xn,τn), . . . be a
countably infinite family of topological spaces and (

∏∞
i=1Xi,τ ) their product

space. For each i, let pi :
∏∞
j=1Xj → Xi be the projection mapping; that is

pi(〈x1, x2, . . . , xn, . . . 〉) = xi for each
〈x1, x2, . . . , xn, . . . 〉 ∈

∏∞
j=1Xj. Then

(i) each pi is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set
∏∞
j=1Xj such that each pi is

continuous.

Proof. The proof is analogous to that of Proposition 8.2.5 and so left as an
exercise.
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We shall use the next proposition a little later.

9.2.5 Proposition. Let (Xi,τ i) and (Yi,τ ′i), i ∈ N, be countably
infinite families of topological spaces having product spaces (

∏∞
i=1Xi,τ ) and

(
∏∞
i=1 Yi,τ ′), respectively. If the mapping hi : (Xi,τ i)→ (Yi,τ ′i) is continuous

for each i ∈ N, then so is the mapping h : (
∏∞
i=1Xi,τ ) → (

∏∞
i=1 Yi,τ ′)

given by h : (
∏∞
i=1 xi) =

∏∞
i=1 hi(xi); that is, h(〈x1, x2, . . . , xn, . . . 〉) =

〈h1(x1), h2(x2), . . . , hn(xn), . . . 〉.

Proof. It suffices to show that if O is a basic open set in (
∏∞
i=1 Yi,τ ′), then

h−1(O) is open in (
∏∞
i=1Xi,τ ). Consider the basic open set U1 × U2 × . . . Un ×

Yn+1Yn+2 × . . . where Ui ∈ τ ′i, for i = 1, . . . , n. Then

h−1(U1×· · ·×Un×Yn+1×Yn+2×. . . ) = h−1
1 (U1)×· · ·×h−1

n (Un)×Xn+1×Xn+2×. . .

and the set on the right hand side is in τ , since the continuity of each hi implies
h−1
i (Ui) ∈ τ i, for i = 1, . . . , n. So h is continuous. �

Exercises 9.2

1. For each i ∈ N, let Ci be a closed subset of a topological space (Xi,τ i). Prove
that

∏∞
i=1Ci is a closed subset of

∏∞
i=1(Xi,τ i).
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2. If in Proposition 9.2.5 each mapping hi is also

(a) one-to-one,

(b) onto,

(c) onto and open,

(d) a homeomorphism,

prove that h is respectively

(a) one-to-one,

(b) onto,

(c) onto and open,

(d) a homeomorphism.

3. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove
that each (Xi,τ i) is homeomorphic to a subspace of

∏∞
i=1(Xi,τ i).

[Hint: See Proposition 8.2.8].

4. (a) Let (Xi,τ i), i ∈ N, be topological spaces. If each (Xi,τ i) is (i) a Hausdorff
space, (ii)

a T1-space, (iii) a T0-space, prove that
∏∞
i=1(Xi,τ i) is respectively (i) a

Hausdorff space, (ii) a T1-space, (iii) a T0-space.

(b) Using Exercise 3 above, prove the converse of the statements in (a).

5. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove
that

∏∞
i=1(Xi,τ i) is a discrete space if and only if each (Xi,τ i) is discrete and

all but a finite number of the Xi, i ∈ N are singleton sets.

6. For each i ∈ N, let (Xi,τ i) be a topological space. Prove that

(i) if
∏∞
i=1(Xi,τ i) is compact, then each (Xi,τ i) is compact;

(ii) if
∏∞
i=1(Xi,τ i) is connected, then each (Xi,τ i) is connected;

(iii) if
∏∞
i=1(Xi,τ i) is locally compact, then each (Xi,τ i) is locally compact and

all but a finite number of (Xi,τ i) are compact.
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9.3 The Cantor Space and the Hilbert Cube

9.3.1 Remark. We now return to the Cantor Space and prove that it is
homeomorphic to a countably infinite product of two-point spaces.

For each i ∈ N we let (Ai,τ i) be the set {0, 2} with the discrete topology, and
consider the product space (

∏∞
i=1Ai,τ ′). We show in the next proposition that it

is homeomorphic to the Cantor Space (G,τ ).

9.3.2 Proposition. Let (G,τ ) be the Cantor Space and (
∏∞
i=1Ai,τ ′)

be as in Remark 9.3.1. Then the map f : (G,τ ) −→ (
∏∞
i=1Ai,τ ′) given by

f(
∑∞
n=1

an
3n ) = 〈a1, a2, . . . , an, . . . 〉 is a homeomorphism.

Proof. We have already noted in Remark 9.1.1 that f is one-to-one and onto.
As (G,τ ) is compact and (

∏∞
i=1Ai,τ ′) is Hausdorff (Exercises 9.2 #4) Exercises

7.2 #6 says that f is a homeomorphism if it is continuous.

To prove the continuity of f it suffices to show for any basic open set
U = U1×U2×· · ·×UN ×AN+1×AN+2× . . . and any a = 〈a1, a2, . . . , an, . . . 〉 ∈ U
there exists an open set W 3

∑∞
n=1

an
3n such that f(W ) ⊆ U.

Consider the open interval
(∑∞

n=1
an
3n −

1
3N+2 ,

∑∞
n=1

an
3n + 1

3N+2

)
and let W be

the intersection of this open interval with G. Then W is open in (G,τ ) and if
x =

∑∞
n=1

xn
3n ∈ W , then xi = ai, for i = 1, 2, . . . , N .

So f(x) ∈ U1 × U2 × . . . UN × AN+1 × AN+2 × . . . , and thus f(W ) ⊆ U , as
required.

As indicated earlier, we shall in due course prove that any product of compact
spaces is compact – that is, Tychonoff’s Theorem. However in view of Proposition
9.3.2 we can show, trivially, that the product of a countable number of homeomorphic
copies of the Cantor Space is homeomorphic to the Cantor Space, and hence is
compact.
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9.3.3 Proposition. Let (Gi,τ i), i ∈ N, be a countably infinite family of
topological spaces each of which is homeomorphic to the Cantor Space (G,τ ).
Then

(G,τ ) ∼=
∞∏
i=1

(Gi,τ i) ∼=
n∏
i=1

(Gi,τ i), for each n ∈ N.

Proof. Firstly we verify that (G,τ ) ∼= (G1,τ 1)× (G2,τ 2). This is, by virtue of
Proposition 9.3.2, equivalent to showing that

∞∏
i=1

(Ai,τ i) ∼=
∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)

where each (Ai,τ i) is the set {0, 2} with the discrete topology.

Now we define a function θ from the set
∏∞
i=1(Ai,τ i) ×

∏∞
i=1(Ai,τ i) to the

set
∏∞
i=1(Ai,τ i) by

θ(〈a1, a2, a3, . . . 〉, 〈b1, b2, b3, . . . 〉) −→ 〈a1, b1, a2, b2, a3, b3, . . . 〉
It is readily verified that θ is a homeomorphism and so (G1,τ 1)×(G2,τ 2) ∼= (G,τ ).
By induction, then, (G,τ ) ∼=

∏n
i=1(Gi,τ i), for every positive integer n.

Turning to the infinite product case, define the mapping

φ :

[∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)×
∞∏
i=1

(Ai,τ i)× . . .
]
−→

∞∏
i=1

(Ai,τ i)

by φ(〈a1, a2, . . . 〉, 〈b1, b2, . . . 〉, 〈c1, c2, . . . 〉, 〈d1, d2, . . . 〉, 〈e1, e2, . . . 〉, . . . )
=〈a1, a2, b1, a3, b2, c1, a4, b3, c2, d1, a5, b4, c3, d2, e1, . . . 〉.

Again it is easily verified that φ is a homeomorphism, and the proof is complete.

9.3.4 Remark. It should be observed that the statement

(G,τ ) ∼=
∞∏
i=1

(Gi,τ i)

in Proposition 9.3.3 is perhaps more transparent if we write it as

(A,τ )× (A,τ )× . . . ∼= [(A,τ )× (A,τ )× . . . ]× [(A,τ )× (A,τ )× . . . ]× . . .

where (A,τ ) is the set {0, 2} with the discrete topology.
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9.3.5 Proposition. The topological space [0, 1] is a continuous image of
the Cantor Space (G,τ ).

Proof. In view of Proposition 9.3.2 it suffices to find a continuous mapping φ of∏∞
i=1(Ai,τ i) onto [0, 1]. Such a mapping is given by

φ(〈a1, a2, . . . , ai, . . . 〉) =
∞∑
i=1

ai
2i+1

.

Recalling that each ai ∈ {0, 2} and that each number x ∈ [0, 1] has a dyadic

expansion of the form
∑∞
j=1

bj
2j
, where bj ∈ {0, 1}, we see that φ is an onto mapping.

To show that φ is continuous it suffices, by Proposition 5.1.7, to verify that if U is
the open interval( ∞∑

i=1

ai
2i+1

− ε,
∞∑
i=1

ai
2i+1

+ ε

)
3
∞∑
i=1

ai
2i+1

, for any ε > 0.

then there exists an open set W 3 〈a1, a2, . . . , ai, . . . 〉 such that φ(W ) ⊆ U . Choose
N sufficiently large that

∑∞
i=N

ai
2i+1 < ε, and put

W = {a1} × {a2} × · · · × {aN} × AN+1 × AN+2 × . . . .

Then W is open in
∏∞
i=1(Ai,τ i), W 3 〈a1, a2, . . . , ai, . . . 〉, and φ(W ) ⊆ U , as

required.

9.3.6 Remark. You should be somewhat surprised by Proposition 9.3.5 as it
says that the “nice" space [0,1] is a continuous image of the very curious Cantor
Space. However, we shall see in due course that every compact metric space is a
continuous image of the Cantor Space.

9.3.7 Definition. For each positive integer n, let the topological space
(In,τn) be homeomorphic to [0, 1]. Then the product space

∏∞
n=1(In,τn) is

called the Hilbert cube and is denoted by I∞. The product space
∏n
i=1(Ii,τ i)

is called the n-cube and is denoted by In, for each n ∈ N.
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We know from Tychonoff’s Theorem 8.3.1 for finite products that In is compact
for each n. We now prove that I∞ is compact. (Of course this result can also be
deduced from Tychonoff’s Theorem 10.3.4 for infinite products, which is proved in
Chapter 10.)

9.3.8 Theorem. The Hilbert cube is compact.

Proof. By Proposition 9.3.5, there is a continuous mapping φn of (Gn,τn)

onto (In,τ ′n) where, for each n ∈ N, (Gn,τn) and (In,τ ′n) are homeomorphic
to the Cantor Space and [0,1], respectively. Therefore by Proposition 9.2.5
and Exercises 9.2 #2 (b), there is a continuous mapping ψ of

∏∞
n=1(Gn,τn)

onto
∏∞
n=1(In,τ ′n) = I∞. But Proposition 9.3.3 says that

∏∞
n=1(Gn,τn) is

homeomorphic to the Cantor Space (G,τ ). Therefore I∞ is a continuous image of
the compact space (G,τ ), and hence is compact.
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9.3.9 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family of
metrizable spaces. Then

∏∞
i=1(Xi,τ i) is metrizable.

Proof. For each i ∈ N, let di be a metric on Xi which induces the topology τ i.
Exercises 6.1 #2 says that if we put ei(a, b) = min(1, di(a, b)), for all a and b in Xi,
then ei is a metric and it induces the topology τ i on Xi. So we can, without loss
of generality, assume that di(a, b) 6 1, for all a and b in Xi, i ∈ N.

Define d :
∏∞
i=1Xi ×

∏∞
i=1Xi −→ R by

d

(∞∏
i=1

ai,
∞∏
i=1

bi

)
=
∞∑
i=1

di(ai, bi)

2i
for all ai and bi in Xi.

Observe that the series on the right hand side converges because each di(ai, bi) 6 1

and so it is bounded above by
∑∞
i=1

1
2i

= 1.

It is easily verified that d is a metric on
∏∞
i=1Xi. Observe that d′i, defined by

d′i(a, b) =
di(a,b)

2i
, is a metric on Xi, which induces the same topology τ i as di. We

claim that d induces the product topology on
∏∞
i=1Xi.

To see this consider the following. Since

d

(∞∏
i=1

ai ,
∞∏
i=1

bi

)
>
di(ai, bi)

2i
= d′i(ai, bi)

it follows that the projection pi : (
∏∞
i=1Xi, d) −→ (Xi, d

′
i) is continuous, for each

i. As d′i induces the topology τ ′i, Proposition 9.2.4 (ii) implies that the topology
induced on

∏∞
i=1Xi by d is finer than the product topology.

To prove that the topology induced by d is also coarser than the product
topology, let Bε(a) be any open ball of radius ε > 0 about a point a =

∏∞
i=1 ai. So

Bε(a) is a basic open set in the topology induced by d. We have to show that there
is a set W 3 a such that W ⊆ Bε(a), and W is open in the product topology. Let
N be a positive integer such that

∑∞
i=N

1
2i
< ε

2. Let Oi be the open ball in (Xi, di)

of radius ε
2N about the point ai, i = 1, . . . , N . Define

W = O1 ×O2 × · · · ×ON ×XN+1 ×XN+2 × . . . .

Then W is an open set in the product topology, a ∈ W , and clearly W ⊆ Bε(a), as
required.
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9.3.10 Corollary. The Hilbert Cube is metrizable.

The proof of Proposition 9.3.9 can be refined to obtain the following result:

9.3.11 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family of
completely metrizable spaces. Then

∏∞
i=1(Xi,τ i) is completely metrizable.

Proof. Exercises 9.3 #10.

9.3.12 Remark. From Proposition 9.3.11 we see that a countably infinite
product of discrete spaces is completely metrizable. The most interesting example
of this is Nℵ0, that is a countably infinite product of topological spaces each
homeomorphic to the discrete space N. What is much more surprising is the fact,
as mentioned in Chapter 6, that N∞ is homeomorphic to P, the topological
space of all irrational numbers with the euclidean topology. See Engelking
[126] Exercise 4.3.G and Exercise 6.2.A.

9.3.13 Remark. Another important example of a completely metrizable
countable product is R∞. This is the countably infinite product of topological
spaces each homeomorphic to R. Corollary 4.3.25 of Engelking [126] shows that:
a separable metrizable space is completely metrizable if and only if it is
homeomorphic to a closed subspace of R∞. In particular we see that every
separable Banach space is homeomorphic to a closed subspace of R∞.

A beautiful and deep result says that: every separable infinite-dimensional
Banach space is homeomorphic to R∞, see Bessaga and Pelczynski [40].
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Exercises 9.3

1. Let (Xi, di), i ∈ N, be a countably infinite family of metric spaces with
the property that, for each i, di(a, b) 6 1, for all a and b in Xi. Define
e :
∏∞
i=1Xi ×

∏∞
i=1Xi −→ R by

e

(∞∏
i=1

ai,
∞∏
i=1

bi

)
= sup{di(ai, bi) : i ∈ N}.

Prove that e is a metric on
∏∞
i=1Xi and is equivalent to the metric d

in Proposition 9.3.9. (Recall that “equivalent” means “induces the same
topology”.)

2. If (Xi,τ i), i ∈ N, are compact subspaces of [0, 1], deduce from Theorem 9.3.8
and Exercises 9.2 #1, that

∏∞
i=1(Xi,τ i) is compact.

3. Let
∏∞
i=1(Xi,τ i) be the product of a countable infinite family of topological

spaces. Let (Y,τ ) be a topological space and f a mapping of (Y,τ ) into∏∞
i=1(Xi,τ i). Prove that f is continuous if and only if each mapping pi ◦

f : (Y,τ ) −→ (Xi,τ i) is continuous, where pi denotes the projection mapping.

4. (a) Let X be a finite set and τ a Hausdorff topology on X. Prove that
(i) τ is the discrete topology;
(ii) (X,τ ) is homeomorphic to a subspace of [0, 1].

(b) Using (a) and Exercise 3 above, prove that if (Xi,τ i) is a finite Hausdorff
space for i ∈ N, then

∏∞
i=1(Xi,τ i) is compact and metrizable.

(c) Show that every finite topological space is a continuous image of a finite
discrete space.

(d) Using (b) and (c), prove that if (Xi,τ i) is a finite topological space for each
i ∈ N, then

∏∞
i=1(Xi,τ i) is compact.

5. (i) Prove that the Sierpinski Space (Exercises 1.3 #5 (iii)) is a
continuous image of [0,1].

(ii) Using (i) and Proposition 9.2.5, show that if (Xi,τ i), for each i ∈ N, is
homeomorphic to the Sierpinski Space, then

∏∞
i=1(Xi,τ i) is compact.
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6. (i) Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces each

of which satisfies the second axiom of countability. Prove that
∏∞
i=1(Xi,τ i)

satisfies the second axiom of countability.

(ii) Using Exercises 3.2 #4 (viii) and Exercises 4.1 #14, deduce that the Hilbert
cube and all of its subspaces are separable.

7. Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces. Prove
that

∏∞
i=1(Xi,τ i) is a totally disconnected space if and only if each (Xi,τ i) is

totally disconnected. Deduce that the Cantor Space is totally disconnected.

8. Let (X,τ ) be a topological space and (Xij ,τ ij), i ∈ N, j ∈ N, a family of
topological spaces each of which is homeomorphic to (X,τ ). Prove that

∞∏
j=1

(∞∏
i=1

(Xij ,τ ij)
)
∼=
∞∏
i=1

(Xi1.τ i1).

[Hint: This result generalizes Proposition 9.3.3 and the proof uses a map
analogous to φ.]

9. (i) Let (Xi,τ i), i ∈ N, be a countably infinite family of topological spaces each

of which is homeomorphic to the Hilbert cube. Deduce from Exercise 8
above that

∏∞
i=1(Xi,τ i) is homeomorphic to the Hilbert cube.

(ii) Hence show that if (Xi,τ i), i ∈ N, are compact subspaces of the Hilbert
cube, then

∏∞
i=1(Xi,τ i) is compact.

10. Prove Proposition 9.3.11.

[Hint. In the notation of the proof of Proposition 9.3.9, show that if an =∏∞
i=1 ain, n ∈ N, is a Cauchy sequence in (

∏∞
i=1Xi, d), then for each i ∈ N,

{ain : n ∈ N} is a Cauchy sequence in Xi, di.]
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9.4 Urysohn’s Theorem

9.4.1 Definition. A topological space (X,τ ) is said to be separable if it
has a countable dense subset.

See Exercises 3.2 #4 and Exercises 8.1 #9 where separable spaces were
introduced.

9.4.2 Example. Q is dense in R, and so R is separable. �

9.4.3 Example. Every countable topological space is separable. �

9.4.4 Proposition. Let (X,τ ) be a compact metrizable space. Then
(X,τ ) is separable.

Proof. Let d be a metric on X which induces the topology τ . For each
positive integer n, let Sn be the family of all open balls having centres in X and
radius 1

n. Then Sn is an open covering of X and so there is a finite subcovering
Un = {Un1, Un2, . . . , Unk}, for some k ∈ N. Let ynj be the centre of Unj ,
j = 1, . . . , k, and Yn = {yn1, yn2, . . . , ynk}. Put Y =

⋃∞
n=1 Yn. Then Y is a

countable subset of X. We now show that Y is dense in (X,τ ).

If V is any non-empty open set in (X,τ ), then for any v ∈ V , V contains an
open ball, B, of radius 1

n, about v, for some n ∈ N. As Un is an open cover of X,
v ∈ Unj , for some j. Thus d(v, ynj) <

1
n and so ynj ∈ B ⊆ V . Hence V ∩ Y 6= Ø,

and so Y is dense in X. �

9.4.5 Corollary. The Hilbert cube is a separable space. �
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Shortly we shall prove the very striking Urysohn Theorem which shows that every
compact metrizable space is homeomorphic to a subspace of the Hilbert cube. En
route we prove the (countable version of the) Embedding Lemma.

First we record the following proposition, which is Exercises 9.3 #3 and so its
proof is not included here.

9.4.6 Proposition. Let (Xi,τ i), i ∈ N, be a countably infinite family
of topological spaces and f a mapping of a topological space (Y,τ ) into∏∞
i=1(Xi,τ i). Then f is continuous if and only if each mapping pi◦f : (Y,τ ) −→

(Xi,τ i) is continuous, where pi denotes the projection mapping of
∏∞
i=1(Xi,τ i)

onto (Xi,τ i).
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9.4.7 Lemma. (The Embedding Lemma) Let (Yi,τ i), i ∈ N, be
a countably infinite family of topological spaces and for each i, let fi be a
mapping of a topological space (X,τ ) into (Yi,τ i). Further, let e : (X,τ ) −→∏∞
i=1(Yi,τ i) be the evaluation map; that is, e(x) =

∏∞
i=1 fi(x), for all x ∈ X.

Then e is a homeomorphism of (X,τ ) onto the space (e(X),τ ′), where τ ′ is
the subspace topology on e(X), if

(i) each fi is continuous,

(ii) the family {fi : i ∈ N} separates points of X; that is, if x1 and x2 are in
X with x1 6= x2, then for some i, fi(x1) 6= fi(x2), and

(iii) the family {fi : i ∈ N} separates points and closed sets; that is, for
x ∈ X and A any closed subset of (X,τ ) not containing x, fi(x) /∈ fi(A),
for some i.

Proof. That the mapping e : (X,τ ) −→ (e(X),τ ′) is onto is obvious, while
condition (ii) clearly implies that it is one-to-one.

As pi ◦ e = fi is a continuous mapping of (X,τ ) into (Yi,τ i), for each i,
Proposition 9.4.6 implies that the mapping e : (X,τ ) −→

∏∞
i=1(Yi, ti) is continuous.

Hence e : (X,τ ) −→ (e(X),τ ′) is continuous.

To prove that e : (X,τ ) −→ (e(X),τ ′) is an open mapping, it suffices to
verify that for each U ∈ τ and x ∈ U , there exists a set W ∈ τ ′ such that
e(x) ∈ W ⊆ e(U). As the family fi, i ∈ N, separates points and closed sets, there
exists a j ∈ N such that fj(x) /∈ fj(X \ U). Put

W = (Y1 × Y2 × · · · × Yj−1 × [Yj \ fj(X \ U)]× Yj+1 × Yj+2 × . . . ) ∩ e(X).

Then clearly e(x) ∈ W and W ∈ τ ′. It remains to show that W ⊆ e(U). So let
e(t) ∈ W . Then

fj(t) ∈ Yj \ fj(X \ U)

⇒ fj(t) /∈ fj(X \ U)

⇒ fj(t) /∈ fj(X \ U)

⇒ t /∈ X \ U
⇒ t ∈ U.

So e(t) ∈ e(U) and hence W ⊆ e(U). Therefore e is a homeomorphism.
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9.4.8 Definition. A topological space (X,τ ) is said to be a T1-space if
every singleton set {x}, x ∈ X, is a closed set.

9.4.9 Remark. It is easily verified that every Hausdorff space (i.e. T2-
space) is a T1-space. The converse, however, is false. (See Exercises 4.1 #13
and Exercises 1.3 #3.) In particular, every metrizable space is a T1-space.

9.4.10 Corollary. If (X,τ ) in Lemma 9.4.7 is a T1-space, then condition
(ii) is implied by condition (iii) (and so is superfluous).

Proof. Let x1 and x2 be any distinct points in X. Putting A equal to the
closed set {x2}, condition (iii) implies that for some i, fi(x1) /∈ {fi(x2)}. Hence
fi(xi) 6= fi(x2), and condition (ii) is satisfied.
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9.4.11 Theorem. (Urysohn’s Theorem) Every separable metric space
(X, d) is homeomorphic to a subspace of the Hilbert cube.

Proof. By Corollary 9.4.10 this result will follow if we can find a countably infinite
family of mappings fi : (X, d) −→ [0, 1], which are (i) continuous, and (ii) separate
points and closed sets.

Without loss of generality we can assume that d(a, b) 6 1, for all a and b in X,
since every metric is equivalent to such a metric.

As (X, d) is separable, there exists a countable dense subset Y = {yi, i ∈ N}.
For each i ∈ N, define fi : X −→ [0, 1] by fi(x) = d(x, yi). It is clear that each
mapping fi is continuous.

To see that the mappings {fi : i ∈ N} separate points and closed sets, let x ∈ X
and A be any closed set not containing x. Now X \ A is an open set about x and
so contains an open ball B of radius ε and centre x, for some ε > 0.

Further, as Y is dense in X, there exists a yn such that d(x, yn) < ε
2. Thus

d(yn, a) > ε
2, for all a ∈ A.

So [0, ε2) is an open set in [0, 1] which contains fn(x), but fn(a) 6∈ [0, ε2), for
all a ∈ A. This implies fn(A) ⊆ [ε2 , 1]. As the set [ε2 , 1] is closed, this implies
fn(A) ⊆ [ε2 , 1].

Hence fn(x) /∈ fn(A) and thus the family {fi : i ∈ N} separates points and
closed sets.

9.4.12 Corollary. Every compact metrizable space is homeomorphic to a
closed subspace of the Hilbert cube. �

9.4.13 Corollary. If for each i ∈ N, (Xi,τ i) is a compact metrizable space,
then

∏∞
i=1(Xi,τ i) is compact and metrizable.
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Proof. That
∏∞
i=1(Xi,τ i) is metrizable was proved in Proposition 9.3.9. That∏∞

i=1(Xi,τ i) is compact follows from Corollary 9.4.12 and Exercises 9.3 #9 (ii).

Our next task is to verify the converse of Urysohn’s Theorem. To do this we
introduce a new concept. (See Exercises 2.2 #4.)

9.4.14 Definition. A topological space (X,τ ) is said to satisfy the second
axiom of countability (or to be second countable) if there exists a basis B
for τ such that B consists of only a countable number of sets.

9.4.15 Example. Let B = {(q − 1
n , q + 1

n) : q ∈ Q, n ∈ N}. Then B is a basis
for the euclidean topology on R. (Verify this). Therefore R is second countable. �

9.4.16 Example. Let (X,τ ) be an uncountable set with the discrete topology.
Then, as every singleton set must be in any basis for τ , (X,τ ) does not have any
countable basis. So (X,τ ) is not second countable. �

9.4.17 Proposition. Let (X, d) be a metric space and τ the induced
topology. Then (X,τ ) is a separable space if and only if it satisfies the second
axiom of countability.

Proof. Let (X,τ ) be separable. Then it has a countable dense subset Y = {yi :

i ∈ N}. Let B consist of all the open balls (in the metric d) with centre yi, for some
i, and radius 1

n, for some positive integer n. Clearly B is countable and we shall
show that it is a basis for τ .

Let V ∈ τ . Then for any v ∈ V , V contains an open ball, B, of radius 1
n about

v, for some n. As Y is dense in X, there exists a ym ∈ Y , such that d(ym, v) < 1
2n.

Let B′ be the open ball with centre ym and radius 1
2n. Then the triangle inequality

implies B′ ⊆ B ⊆ V . Also B′ ∈ B. Hence B is a basis for τ . So (X,τ ) is second
countable.
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Conversely let (X,τ ) be second countable, having a countable basis B1 = {Bi :

i ∈ N}. For each Bi 6= Ø, let bi be any element of Bi, and put Z equal to the set
of all such bi. Then Z is a countable set. Further, if V ∈ τ , then V ⊇ Bi, for some
i, and so bi ∈ V. Thus V ∩ Z 6= Ø. Hence Z is dense in X. Consequently (X,τ ) is
separable. �

9.4.18 Remark. The above proof shows that every second countable space
is separable, even without the assumption of metrizability. However, it is not true,
in general, that a separable space is second countable. (See Exercises 9.4 #11.)

9.4.19 Theorem. (Urysohn’s Theorem and its Converse) Let (X,τ )

be a topological space. Then (X,τ ) is separable and metrizable if and only if
it is homeomorphic to a subspace of the Hilbert cube.

Proof. If (X,τ ) is separable and metrizable, then Urysohn’s Theorem 9.4.11 says
that it is homeomorphic to a subspace of the Hilbert cube.

Conversely, let (X,τ ) be homeomorphic to the subspace (Y,τ 1) of the Hilbert
cube I∞. By Proposition 9.4.4, I∞ is separable. So, by Proposition 9.4.17, it
is second countable. It is readily verified (Exercises 4.1 #14) that any subspace
of a second countable space is second countable, and hence (Y,τ 1) is second
countable. It is also easily verified (Exercises 6.1 #6) that any subspace of a
metrizable space is metrizable. As the Hilbert cube is metrizable, by Corollary
9.3.10, its subspace (Y,τ 1) is metrizable. So (Y,τ 1) is metrizable and satisfies
the second axiom of countability. Therefore it is separable. Hence (X,τ ) is also
separable and metrizable.

Exercises 9.4

1. Prove that every continuous image of a separable space is separable.
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2. If (Xi,τ i), i ∈ N, are separable spaces, prove that
∏∞
i=1(Xi,τ i) is a separable

space.

3. If all the spaces (Yi,τ i) in Lemma 9.4.7 are Hausdorff and (X,τ ) is compact,
show that condition (iii) of the lemma is superfluous.

4. If (X,τ ) is a countable discrete space, prove that it is homeomorphic to a
subspace of the Hilbert cube.

5. Verify that C[0, 1], with the metric d described in Example 6.1.5, is homeomorphic
to a subspace of the Hilbert cube.

6. If (Xi,τ i), i ∈ N, are second countable spaces, prove that
∏∞
i=1(Xi,τ i) is

second countable.

Lindelöf’s Theorem

7. (Lindelöf’s Theorem) Prove that every open covering of a second
countable space has a countable subcovering.

8. Deduce from Theorem 9.4.19 that every subspace of a separable metrizable
space is separable and metrizable.

9. (i) Prove that the set of all isolated points of a second countable space is
countable.

(ii) Hence, show that any uncountable subset A of a second countable space
contains at least one point which is a limit point of A.

10. (i) Let f be a continuous mapping of a Hausdorff non-separable space (X,τ )

onto itself. Prove that there exists a proper non-empty closed subset A of
X such that f(A) = A.

[Hint: Let x0 ∈ X and define a set S = {xn : n ∈ Z} such that xn+1 = f(xn)

for every integer n.]

(ii) Is the above result true if (X,τ ) is separable? (Justify your answer.)
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11. Let τ be the topology defined on R in Example 2.3.1. Prove that

(i) (R,τ ) is separable;

(ii) (R,τ ) is not second countable.

Countable Chain Condition

12. A topological space (X,τ ) is said to satisfy the countable chain condition if
every disjoint family of open sets is countable.

(i) Prove that every separable space satisfies the countable chain condition.

(ii) Let X be an uncountable set and τ the countable-closed topology on X.
Show that (X,τ ) satisfies the countable chain condition but is not separable.
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Scattered, Extremely Disconnected, and Collectionwise Hausdorff Spaces,

13. A topological space (X,τ ) is said to be scattered if every non-empty subspace
of X has an isolated point (see Exercises 9.1 #2).
(i) Verify that R, Q, and the Cantor Space are not scattered, while every discrete

space is scattered.
(ii) Let X = R2, d the Euclidean metric on R2 and d′ the metric on X given by

d′(x, y) = d(x, 0) + d(0, y) if x 6= y and d′(x, y) = 0 if x = y. Let τ be the
topology induced on X by the metric d′. The metric d′ is called the Post
Office Metric. A topological space is said to be extremally disconnected
if the closure of every open set is open. A topological space (Y,τ 1) is
said to be collectionwise Hausdorff if for every discrete subspace (Z,τ 2)

of (Y,τ 1) and each pair of points z1, z2 in Z, there are disjoint open sets
U1, U2 in (Y,τ 1) such that z1 ∈ U1 and z2 ∈ U2. Prove the following:

(a) Every point in (X,τ ), except x = 0, is an isolated point.
(b) 0 is not an isolated point of (X,τ ).
(c) (X,τ ) is a scattered space.
(d) (X,τ ) is totally disconnected.
(e) (X,τ ) is not compact.
(f) (X,τ ) is not locally compact (see Exercise 8.3 #1).
(g) Every separable metric space has cardinality less than or equal to c.
(h) (X,τ ) is an example of a metrizable space of cardinality c which is not

separable. (Note that the metric space (`∞, d∞) of Exercises 6.1 #7 (iii)
is also of cardinality c and not separable.)

(i) Every discrete space is extremally disconnected.
(j) (X,τ ) is not extremally disconnected.
(k) The product of any two scattered spaces is a scattered space.
(l) Let (S,τ 3) be the subspace {0, 1, 1

2 ,
1
3 , . . .

1
n , . . . } of R. Then S is not

extremally disconnected.
(m)* Every extremally disconnected metrizable space is discrete.

[Hint: Show that every convergent sequence must have repeated terms.]

(n) A topological space is Hausdorff if and only if it is a T1-space and
collectionwise Hausdorff.

(o)* Every extremally disconnected collectionwise Hausdorff space is discrete.
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Weight of a Topological Space

14. Let (X,τ ) be a topological space and B a basis for the topology τ with the
cardinality of B, card B, equal to the cardinal number m. If m is the smallest
such cardinal number of a basis for τ , then m is said to be the weight of the
topological space (X,τ ) and is denoted by w(X, τ ). Of course, if the weight
m 6 ℵ0, then (X,τ ) is said to be a second countable space.

(i) If the topological space (Y,τ 1) is a subspace of (X,τ ), verify that the weight
of the space (Y,τ 1) is less than or equal to the weight of the space (X,τ ).

(ii) Let (Xn,τn), n ∈ N, be topological spaces and m an infinite cardinal
number. If each space (Xn,τn) has weight not greater than m, prove
that the weight of the product space

∏
n∈N

(Xn,τn) is not greater than m.

(iii) Deduce from (ii) that the product space Rℵ0 is second countable.

Network, Network Weight

15. Let (X,τ ) be a topological space and N a set of (not necessarily open) subsets
of X. Then N is said to be a network if for each x ∈ X and each open
neighbourhood O of x, there is an N ∈ N such that x ∈ N ⊆ O. Let
card N = m. If m is the smallest such cardinal number of a network for (X,τ ),
then m is said to be the network weight of the topological space (X,τ ),
denoted by nw(X, τ ).

(i) Verify that for any topological space (X,τ ), nw(X,τ ) 6 w(X,τ ).

(ii) If (X,τ ) is a discrete space, then nw(X,τ ) = w(X,τ ) = card X.
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Cosmic Spaces

16. A topological space (Y,τ ) is said to be a cosmic space if there is a separable
metrizable space (X,τ 1) and a continuous mapping f bof (X,τ 1) onto Y (Y,τ ).

(i) Verify that a metrizable space is a cosmic space if and only if it is separable.

(ii) Prove that if (Xn,τn), n ∈ N, are cosmic spaces then
∏
n∈N

(Xn,τn) is a

cosmic space.

(iii) Verify that every continuous image of a cosmic space is a cosmic space.

(iv) Prove that every subspace of a cosmic space is a cosmic space.

(v) Prove that the cardinality of a cosmic space is less than or equal to c, the
cardinality of the set R of real numbers.

(vi) Prove that every cosmic space has a countable network. (See Exercises
9.4 #15. above.)

(vii) Verify that every cosmic space is a Lindelöf space. (See Exercises 10.3
#7.)

9.5 Peano’s Theorem

9.5.1 Remark. In the proof of Theorem 9.3.8 we showed that the Hilbert cube
I∞ is a continuous image of the Cantor Space (G,τ ). In fact, every compact metric
space is a continuous image of the Cantor Space. The next proposition is a step in
this direction.
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9.5.2 Proposition. Every separable metrizable space (X,τ 1) is a
continuous image of a subspace of the Cantor Space (G,τ ). Further, if (X,τ 1)

is compact, then the subspace can be chosen to be closed in (G,τ ).

Proof. Let φ be the continuous mapping of (G,τ ) onto I∞ shown to exist in the
proof of Theorem 9.3.8. By Urysohn’s Theorem 9.4.19, (X,τ 1) is homeomorphic
to a subspace (Y,τ 2) of I∞. Let the homeomorphism of (Y,τ 2) onto (X,τ 1) be
Θ. Let Z = ψ−1(Y ) and τ 3 be the subspace topology on Z. Then Θ ◦ ψ is a
continuous mapping of (Z,τ 3) onto (X,τ 1). So (X,τ 1) is a continuous image of
the subspace (Z,τ 3) of (G,τ ).

Further if (X,τ 1) is compact, then (Y,τ 2) is compact and hence closed in I∞.
So Z = ψ−1(Y ) is a closed subset of (G,τ ), as required.

9.5.3 Proposition. Let (Y,τ 1) be a (non-empty) closed subspace of the
Cantor Space (G,τ ). Then there exists a continuous mapping of (G,τ ) onto
(Y,τ 1).

Proof. Let (G′,τ ′) be the set of all real numbers which can be written in the
form

∑∞
i=1

ai
6i
, where each ai = 0 or 5, with the subspace topology induced from R.

The space (G′,τ ′) is called the middle two-thirds Cantor Space. Clearly (G′,τ ′)
is homeomorphic to the Cantor Space (G,τ ).

We can regard (Y,τ 1) as a closed subspace of (G′,τ ′) and seek a continuous
mapping of (G′,τ ′) onto (Y,τ 1). Before proceeding, observe from the construction
of the middle two thirds Cantor space that if g1 ∈ G′ and g2 ∈ G′, then g1+g2

2 /∈ G′.
The map ψ : (G′,τ ′) −→ (Y,τ 1) which we seek is defined as follows: for g ∈ G′,

ψ(g) is the unique element of Y which is closest to g in the euclidean metric on R.
However we have to prove that such a unique closest element exists.

Fix g ∈ G′. Then the map dg : (Y,τ 1) −→ R given by dg(y) = |g − y| is
continuous. As (Y,τ 1) is compact, Proposition 7.2.15 implies that dg(Y ) has a
least element. So there exists an element of (Y,τ 1) which is closest to g. Suppose
there are two such elements y1 and y2 in Y which are equally close to g. Then
g = y1+y2

2 . But y1 ∈ G′ and y2 ∈ G′ and so, as observed above, g = y1+y2
2 /∈ G′,
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which is a contradiction. So there exists a unique element of Y which is closest to
g. Call this element ψ(g).

It is clear that the map ψ : (G′,τ ′) −→ (Y,τ 1) is surjective, since for each
y ∈ Y , ψ(y) = y. To prove continuity of ψ, let g ∈ G′. Let ε be any given positive
real number. Then it suffices, by Corollary 6.2.4, to find a δ > 0, such that if x ∈ G′
and |g − x| < δ then |ψ(g)− ψ(x)| < ε.

Consider firstly the case when g ∈ Y , so ψ(g) = g. Put δ = ε
2 . Then for x ∈ G′

with |g − x| < δ we have

|ψ(g)− ψ(x)| = |g − ψ(x)|
6 |x− ψ(x)|+ |g − x|
6 |x− g|+ |g − x|, by definition of ψ since g ∈ Y
= 2|x− g|
< 2δ

= ε, as required.

Now consider the case when g /∈ Y , so g 6= ψ(g).

Without loss of generality, assume ψ(g) < g and put a = g − ψ(g).

If the set Y ∩ [g, 1] = Ø, then ψ(x) = ψ(g) for all x ∈ (g − a
2 , g + a

2).

Thus for δ < a
2 , we have |ψ(x)− ψ(g)| = 0 < ε, as required.

If Y ∩ [g, 1] 6= Ø, then as Y ∩ [g, 1] is compact it has a least element y > g.

Indeed by the definition of ψ, if b = y − g, then b > a.

Now put δ = b−a
2 .

So if x ∈ G′ with |g − x| < δ, then either ψ(x) = ψ(g) or ψ(x) = y. Observe that

|x− ψ(g)| 6 |x− g|+ |g − ψ(g)| < δ + a =
b− a

2
+ a =

b

2
+
a

2
while

|x− y| > |g − y| − |g − x| > b− b− a
2

=
b

2
+
a

2
.

So ψ(x) = ψ(g).

Thus |ψ(x)− ψ(g)| = 0 < ε, as required. Hence ψ is continuous. �

Thus we obtain from Propositions 9.5.2 and 9.5.3 the following theorem of
Alexandroff and Urysohn:
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9.5.4 Theorem. Every compact metrizable space is a continuous image
of the Cantor Space.

9.5.5 Remark. The converse of Theorem 9.5.4 is false. It is not true that
every continuous image of a Cantor Space is a compact metrizable space. (Find
an example.) However, an analogous statement is true if we look only at Hausdorff
spaces. Indeed we have the following proposition.

9.5.6 Proposition. Let f be a continuous mapping of a compact metric
space (X, d) onto a Hausdorff space (Y,τ 1). Then (Y,τ 1) is compact and
metrizable.

Proof. Since every continuous image of a compact space is compact, the space
(Y,τ 1) is certainly compact. As the map f is surjective, we can define a metric d1

on Y as follows: for each y1, y2 ∈ Y , d1(y1, y2) equals

inf
n∈N
{d(a1, b1) + · · ·+ d(an, bn) : f(a1) = y1, f(bn) = y2, bi = ai+1, i = 1, . . . , n− 1}.

We need to show that d1 is indeed a metric; this is left as an exercise. (See
Exercises 9.5 #3.)

Let τ 2 be the topology induced on Y by d1. We have to show that τ 1 = τ 2.

Firstly, by the definition of d1, f : (X,τ ) −→ (Y,τ 2) is certainly continuous and
so (X,τ 2) is compact.

Observe that for a subset C of Y ,

C is a closed subset of (Y,τ 1)

⇒ f−1(C) is a closed subset of (X,τ )

⇒ f−1(C) is a compact subset of (X,τ )

⇒ f(f−1(C)) is a compact subset of (Y,τ 2)

⇒ C is a compact subset of (Y,τ 2)

⇒ C is closed in (Y,τ 2).

So τ 1 ⊆ τ 2. Similarly we can prove τ 2 ⊆ τ 1, and thus τ 1 = τ 2.
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9.5.7 Corollary. Let (X,τ ) be a Hausdorff space. Then it is a continuous
image of the Cantor Space if and only if it is compact and metrizable.

Finally in this chapter we turn to space-filling curves.

9.5.8 Remark. Everyone thinks he or she knows what a “curve” is. Formally
we can define a curve in R2 to be the set f [0, 1], where f is a continuous map
f : [0, 1] −→ R2. It seems intuitively clear that a curve has no breadth and hence
zero area. This is false! In fact there exist space-filling curves; that is, f(I) has non-
zero area. Indeed the next theorem shows that there exists a continuous mapping
of [0, 1] onto the product space [0, 1]× [0, 1].

9.5.9 Theorem. (Peano) For each positive integer n, there exists a
continuous mapping ψn of [0, 1] onto the n-cube In.

Proof. By Theorem 9.5.4, there exists a continuous mapping φn of the Cantor
Space (G,τ ) onto the n-cube In. As (G,τ ) is obtained from [0, 1] by successively
dropping out middle thirds, we extend φn to a continuous mapping ψn : [0, 1] −→ In

by defining ψn to be linear on each omitted interval; that is, if (a, b) is one of the
open intervals comprising [0, 1] \G, then ψn is defined on (a, b) by

ψn (αa+ (1− α) b) = αφn(a) + (1− α)φn(b), 0 6 α 6 1.

It is easily verified that ψn is continuous.

We conclude this chapter by stating (but not proving) the Hahn-Mazurkiewicz
Theorem which characterizes those Hausdorff spaces which are continuous images
of [0,1]. [For a proof of the theorem see Wilder [402] and p. 221 of Kuratowski
[235].] But first we need a definition.
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9.5.10 Definition. A topological space (X,τ ) is said to be locally
connected if it has a basis of connected (open) sets.

9.5.11 Remark. Every discrete space is locally connected as are Rn and Sn, for
all n > 1. However, not every connected space is locally connected. (See Exercises
8.4 #6.)

Our final theorem in this section is beautiful. It was proved by Hans Hahn (1879–
1934) and Stefan Mazurkiewicz (1888–1945). Its proof can be found in Hocking
and Young [181].

9.5.12 Theorem. (Hahn-Mazurkiewicz Theorem) Let (X,τ ) be a
Hausdorff space. Then (X,τ ) is a continuous image of [0, 1] if and only if it is
compact, connected, metrizable and locally connected.

Hahn Mazurkiewicz
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Exercises 9.5

1. Let S ⊂ R2 be the set of points inside and on the triangle ABC, which has a
right angle at A and satisfies AC > AB. This exercise outlines the construction
of a continuous surjection f : [0, 1] → S. (This provides an easy example of a
space-filling curve; the curve f([0, 1]) fills S.)
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Let D on BC be such that AD is perpendicular to BC. Let a = ·a1a2a3 . . .

be a binary decimal, so that each an is 0 or 1. Then we construct a sequence
of points of S as follows : E is the foot of the perpendicular from D onto the
hypotenuse of the larger or smaller of the triangles ADB, ADC according as
a1 = 1 or 0, respectively. This construction is now repeated using E instead of
D and the appropriate triangle of ADB, ADC instead of ABC. For example,
the figure above illustrates the points E to I for the binary decimal .11001 . . . .

Give a rigorous inductive definition of the sequence of points and prove

(i) the sequence of points tends to a limit L(a) in S;
(ii) if λ ∈ [0, 1] is represented by distinct binary decimals a, a′ then L(a) = L(a′);

hence, the point L(λ) in S is uniquely defined;
(iii) if f : [0, 1]→ S is given by f(λ) = L(λ), then f is surjective;
(iv) f is continuous.
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2. Let (G,τ ) be the Cantor Space and consider the mappings

φi : (G,τ )→ [0, 1], i = 1, 2,

where

φ1

[ ∞∑
i=1

ai
3i

]
=
a1

22
+
a3

23
+ · · ·+ a2n−1

2n+1
+ . . .

and

φ2

[ ∞∑
i=1

ai
3i

]
=
a2

22
+
a4

23
+ · · ·+ a2n

2n+1
+ . . . .

(i) Prove that φ1 and φ2 are continuous.

(ii) Prove that the map a 7→ 〈φ1(a), φ2(a)〉 is a continuous map of (G,τ ) onto
[0, 1]× [0, 1].

(iii) If a and b ∈ (G,τ ) and (a, b) ∩G = Ø, define, for j = 1, 2 ,

φj(x) =
b− x
b− a

φj(a) + x− ab− a φj(b), a 6 x 6 b.

Show that

x 7→ 〈φ1(x), φ2(x)〉

is a continuous mapping of [0, 1] onto [0, 1] × [0, 1] and that each point of
[0, 1]× [0, 1] is the image of at most three points of [0, 1].

3. Prove that d1 in the proof of Proposition 9.5.6 is indeed a metric.

9.6 Postscript

In this chapter we have extended the notion of a product of a finite number of
topological spaces to that of the product of a countable number of topological
spaces. While this step is a natural one, it has led us to a rich collection of results,
some of which are very surprising.

We proved that a countable product of topological spaces with property P has
property P, where P is any of the following: (i) T0-space (ii) T1-space (iii)
Hausdorff (iv) metrizable (v) connected (vi) totally disconnected (vii) second
countable. It is also true when P is compact, this result being the Tychonoff
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Theorem for countable products. The proof of the countable Tychonoff Theorem
for metrizable spaces presented here is quite different from the standard one which
appears in the next section. Our proof relies on the Cantor Space.

The Cantor Space was defined to be a certain subspace of [0, 1]. Later it was
shown that it is homeomorphic to a countably infinite product of 2-point discrete
spaces. The Cantor Space appears to be the kind of pathological example pure
mathematicians are fond of producing in order to show that some general statement
is false. But it turns out to be much more than this.

The Alexandroff-Urysohn Theorem 9.5.4 says that every compact metrizable
space is an image of the Cantor Space. In particular [0, 1] and the Hilbert cube (a
countable infinite product of copies of [0, 1]) is a continuous image of the Cantor
Space. This leads us to the existence of space-filling curves – in particular, we show
that there exists a continuous map of [0, 1] onto the cube [0, 1]n, for each positive
integer n. We stated, but did not prove, the Hahn-Mazurkiewicz Theorem 9.5.12:
The Hausdorff space (X,τ ) is an image of [0, 1] if and only if it is compact connected
locally connected and metrizable.

Next we mention Urysohn’s Theorem 9.4.19, which says that a space is separable
and metrizable if and only if it is homeomorphic to a subspace of the Hilbert cube.
This shows that [0, 1] is not just a “nice” topological space, but a “generator” of
the important class of separable metrizable spaces via the formation of subspaces
and countable products.

Finally we mention a beautiful and deep theorem related to countably infinite
products which we have not proved in this chapter. For proofs of this theorem and
discussion, see Anderson and Bing [11],Toruǹczyk [375], and Bessaga and Pelczynski
[40]. We include a few related and surprising results from Bessaga and Pelczynski
[40]; for example, the open unit ball, the closed unit ball, the unit sphere, any
non-empty open convex subset, and any closed convex set with non-empty
interior in a separable infinite-dimensional Banach space B are homeomorphic
to each other and to the whole space B.

Note that, within the context of topological vector spaces a Frechet space is
a complete metrizable locally convex topological vector space.
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9.6.1 Theorem. (Anderson-Bessaga-Kadec-Pelczyński-Toruǹczyk)

(i) Every separable infinite-dimensional Fréchet space is homeomorphic to the
countably infinite product Rℵ0;

(2) Every infinite-dimensional Fréchet space is homeomorphic to a Hilbert space.

9.6.2 Corollary. Every separable infinite-dimensional Banach space is
homeomorphic to the countably infinite product Rℵ0.

9.6.3 Corollary. Every separable infinite-dimensional Banach space is
homeomorphic to the separable Hilbert space `2.

9.6.4 Corollary. If B1 and B2 are any separable infinite-dimensional Banach
spaces, then B1 is homeomorphic to B2.

9.6.5 Theorem. (Bessaga and Pelczynski [40, Chapter VI, Theorem 6.2])
Let B be an infinite-dimensional Banach space, S = {x : x ∈ B, ||x|| = r} a
sphere in B of radius r > 0, and C = {x : x ∈ B, ||X|| 6 r||} a closed ball in
B. Then B, S and C are homeomorphic.

9.6.6 Remark. Let N be an infinite-dimensional normed vector space and
O = {x : ||x|| < 1} an open ball in N of radius 1. Observe that x 7→ x

1+||x|| is

a continuous map of N onto O with continuous inverse x 7→ x
1−||x||. So the open

unit ball O is homeomorphic to N . Indeed every open ball in N is homeomorphic to
N .
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9.6.7 Corollary. (Bessaga and Pelczynski [40, Chapter VI, Theorem 6.2])
Let B be an infinite-dimensional Banach space. If S = {x : x ∈ B, ||x|| = r}
a sphere in B of radius r > 0, C = {x : x ∈ B, ||X|| 6 r||} a closed ball in
B, and O = {x : x ∈ B, ||x|| < r} an open ball in B, then B, S, C and O are
homeomorphic.
Indeed, if E is a closed convex subspace of an infinite-dimensional Fréchet space
F such that E has non-empty interior, then E is homeomorphic to F .

9.6.8 Corollary. If F is a separable infinite-dimensional Fréchet space, B is
a separable infinite-dimensional Banach space, S is a sphere in B, C is a closed
ball in B, O is an open ball in B, W is an open convex subspace of F , E is a
Gδ subspace of F with non-empty interior, then the following topological spaces
are homeomorphic.

(a) Rℵ0;
(b) (Rℵ0)m, where m is any positive integer or ℵ0;

(c) `2;

(d) (`2)m, where m is any positive integer or ℵ0;

(e) F ;
(f) Fm, where m is any positive integer or ℵ0;

(g) B;

(h) Bm, where m is any positive integer or ℵ0;

(i)
∞∏
i=1

Gi, where each Gi is a separable infinite-dimensional Fréchet or Banach

or Hilbert space;

(j) Sm, where m is any positive integer or ℵ0;

(k) Cm, where m is any positive integer or ℵ0;

(l) Om, where m is any positive integer or ℵ0;

(m) Wm, where m is any positive integer or ℵ0;

(n) Em, where m is any positive integer or ℵ0.
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9.6.9 Remark. Teachers of topology and authors of books on topology should
give some thought to Corollary 9.6.8. Often when teaching topology some teachers
give many examples of topological spaces drawn from the set of infinite-dimensional
separable Banach spaces. But we now see that these spaces are all homeomorphic,
so as far as topology is concerned they represent the same example over and over
again.
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http://www-history.mcs.st-andrews.ac.uk/Miscellaneous/Copyright.html.
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to the Art. 3 of copyright law of March 29, 1926 of the Republic of Poland and
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Chapter 10

Tychonoff’s Theorem

Introduction

In Chapter 9 we defined the product of a countably infinite family of topological
spaces. We now proceed to define the product of any family of topological spaces
by replacing the set {1, 2, . . . , n, . . . } by an arbitrary index set I. The central result
will be the general Tychonoff Theorem.

The reader should be aware that this chapter is more sophisticated and
challenging than previous chapters. However, the reward is that you will experience,
and hopefully enjoy, some beautiful mathematics.

Andrey Nikolayevich Tychonoff (or Tikhonov)
Russian mathematician (1906–1993)
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10.1 The Product Topology For All Products

10.1.1 Definitions. Let I be a set, and for each i ∈ I, let (Xi,τ i)
be a topological space. We write the indexed family of topological spaces as
{(Xi,τ i) : i ∈ I}. Then the product (or cartesian product) of the family of
sets {Xi : i ∈ I} is denoted by

∏
i∈I Xi, and consists of the set of all functions

f : I −→
⋃
i∈I Xi such that fi = xi ∈ Xi. We denote the element f of the

product by
∏
i∈I xi, and refer to f(i) = xi as the ith coordinate.

If I = {1, 2} then
∏
i∈{1,2}Xi is just the set of all functions f : {1, 2} →

X1 ∪ X2 such that f(1) ∈ X1 and f(2) ∈ X2. A moment’s thought
shows that

∏
i∈{1,2}Xi is a set “isomorphic to” X1 ×X2. Similarly if

I = {1, 2, . . . , n, . . . }, then
∏
i∈I Xi is “isomorphic to” our previously

defined
∏∞
i=1Xi.

The product space, denoted by
∏
i∈I(Xi, τ i), consists of the product set∏

i∈I Xi with the topology τ having as its basis the family

B =

{∏
i∈I

Oi : Oi ∈ τ i and Oi = Xi, for all but a finite number of i

}
.

The topology τ is called the product topology (or the Tychonoff topology).

10.1.2 Remark. Although we have defined
∏
i∈I(Xi,τ i) rather differently to

the way we did when I was countably infinite or finite you should be able to convince
yourself that when I is countably infinite or finite the new definition is equivalent to
our previous ones. Once this is realized many results on countable products can be
proved for uncountable products in an analogous fashion. We state them below. It
is left as an exercise for the reader to prove these results for uncountable products.
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10.1.3 Proposition. Let I be a set and for i ∈ I, let Ci be a closed
subset of a topological space (X,τ i). Then

∏
i∈I Ci is a closed subset of∏

i∈I(Xi,τ i). �

10.1.4 Proposition. Let I be a set and and let {(Xi,τ i) : i ∈ I} be
a family of topological spaces having product space (

∏
i∈I Xi,τ ). If for each

i ∈ I, Bi is a basis for τ i, then

B′ =
{∏
i∈I

Oi : Oi ∈ Bi and Oi = Xi for all but a finite number of i

}
is a basis for τ . �

10.1.5 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a family
of topological spaces having product space (

∏
i∈I Xi,τ ). For each j ∈ I, let

pj :
∏
i∈I Xi −→ Xj be the projection mapping; that is, pj(

∏
i∈I xi) = xj, for

each
∏
i∈I xi ∈

∏
i∈I Xi. Then

(i) each pj is a continuous surjective open mapping, and

(ii) τ is the coarsest topology on the set
∏
i∈I Xi such that each pj is

continuous. �

10.1.6 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a family
of topological spaces with product space

∏
i∈I(Xi,τ i). Then each (Xi,τ i) is

homeomorphic to a subspace of
∏
i∈I(Xi,τ i). �
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10.1.7 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} and
{(Yi,τ ′i) : i ∈ I} be families of topological spaces. If hi : (Xi,τ i) −→ (Yi,τ ′i) is
a continuous mapping, for each i ∈ I, then h :

∏
i∈I(Xi,τ i) −→

∏
i∈I(Yi,τ ′i)

is continuous, where h(
∏
i∈I xi) =

∏
i∈I hi(xi). �

10.1.8 Proposition. Let I be a set and let {(Xi,τ i) : i ∈ I} be a
family of topological spaces and f a mapping of a topological space (Y,τ )

into
∏
i∈I(Xi,τ i). Then f is continuous if and only if each mapping pi ◦ f :

(Y,τ ) −→ (Xi,τ i) is continuous, where pi, i ∈ I, denotes the projection
mapping of

∏
i∈I(Xi,τ i) onto (Xi,τ i). �

10.1.9 Lemma. (The Embedding Lemma) Let I be an index set
and {(Yi,τ i) : i ∈ I} a family of topological spaces and for each i ∈ I,
let fi be a mapping of a topological space (X,τ ) into (Yi,τ i). Further let
e : (X,τ ) −→

∏
i∈I(Yi,τ i) be the evaluation map; that is, e(x) =

∏
i∈I fi(x),

for all x ∈ X. Then e is a homeomorphism of (X,τ ) onto the space (e(X),τ ′),
where τ ′ is the subspace topology on e(X) if

(i) each fi is continuous.

(ii) the family {fi : i ∈ I} separates points of X; that is, if x1 and x2 are in
X with x1 6= x2, then for some i ∈ I, fi(x1) 6= f1(x2), and

(iii) the family {fi : i ∈ I} separates points and closed sets; that is, for x ∈ X
and A any closed subset of (X,τ ) not containing x, fi(x) /∈ fi(A), for some
i ∈ I. �

10.1.10 Corollary. If (X,τ ) in Lemma 10.1.9 is a T1-space, then condition
(ii) is superfluous. �
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10.1.11 Definitions. Let (X,τ ) and (Y,τ ′) be topological spaces. Then
we say that (X,τ ) can be embedded in (Y,τ ′) if there exists a continuous
mapping f : (X,τ ) −→ (Y,τ ′), such that f : (X,τ ) −→ (f(X),τ ′′) is a
homeomorphism, where τ ′′ is the subspace topology on f(X) from (Y,τ ′).
The mapping f : (X,τ ) −→ (Y,τ ′) is said to be an embedding.

Exercises 10.1

1. For each i ∈ I, some index set, let (Ai,τ ′i) be a subspace of (Xi,τ i).

(i) Prove that
∏
i∈I(Ai,τ ′i) is a subspace of

∏
i∈I(Xi,τ i).

(ii) Prove that
∏
i∈I Ai =

∏
i∈I Ai .

(iii) Prove that Int(
∏
i∈I Ai) ⊆

∏
i∈I(Int(Ai)).

(iv) Give an example where equality does not hold in (iii).

2. Let J be any index set, and for each j ∈ J, (Gj ,τ j) a topological space
homeomorphic to the Cantor Space, and Ij a topological space homeomorphic
to [0, 1]. Prove that

∏
j∈J Ij is a continuous image of

∏
j∈J(Gj , Tj).

3. Let {(Xj,τ j) : j ∈ J} be any infinite family of separable metrizable spaces.
Prove that

∏
j∈J(Xj ,τ j) is homeomorphic to a subspace of

∏
j∈J I

∞
j , where

each I∞j is homeomorphic to the Hilbert cube.



10.1. THE PRODUCT TOPOLOGY FOR ALL PRODUCTS 263

4. (i) Let J be any infinite index set and {(Xi,j ,τ i,j) : i ∈ N and j ∈ J} a family
of

homeomorphic topological spaces. Prove that∏
j∈J

(∏
i∈N

(Xi,j,τ i,j)
)
∼=
∏
j∈J

(X1,j,τ 1,j).

(ii) For each j ∈ J , any infinite index set, let (Aj ,τ ′j) be homeomorphic to
the discrete space {0, 2} and (Gj, Tj) homeomorphic to the Cantor Space.
Deduce from (i) that ∏

j∈J
(Aj ,τ ′j) ∼=

∏
j∈J

(Gj , Tj).

(iii) For each j ∈ J , any infinite index set, let Ij be homeomorphic to [0, 1], and
I∞j homeomorphic to the Hilbert cube I∞. Deduce from (i) that∏

j∈J
Ij ∼=

∏
j∈J

I∞j .

(iv) Let J, Ij , I∞j , and (Aj ,τ ′j) be as in (ii) and (iii). Prove that
∏
j∈J Ij and∏

j∈J I
∞
j are continuous images of

∏
j∈J(Aj,τ ′j).

(v) Let J and Ij be as in (iii). If, for each j ∈ J , (Xj ,τ j) is a separable
metrizable space, deduce from #3 above and (iii) above that

∏
j∈J(Xj ,τ j)

is homeomorphic to a subspace of
∏
j∈J Ij.

5. If I is an index set and each (Vi,τ i), i ∈ I, is a topological vector space, then
(
∏
i∈I Vi,τ ), with the obvious vector space structure and the product topology

τ , is a topological vector space. Deduce that if each (Vi,τ i) is a locally convex
space (or more particularly a normed vector space or a Banach space) then
(
∏
i∈I Vi,τ ) is a locally convex space.
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6.** Let (E,τ ) be a Hausdorff locally convex space. Then there exists an index set
I, a set {Bi : i ∈ I} of Banach spaces, and a linear map Φ : E →

∏
i∈I Bi

(with the product topology) which is an embedding. (In other words, every
Hausdorff locally convex space can be embedded as a topological vector
subspace of a product of Banach spaces.)

[Hint. Let {pi : i ∈ I} be the set of all continuous seminorms on (E,τ ). Verify
that for each i ∈ I, Ai = {x : x ∈ E, pi(x) = 0} is a vector subspace of E. Let
Ni be the quotient vector space E/Ai. Define a seminorm qi on Ni = E/Ai
in a natural way and verify that it is in fact a norm. Thus Ni is a normed
vector space. Using Exercises 6.3 #12, let Bi be the Banach space which is the
completion of the normed vector space Ni. Verify that the natural linear maps
φ : E → Bi are continuous. Prove that these linear maps φi, i ∈ I, define an
embedding linear map Φ : E →

∏
i∈I Bi.]

10.2 Zorn’s Lemma

Our next task is to prove the general Tychonoff Theorem which says that any
product of compact spaces is compact. However, to do this we need to use Zorn’s
Lemma which requires a little preparation.

10.2.1 Definitions. (Davey and Priestley [93]) A partial order on a set
X is a binary relation, denoted by 6, which has the properties:

(i) x 6 x, for all x ∈ X (reflexive)

(ii) if x 6 y and y 6 x, then x = y, for x, y ∈ X (antisymmetric), and

(iii) if x 6 y and y 6 z, then x 6 z, for x, y, z ∈ X (transitive)

The set X equipped with the partial order 6 is called a partially ordered set or
a poset and is denoted by (X,6). If x 6 y and x 6= y, then we write x < y.

10.2.2 Examples. The prototype of a partially ordered set is the set N of all
natural numbers equipped with the usual ordering of natural numbers.

Similarly the sets Z, Q, and R with their usual orderings form partially ordered
sets. �
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10.2.3 Example. Let N be the set of natural numbers and let 6 be defined as
follows:

n 6 m if n divides m

So 3 6 6 but 3 66 5. (It is left as an exercise to verify that with this ordering N is a
partially ordered set.) �

10.2.4 Example. Let X be the class of all subsets of a set U . We can define
a partial ordering on X by putting

A 6 B if A is a subset of B

where A and B are in X.
It is easily verified that this is a partial order. �

10.2.5 Example. Let (X,6) be a partially ordered set. We can define a new
partial order 6∗ on X by defining

x 6∗ y if y 6 x.

�
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10.2.6 Example. There is a convenient way of picturing partially ordered sets;
this is by an order diagram.
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...................................................................................................................................................................

An element x is less than an element y if and only if one can go from x to y by
moving upwards on line segments. So in our order diagram

a < b, a < g, a < h, a < i, a < j, a < f, b < g, b < h,

b < i, b < f, c < b, c < f, c < g, c < h, c < i, d < a, d < b,

d < g, d < h, d < f, d < i, d < j, e < f, e < g, e < h, e < i,

f < g, f < h, g < h, g < i.

However d 66 c and c 66 d, e 66 f and f 66 e, etc. �
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10.2.7 Definition. Two elements x and y of a partially ordered set (X,6)

are said to be comparable if either x 6 y or y 6 x.

10.2.8 Remark. We saw in the order diagram above that the elements d and
c are not comparable. Also 1 and e are not comparable.

In N, Q, R, and Z with the usual orderings, every two elements are comparable.
In Example 10.2.4, 3 and 5 are not comparable. �

10.2.9 Definitions. A partially ordered set (X,6) is said to be linearly
ordered (or totally ordered) if every two elements are comparable. The order
6 is then said to be a linear order (or a total order.) The linear ordering is
said to be a strict linear ordering (or a strict total ordering) if

a 6 b and b 6 a =⇒ a = b, for a, b ∈ X.

10.2.10 Examples. The usual orders on R, Q, N, and Z are linear orders.
The partial order of Example 10.2.4 is not a linear order (if U has at least two

points). �

10.2.11 Definition. Let (X,6) be a partially ordered set. Then an element
s ∈ X is said to be the greatest element of X if x 6 s, for all x ∈ X.

10.2.12 Definition. Let (X,6) be a partially ordered set and Y a subset
of X. An element t ∈ X is said to be an upper bound for Y if y 6 t, for all
y ∈ Y .

It is important to note that an upper bound for Y need not be in Y .
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10.2.13 Definition. Let (X,6) be a partially ordered set. Then an element
w ∈ X is said to be maximal if w 6 x, with x ∈ X, implies w = x.

10.2.14 Remark. It is important to distinguish between maximal elements and
greatest elements. Consider the order diagram in Example 10.2.6. There is no
greatest element! However, j, h, i and f are all maximal elements. �

10.2.15 Remark. We can now state Zorn’s Lemma. Despite the name
“Lemma”, it is, in fact, an axiom and cannot be proved. It is equivalent to various
other axioms of Set Theory such as the Axiom of Choice and the Well-Ordering
Theorem. [A partially ordered set (S,6) is said to be well-ordered if every non-
empty subset of S has a least element. The Well-Ordering Theorem states
that there exists a well-ordering on every set. See, for example, Halmos [162]
or Wilder [402].] For a discussion of Zorn’s Lemma, the Axiom of Choice and
Tychonoff’s Theorem, see Remark A6.1.24. Also see Rubin and Rubin [328]. We
shall take Zorn’s Lemma as one of the axioms of our set theory and so use it
whenever we wish.

10.2.16 Axiom. (Zorn’s Lemma) Let (X,6) be a non-empty partially
ordered set in which every subset which is linearly ordered has an upper bound.
Then (X,6) has a maximal element.

10.2.17 Example. Let us apply Zorn’s Lemma to the lattice diagram of
Example 10.2.6. There are many linearly ordered subsets:

{i, g, b, a}, {g, b, a}, {b, a}, {g, b}, {i, g}, {a}, {b},
{g}, {i}, {i, b, a}, {i, g, a}, {i.a}, {g, a}, {h, g, e},
{h, e}, {g, e}, etc.

Each of these has an upper bound – i, i, i, i, i, i, i, i, i, i, i, i, i, h, h, h, etc. Zorn’s
Lemma then says that there is a maximal element. In fact there are 4 maximal
elements, j, h, f and i. �
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Exercises 10.2

1. Let X = {a, b, c, d, e, f, u, v}. Draw the order diagram of the partially ordered
set (X,6) where

v < a, v > b, v < c, v < d, v < e, v < f, v < u,

a < c, a < d, a < e, a < f, a < u,

b < c, b > d, b < e, b < f, b < u,

c < d, c < e, c < f, c < u,

d < e, d < f, d < u,

e < u, f < u.

2. In Example 10.2.3, state which of the following subsets of N is linearly ordered:

(a) {21, 3, 7};
(b) {3, 6, 15};
(c) {2, 6, 12, 72};
(d) {1, 2, 3, 4, 5, ...};
(e) {5}.

3. Let (X,6) be a linearly ordered set. If x and y are maximal elements of X,
prove that x = y.

4. Let (X,6) be a partially ordered set. If x and y are greatest elements of X,
prove that x = y.

5. Let X = {2, 3, 4, 5, 6, 7, 8, 9, 10} be partially ordered as follows:

x 6 y if y is a multiple of x.

Draw an order diagram and find all the maximal elements of (X,6). Does
(X,6) have a greatest element?
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6.* Using Zorn’s Lemma 10.2.16 prove that every vector space V has a basis.
[Hints: (i) Consider first the case where V = {0}.

(ii) Assume V 6= {0} and define

B = {B : B is a set of linearly independent vectors of V.}

Prove that B 6= Ø.

(iii) Define a partial order 6 on B by

B1 6 B2 if B1 ⊆ B2.

Let {Bi : i ∈ I} be any linearly ordered subset of B. Prove that
A =

⋃
i∈I Bi is a linearly independent set of vectors of V .

(iv) Deduce that A ∈ B and so is an upper bound for {Bi : i ∈ I}.
(v) Apply Zorn’s Lemma to show the existence of a maximal element of
B. Prove that this maximal element is a basis for V .]

10.3 Tychonoff’s Theorem

10.3.1 Definition. Let X be a set and F a family of subsets of X. Then
F is said to have the finite intersection property or (F.I.P.) if for any finite
number F1, F2, . . . , Fn of members of F , F1 ∩ F2 ∩ · · · ∩ Fn 6= Ø.
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10.3.2 Proposition. Let (X,τ ) be a topological space. Then (X,τ ) is
compact if and only if every family F of closed subsets of X with the finite
intersection property satisfies

⋂
F∈F F 6= Ø.

Proof. Assume that every family F of closed subsets of X with the finite
intersection property satisfies

⋂
F∈F F 6= Ø. Let U be any open covering of X. Put

F equal to the family of complements of members of U . So each F ∈ F is closed
in (X,τ ). As U is an open covering of X,

⋂
F∈F F = Ø. By our assumption, then,

F does not have the finite intersection property. So for some F1, F2, . . . , Fn in F ,
F1∩F2∩· · ·∩Fn = Ø. Thus U1∪U2∪· · ·∪Un = X, where Ui = X \Fi, i = 1, . . . , n.
So U has a finite subcovering. Hence (X,τ ) is compact.

The converse statement is proved similarly. �

10.3.3 Lemma. Let X be a set and F a family of subsets of X with the
finite intersection property. Then there is a maximal family of subsets of X that
contains F and has the finite intersection property.

Proof. Let Z be the collection of all families of subsets of X which contain F
and have the finite intersection property. Define a partial order 6 on Z as follows:
if F1 and F2 are in Z then put F1 6 F2 if F1 ⊆ F2. Let Y be any linearly ordered
subset of Z. To apply Zorn’s Lemma 10.2.16 we need to verify that Y has an
upper bound. We claim that

⋃
Y∈Y Y is an upper bound for Y . Clearly this contains

F , so we have to show only that it has the finite intersection property. So let
S1, S2, . . . , Sn ∈

⋃
Y∈Y Y. Then each Si ∈ Yi, for some Yi ∈ Y . As Y is linearly

ordered, one of the Yi contains all of the others. Thus S1, S2, . . . , Sn all belong to
that Yi. As Yi has the finite intersection property, S1 ∩ S2 ∩ · · · ∩ Sn 6= Ø. Hence⋃
Y∈Y Y has the finite intersection property and is, therefore, an upper bound in X

of Y . Thus by Zorn’s Lemma, Z has a maximal element. �

We can now prove the much heralded Tychonoff Theorem.
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10.3.4 Theorem. (Tychonoff’s Theorem) Let {(Xi,τ i) : i ∈ I} be
any family of topological spaces. Then

∏
i∈I(Xi,τ i) is compact if and only if

each (Xi,τ i) is compact.

Proof. We shall use Proposition 10.3.2 to show that (X,τ ) =
∏
i∈I(Xi,τ i) is

compact, if each (Xi,τ i) is compact. Let F be any family of closed subsets of X
with the finite intersection property. We have to prove that

⋂
F∈F F 6= Ø.

By Lemma 10.3.3 there is a maximal family H of (not necessarily closed) subsets
of (X,τ ) that contains F and has the finite intersection property. We shall prove
that

⋂
H∈HH 6= Ø, from which follows the required result

⋂
F∈F F 6= Ø, since each

F ∈ F is closed.
As H is maximal with the property that it contains F and has the finite

intersection property, if H1, H2, . . . , Hn ∈ H, for any n ∈ N, then the set H ′ =
H1∩H2∩· · ·∩Hn ∈ H. Suppose this was not the case. Then the set H′ = H∪{H ′}
would properly contain H and also have the property that it contains F and has the
finite intersection property. This is a contradiction to H being maximal. So H′ = H
and H ′ = H1 ∩H2 ∩ · · · ∩Hn ∈ H.

Let S be any subset of X that intersects non-trivially every member of H. We
claim thatH∪{S} has the finite intersection property. To see this letH ′1, H

′
2, . . . , H

′
m

be members of H. We shall show that S ∩H ′1 ∩H
′
2 ∩ . . . H

′
m 6= Ø. By the previous

paragraph, H ′1 ∩H
′
2 ∩ . . . H

′
m ∈ H. So by assumption S ∩ (H ′1 ∩H

′
2 ∩ . . . H

′
m) 6= Ø.

Hence H ∪ {S} has the finite intersection property and contains F . Again using
the fact that H is maximal with the property that it contains F and has the finite
intersection property, we see that S ∈ H.

Fix i ∈ I and let pi :
∏
i∈I(Xi,τ i)→ (Xi,τ i) be the projection mapping. Then

the family {pi(H) : H ∈ H} has the finite intersection property. Therefore the
family {pi(H) : H ∈ H} has the finite intersection property. As (Xi, Ti) is compact,⋂
H∈H pi(H) 6= Ø. So let xi ∈

⋂
H∈H pi(H). Then for each i ∈ I, we can find a

point xi ∈
⋂
H∈H pi(H). Put x =

∏
i∈I xi ∈ X.

We shall prove that x ∈
⋂
h∈HH. Let O be any open set containing x. Then

O contains a basic open set about x of the form
⋂
i∈J p

−1
i (Ui), where Ui ∈ τ i,

xi ∈ Ui and J is a finite subset of I. As xi ∈ pi(H), Ui ∩ pi(H) 6= Ø, for all
H ∈ H. Thus p−1

i (Ui) ∩ H 6= Ø, for all H ∈ H. By the observation above, this
implies that p−1

i (Ui) ∈ H, for all i ∈ J . As H has the finite intersection property,⋂
i∈J p

−1
i (U1) ∩ H 6= Ø, for all H ∈ H. So O ∩ H 6= Ø for all H ∈ H. Hence

x ∈
⋂
H∈HH, as required.

Conversely, if
∏
I∈I(Xi,τ i) is compact, then by Propositions 7.2.1 and 10.1.5

(i) each (Xi,τ i) is compact. �
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10.3.5 Notation. Let A be any set and for each a ∈ A let the topological
space (Ia,τ a) be homeomorphic to [0, 1]. Then the product space

∏
a∈A(Ia,τ a) is

denoted by IA and referred to as a cube.

Observe that IN is just the Hilbert cube which we also denote by I∞.

10.3.6 Corollary. For any set A, the cube IA is compact.

10.3.7 Proposition. Let (X, d) be a metric space. Then it is
homeomorphic to a subspace of the cube IX .

Proof. Without loss of generality, assume d(a, b) 6 1 for all a and b in X. For
each a ∈ X, let fa be the continuous mapping of (X, d) into [0, 1] given by

fa(x) = d(x, a).

That the family {fa : a ∈ X} separates points and closed sets is easily shown (cf. the
proof of Theorem 9.4.11). Thus, by Corollary 10.1.10 of the Embedding Lemma,
(X, d) is homeomorphic to a subspace of the cube IX . �

This leads us to ask: Which topological spaces are homeomorphic to subspaces
of cubes? We now address this question.

10.3.8 Definitions. Let (X,τ ) be a topological space. Then (X,τ ) is
said to be completely regular if for each x ∈ X and each open set U 3 x,
there exists a continuous function f : (X,τ ) −→ [0, 1] such that f(x) = 0 and
f(y) = 1 for all y ∈ X \ U . If (X,τ ) is also Hausdorff, then it is said to be
Tychonoff space (or a T

31
2
-space).
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10.3.9 Proposition. Let (X, d) be a metric space and τ the topology
induced on X by d. Then (X,τ ) is a Tychonoff space.

Proof. Let a ∈ X and U be any open set containing a. Then U contains an
open ball with centre a and radius ε, for some ε > 0. Define f : (X, d) −→ [0, 1] by

f(x) = min

{
1,
d(x, a)

ε

}
, for x ∈ X.

Then f is continuous and satisfies f(a) = 0 and f(y) = 1, for all y ∈ X \ U . As
(X, d) is also Hausdorff, it is a Tychonoff space. �

10.3.10 Corollary. The space [0, 1] is a Tychonoff space. �

10.3.11 Proposition. If {(Xi,τ i) : i ∈ I} is any family of completely
regular spaces, then

∏
i∈I(Xi,τ i) is completely regular.

Proof. Let a =
∏
i∈I ai ∈

∏
i∈I Xi and U be any open set containing a. Then

there exists a finite subset J of I and sets Ui ∈ τ i such that

a ∈
∏
i∈I

Ui ⊆ U

where Ui = Xi for all i ∈ I \ J. As (Xj, Tj) is completely regular for each j ∈ J ,
there exists a continuous mapping fj : (Xj ,τ j) −→ [0, 1] such that fj(aj) = 0 and
fj(y) = 1, for all y ∈ Xj \ Uj. Then fj ◦ pj :

∏
i∈I(Xi,τ i) −→ [0, 1], where pj

denotes the projection of
∏
i∈I(Xi,τ i) onto (Xj ,τ j).

If we put f(x) = max{fj ◦ pj(x) : j ∈ J}, for all x ∈
∏
i∈I Xi, then f :∏

i∈I(Xi,τ i) −→ [0, 1] is continuous (as J is finite). Further, f(a) = 0 while
f(y) = 1 for all y ∈ X \ U . So

∏
i∈I(Xi,τ i) is completely regular. �
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The next proposition is easily proved and so its proof is left as an exercise.

10.3.12 Proposition. If {(Xi,τ i) : i ∈ I} is any family of Hausdorff
spaces, then

∏
i∈I(Xi,τ i) is Hausdoroff.

Proof. Exercise. �

10.3.13 Corollary. If {(Xi,τ i) : i ∈ I} is any family of Tychonoff spaces,
then

∏
i∈I(Xi,τ i) is a Tychonoff space. �

10.3.14 Corollary. For any set X, the cube IX is a Tychonoff space. �

10.3.15 Proposition. Every subspace of a completely regular space is
completely regular.

Proof. Exercise. �

10.3.16 Corollary. Every subspace of a Tychonoff space is a Tychonoff
space.

Proof. Exercise. �
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10.3.17 Proposition. If (X,τ ) is any Tychonoff space, then it is
homeomorphic to a subspace of a cube.

Proof. Let F be the family of all continuous mappings f : (X,τ ) −→ [0, 1]. Then
if follows easily from Corollary 10.1.10 of the Embedding Lemma and the definition
of completely regular, that the evaluation map e : (X,τ )→ IF is an embedding.�

Thus we now have a characterization of the subspaces of cubes. Putting
together Proposition 10.3.17 and Corollaries 10.3.14 and 10.3.16 we obtain:

10.3.18 Proposition. A topological space (X,τ ) can be embedded in a
cube if and only if it is a Tychonoff space. �

10.3.19 Remark. We now proceed to show that the class of Tychonoff spaces
is quite large and, in particular, includes all compact Hausdorff spaces.

10.3.20 Definitions. A topological space (X,τ ) is said to be a normal
space if for each pair of disjoint closed sets A and B, there exist open sets U
and V such that A ⊆ U , B ⊆ V and U ∩ V = Ø. A normal space which is also
Hausdorff is said to be a T4-space.

10.3.21 Remarks. In Exercises 6.1 #9 it is noted that every metrizable space
is a normal space. A little later we shall verify that every compact Hausdorff space
is normal. First we shall prove that every normal Hausdorff space is a Tychonoff
space (that is, every T4-space is a T

31
2
-space).

Putting C = X \B, and K = X \V in Definition 10.3.20 of a normal space, we
see that a topological space (X, τ ) is a normal space if and only if for every
closed set A and open set C with A ⊆ C, there exists a closed set K with
A ⊆ Int(K) ⊆ K ⊆ C.
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10.3.22 Theorem. (Urysohn’s Lemma) Let (X,τ ) be a topological
space. Then (X,τ ) is normal if and only if for each pair of disjoint closed sets
A and B in (X,τ ) there exists a continuous function f : (X,τ ) −→ [0, 1] such
that f(a) = 0 for all a ∈ A, and f(b) = 1 for all b ∈ B.

Proof. Assume that for each A and B an f with the property stated above exists.
Then U = f−1([0, 1

2)) and V = f−1((1
2 , 1]) are open in (X,τ ) and satisfy A ⊆ U ,

B ⊆ V , and A ∩B = Ø. Hence (X,τ ) is normal.

Conversely, assume (X,τ ) is normal. We shall construct a family {Ui : i ∈ D} of
open subsets of X, where the set D is given by D =

{ k
2n : k = 1, 2, . . . , 2n, n ∈ N

}
.

So D is a set of dyadic rational numbers, such that A ⊆ Ui, Ui ∩ B = Ø, and
d1 6 d2 implies Ud1 ⊆ Ud2. As (X,τ ) is normal, for any pair A,B of disjoint closed
sets, there exist disjoint open sets U1

2
and V1

2
such that A ⊆ U1

2
and B ⊆ V1

2
. So we

have A ⊆ U1
2
⊆ V C1

2
⊆ BC where the superscript C is used to denote complements

in X (that is, V C1
2

= X \ V1
2
and BC = X \B).

Now consider the disjoint closed sets A and UC1
2
. Again, by normality, there exist

disjoint open sets U1
4
and V1

4
such that A ⊆ U1

4
and UC1

2
⊆ V1

4
. Also as V C1

2
and B

are disjoint closed sets there exists disjoint open sets U3
4
and V3

4
such that V C1

2
⊆ U3

4

and B ⊆ V3
4
. So we have

A ⊆ U1
4
⊆ V C1

4
⊆ U1

2
⊆ V C1

2
⊆ U3

4
⊆ V C3

4
⊆ BC .

Continuing by induction we obtain open sets Ud and Vd, for each d ∈ D, such
that

A ⊆ U2−n ⊆ V C
2−n ⊆ U2.2−n ⊆ V C

2.2−n ⊆ · · · ⊆ U(2n−1)2−n ⊆ V C
(2n−1)2−n

⊆ BC .

So we have, in particular, that for d1 6 d2 in D, Ud1 ⊆ Ud2.

Now we define f : (X,τ ) −→ [0, 1] by f(x) =

{
inf{d : x ∈ Ud}, if x ∈

⋃
d∈D Ud

1, if x /∈
⋃
d∈D Ud.

Observe finally that since A ⊆ Ud, for all d ∈ D, f(a) = 0 for all a ∈ A. Also
if b ∈ B, then b /∈

⋃
d∈D Ud and so f(b) = 1. So we have to show only that f is

continuous.
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Let f(x) = y, where y 6= 0, 1 and set W = (y − ε, y + ε), for some ε > 0 (with
0 < y − ε < y + ε < 1). As D is dense in [0, 1], we can choose d0 and d1 such that
y − ε < d0 < y < d1 < y0 + ε. Then, by the definition of f , x ∈ U = Ud1 \ Ud0 and
the open set U satisfies f(u) ⊆ W . If y = 1 then we put W = (y − ε, 1], choose d0

such that y − ε < d0 < 1, and set U = X \ Ud0. Again f(U) ⊆ W . Finally, if y = 0

then put W = [0, y + ε), choose d1 such that 0 < d1 < Y + ε and set U = Ud1 to
again obtain f(U) ⊆ W . Hence f is continuous. �

10.3.23 Corollary. If (X,τ ) is a Hausdorff normal space then it is a
Tychonoff space; that is, every T4-space is a T

31
2
-space. Consequently it is

homeomorphic to a subspace of a cube. �

10.3.24 Proposition. Every compact Hausdorff space (X,τ ) is normal.

Proof. Let A and B be disjoint closed subsets of (X,τ ). Fix b ∈ B. Then, as
(X,τ ) is Hausdorff, for each a ∈ A, there exist open sets Ua and Va such that a ∈ Ua,
b ∈ Va and Ua∩Va = Ø. So {Ua : a ∈ A} is an open covering of A. As A is compact,
there exists a finite subcovering Ua1, Ua2, . . . , Uan. Put Ub = Ua1 ∪ Ua2 ∪ · · · ∪ Uan
and Vb = Va1 ∩ Va2 ∩ . . . Van. Then we have A ⊆ Ub, b ∈ Vb, and Ub ∩ Vb = Ø.
Now let b vary throughout B, so we obtain an open covering {Vb : b ∈ B}
of B. As B is compact, there exists a finite subcovering Vb1, Vb2, . . . , Vbm. Set
V = Vb1 ∪ Vb2 ∪ · · · ∪ Vbm and U = Ub1 ∩Ub2 ∩ · · · ∩Ubm. Then A ⊆ U , B ⊆ V , and
U ∩ V = Ø. Hence (X,τ ) is normal. �

10.3.25 Corollary. Every compact Hausdorff space can be embedded in a
cube. �
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10.3.26 Remark. We can now prove the Urysohn metrization theorem which
provides a sufficient condition for a topological space to be metrizable. It also
provides a necessary and sufficient condition for a compact space to be metrizable
– namely that it be Hausdorff and second countable. �

10.3.27 Definitions. A topological space (X,τ ) is said to be regular if
for each x ∈ X and each U ∈ τ such that x ∈ U , there exists a V ∈ τ with
x ∈ V ⊆ U . If (X,τ ) is also Hausdorff it is said to be a T3-space.



280 CHAPTER 10. TYCHONOFF’S THEOREM

10.3.28 Remark. It is readily verified that every T
31
2
-space is a T3-space.

So, from Corollary 10.3.23, every T4-space is a T3-space. Indeed we now have a
hierarchy:

compact Hausdorff⇒ T4 ⇒ T
31
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0
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metrizable⇒ T4 ⇒ T
31
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

�
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10.3.29 Proposition. Every normal second countable Hausdorff space
(X,τ ) is metrizable.

Proof. It suffices to show that (X,τ ) can be embedded in the Hilbert cube
I∞. By Corollary 9.4.10, to verify this it is enough to find a countable family of
continuous maps of (X,τ ) into [0, 1] which separates points and closed sets.

Let B be a countable basis for τ , and consider the set S of all pairs (V, U) such
that U ∈ B, V ∈ B and V ⊆ U . Then S is countable. For each pair (V, U) in S we
can, by Urysohn’s Lemma 10.3.22, find a continuous mapping fV U : (X,τ ) −→ [0, 1]

such that fV U (V ) = 0 and fV U (X \U) = 1. Put F equal to the family of functions,
f , so obtained. Then F is countable.

To see that F separates points and closed sets, let x ∈ X and W any open
set containing x. Then there exists a U ∈ B such that x ∈ U ⊆ W . By
Remark 10.3.28, (X,τ ) is regular and so there exists a set P ∈ τ such that
x ∈ P ⊆ P ⊆ U . Therefore these exists a V ∈ B with x ∈ V ⊆ P . So
x ∈ V ⊆ P ⊆ U . Then (V, U) ∈ S and if fV U is the corresponding mapping
in F , then fV U (x) = 0 /∈ {1} = fV U (X \W ). �
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10.3.30 Lemma. Every regular second countable space (X,τ ) is normal.

Proof. Let A and B be disjoint closed subsets of (X, T ) and B a countable basis
for τ . As (X,τ ) is regular and X \B is an open set, for each a ∈ A there exists a
Va ∈ B such that V a ⊆ X \B.

As B is countable we can list the members {Va : a ∈ A} so obtained by Vi, i ∈ N;
that is, A ⊆

⋃∞
i=1 Vi and V i ∩B = Ø, for all i ∈ N.

Similarly we can find sets Ui in B, i ∈ N, such that B ⊆
⋃∞
i=1 Ui and U i∩A = Ø,

for all i ∈ N.
Now define U ′1 = U1 \ V 1 and V ′1 = V1 \ U1.

So U ′1∩V
′
1 = Ø, U ′1 ∈ τ , V ′1 ∈ τ , U ′1∩B = U1∩B, and V ′1∩A = V1∩A.

Then we inductively define

U
′
n = Un \

n⋃
i=1

V i and V ′n = Vn \
n⋃
i=1

U i

So that U ′n ∈ τ , V ′n ∈ τ , U ′n ∩B = Un ∩B, and V ′n ∩ A = An ∩ A.
Now put U =

⋃∞
n=1 U

′
n and V =

⋃∞
n=1 V

′
n.

Then U ∩ V = Ø, U ∈ τ , V ∈ τ , A ⊆ V , and B ⊆ U .

Hence (X,τ ) is a normal space. �

We can now deduce from Proposition 10.3.29. and Lemma 10.3.30 the Urysohn
Metrization Theorem, which generalizes Proposition 10.3.29.

10.3.31 Theorem. (Urysohn’s Metrization Theorem) Every regular
second countable Hausdorff space is metrizable. �

From Urysohn’s Metrization Theorem, Proposition 9.4.4, and Proposition 9.4.17,
we deduce the following characterization of metrizability for compact spaces.

10.3.32 Corollary. A compact space is metrizable if and only if it is
Hausdorff and second countable. �
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10.3.33 Remark. As mentioned in Remark 10.3.21, every metrizable space is
normal. It then follows from Proposition 9.4.17 that every separable metric space is
normal, Hausdorff, and second countable. Thus Uryshohn’s Theorem 9.4.11, which
says that every separable metric space is homeomorphic to a subspace of the Hilbert
cube, is a consequence of (the proof of) Proposition 10.3.29.

Hewitt

Marczewski

10.3.34 Remark. There are some surprises in
store as regards products of separable spaces. You
might reasonably expect that a finite product of
separable spaces is separable. Indeed it would not
be unexpected to hear that a countable product
of separable spaces is separable eg Nℵ0 and Rℵ0
are separable. And these are all true. But it
would be surprising to hear that Rc is separable.
All these follow from the Hewitt-Marczewski-
Pondiczery Theorem (Hewitt [172]; Marczewski
[260]; Pondiczery [310]) below, due to Edwin
Hewitt (1920–1999), Edward Marczewski (1907–
1976) and E.S. Pondiczery.1 This theorem is not
only surprising but also very informative, as we shall
see, in the next section as it will tell us that the
Stone-C̆ech compactification of many spaces are in
fact huge. �

1E.S. Pondiczery was a pseudonym invented by Ralph P. Boas Jr, Frank Smithies and colleagues.
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10.3.35 Lemma. Let (D,τ d) be a discrete topological space, F the set
of all finite subsets of D and for each F ∈ F , let τF be the discrete topology
on F so that (F,τF ) is a subspace of (D,τ d). Let I be any index set and AF
a dense subset of the product space (F,τF )I , for each F ∈ F . If A =

⋃
F∈F

AF ,

then A is a dense subset of (D,τ d)I .

Proof. Let U be any open set in (D,τ d)I . Since (D,τ d) is discrete, the definition
of the product topology, Definition 10.1.1, shows that there exists i1, i2, . . . , ik ∈ I
and xi1, xi2, . . . , xik ∈ D such that

U ⊇ {xi1} × {xi2} × . . . {xik} ×D
I\{i1,i2,...,,ik}.

Put F = {xi1, xi2, . . . , xik}. As AF is dense in (F,τF )I and {xi1} × {xi2} ×
. . . {xik} × F

I\{i1,i2,...,ik} is an open set in (F,τF )I ,

{xi1} × {xi2} × . . . {xik} × F
I\{i1,i2,...,ik} ∩ AF 6= Ø.

This implies

{xi1} × {xi2} × . . . {xik} ×D
I\{i1,i2,...,ik} ∩ AF 6= Ø.

This in turn imples that U ∩AF 6= Ø, and so U ∩A 6= Ø. Hence A is indeed dense
in (D,τ d)I , as required. �
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10.3.36 Proposition. Let m be an infinite cardinal number and let the
topological space (X,τ ) = {0, 1}2m be the product of 2m copies of the disrete
space {0, 1}. Then (X,τ ) has a dense subspace of cardinality 6 m.

Proof. Let M be a set with card M = m. The power set P(M) has
card (P(M)) = 2m.

We are required to find a dense subset Y of (X,τ ) of cardinality 6 m.
It suffices to find a set S and a function φ : S → X with φ(S) a dense
subset of (X,τ ) and card (S) = m.

Let F(M) be the set of all finite subsets ofM . So card (F(M)) = m. (Exercise.)
Let F(F(M)) be the set of all finite subsets of F(M). Then card (F(F(M))) = m.

Put S = F(M)×F(F(M)). So card (S) = m.

We are now looking for a function φ of S into X.
Recall that X = {0, 1}2m = {0, 1}P(M), and {0, 1}P(M) is the set of all
functions from P(M) to {0, 1}.
So for every subset T of S, φ(T ) is a function from P(M) to {0, 1}.

Let N be a subset of M ; that is, N ∈ P(M). Further, let F ∈ F(M) and
F ∈ F(F(M)).

Define φ : S → X by φ(F,F)(N) =

{
1, if N ∩ F ∈ F
0, if N ∩ F /∈ F.

Let x ∈ X and let Nj, j ∈ J , be a finite number of distinct subsets of M .
Put K = {(j1, j2) : j1, j2 ∈ J, j1 6= j2} and for each (j1, j2) ∈ K, define

Tj1j2 = (Nj1 ∪Nj2) \ (Nj1 ∩Nj2).

Let σ : K →
⋃

(j1,j2)∈K
Tj1,j2 be any map such that σ(j1, j2) ∈ Tj1j2, (j1, j2) ∈ K.

Set F = {Nj ∩ σ(K) : j ∈ J and x(Nj) = 1}.
[Recall that x ∈ {0, 1}P(M), that is x is a mapping from P(M) to {0, 1}.]

Then it is readily verified that φ(σ(K),F)(Nj) = x(Nj), for all j ∈ J , which
completes the proof.2 �

2The proof here of this proposition is based on that in Blair [45] which is closely related to that of
Theorem 9.2 of Gillman and Jerison [152] that every infinite set, X, has 22

card (X) distinct ultrafilters.
See also Proposition A6.4.11.
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10.3.37 Definition. Let (X,τ ) be a topological space and let m be the
least cardinal number such that (X,τ ) has a dense subset of cardinality m.
Then (X,τ ) is said to have density character m.

Clearly a topological space is separable if and only if its density character is less
than or equal to ℵ0.

So we can restate Proposition 10.3.36 in the following way.

10.3.38 Proposition. For any infinite cardinal m, the topological space
(X,τ ) = {0, 1}2m has density character at most m.

10.3.39 Corollary. For any infinite cardinal m and any finite discrete space
(F,τF ), the product space (X,τ ) = (F,τF )2m has density character at most
m.

Proof. Let n be a positive integer such that 2n > card F and let f be any
(continuous) map of the discrete space {0, 1}n onto the discrete space (F,τF ).
Then there is a continuous map of ({0, 1}n)2m onto (F,τF )2m. As n is finite and
m is an infinite cardinal, it is easily checked that ({0, 1}n)2m is homeomorphic to
{0, 1}2m. So there is a continuous map of {0, 1}2m onto (F,τF )2m. As the image
under a continuous map of a dense subset is a dense subset of the image, it follows
that the density character of (F,τF )2m is less than or equal to the density character
of {0, 1}2m, which by Proposition 10.3.38 is less than or equal to m, as required.�

10.3.40 Proposition. Let (D,τ d) be a discrete topological space of
cardinality less than or equal to m, for m any infinite cardinal number. Then
(D,τ d)2m has density character less than or equal to m.

Proof. This follows immediately from Lemma 10.3.35 and Corollary 10.3.39. �
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10.3.41 Theorem. (Hewitt-Marczewski-Pondiczery Theorem) Let m
be an infinite cardinal number, I a set of cardinality less than or equal to 2m,
and (Xi,τ i), i ∈ I, topological spaces each of density character less than or
equal to m. Then the density character of the product space

∏
i∈I

(Xi,τ i) is less
than or equal to m.
In particular, if (X,τ ) is any topological space of density character less than or
equal to m, then the density character of the product space (X,τ )2m is less
than or equal to m.

Proof. By Proposition 10.3.40 each (Xi,τ i) has a dense subset which is a
continuous image of the discrete space (D,τ d) of cardinality m and so

∏
i∈I

(Xi,τ i)

has a dense subset which is a continuous image of the product space (D,τ d)2m.
As (D,τ d)2m has a dense subset of cardinality less than or equal to m, the product
space

∏
i∈I

(Xi,τ i) also has a dense subset of cardinality less than or equal to m; that

is, it has density character less than or equal to m. �

10.3.42 Corollary. If (X,τ ) is a separable topological space, then (X,τ )c

is a separable space. In particular, Rc is separable.

We shall conclude this section with extension theorems; the first and most
important is the Tietze Extension Theorem which is of interest in itself, but also
is useful in our study of the Stone–C̆ech compactification in the next section. We
shall prove various special cases of the Tietze Extension Theorem before stating it
in full generality.
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10.3.43 Proposition. Let (X,τ ) be a Hausdorff topological space. The
following conditions are equivalent:

(i) (X,τ ) is normal;

(ii) for every closed subspace (S,τ 1) of (X,τ ) and each continuous map φ of
(S,τ 1) into the closed unit interval [0, 1] with the euclidean topology, there
exists a continuous extension Φ : (X,τ )→ [0, 1] of φ.

Proof. 3 Assume that (ii) is true. Let A and B be disjoint closed subsets of
(X,τ ). Put S = A∪B and define φ : S → R by φ(x) = 0, for x ∈ A, and φ(x) = 1,
for x ∈ B. Then clearly φ : (A ∪ B,τ 1) → R is continuous, where τ 1 is the
subspace topology of A ∪ B from (X,τ ). By hypothesis, there exists a continuous
map Φ : (X,τ ) → R which extends φ. Let U and V be disjoint open sets in R
containing 0 and 1, respectively. Then Φ−1(U) and Φ−1(V ) are disjoint open sets
containing A and B, respectively. So (X,τ ) is indeed a normal topological space;
that is, (i) is true.

Now assume that (i) is true. Firstly let us consider the case that φ : (S,τ 1)→
[0, 1]. Define Sr = {x ∈ S : φ(x) 6 r}, for r ∈ Q, and Ts = X \ {x ∈ S : φ(x) >

s}, for s ∈ Q ∩ (0, 1). We define the index set P by P = {(r, s) : r, s ∈ Q with 0 6

r < s < 1}. For convenience write P = {(rn, sn) : n ∈ N}. For brevity we shall
denote the interior, Int(Y ), in (X,τ ) of any subset Y of X by Y 0.

Our proof will use definition by mathematical induction. Noting that Sr1 is a
closed set, Ts1 is an open set, Sr1 ⊆ Ts1 and (X,τ ) is normal, Remark 10.3.21
shows that there exists a closed set H1 in (X,τ ) such that Sr1 ⊆ H0

1 ⊆ H1 ⊆ Ts1.

Next, assume that closed sets Hk have been constructed for all k < n ∈ N such that

Srk ⊆ H0
k ⊆ Hk ⊆ Tsk , for k < n, (1)

and Hj ⊆ H0
k , when j, k < n, rj < rk and sj < sk. (2)

Define J = {j : j < n, rj < rn, and sj < sn} and K = {k : k < n, rn <

rk, and sn < sk}.

3The proof here is based on that of Mandelkern [259]. In the literature there are alternative proofs
using uniform continuity.



290 CHAPTER 10. TYCHONOFF’S THEOREM

Noting the definitions of Sr and Ts and using (1) and (2), we can apply Remark
10.3.21, with A = Srn ∪

⋃
j∈J

Hj and C = Tsn ∩
⋂
k∈K

H0
k , to show that there exists a

closed set Hn in (X,τ ) such that

Srn ∪
⋃
j∈J

Hj ⊆ H0
n ⊆ Hn ⊆ Tsn ∩

⋂
k∈K

H0
k . (3)

From this equation (3) one can verify that

Srk ⊆ H0
k ⊆ Hk ⊆ Tsk , for k < n+ 1, (1′)

and Hj ⊆ H0
k , when j, k < n+ 1, rj < rk and sj < sk. (2′)

Equations (1), (2), (1’) and (2’) complete our inductive definition of the closed sets
Hn.

Now we write Hrs for Hn where r = rn and s = sn. So that we have closed
sets Hrs, for (r, s) ∈ P , with

Sr ⊆ H0
rs ⊆ Hrs ⊆ Ts , for (r, s) ∈ P, (4)

and Hrs ⊆ H0
tu , when r < t and s < u. (5)

Now define Xr as follows:
Xr =


X, r > 1
Ø, r < 0⋂
s>r

Hrs, r ∈ Q ∩ [0, 1)
(6)

For (r, s) ∈ P , choose t such that r < t < s. Then by (6) and (5),

Xr ⊆ Hrt ⊆ H0
ts ⊆ Hts ⊆

⋂
u>s

Hsu = Xs (7)

From (7) we deduce that
Xr ⊆ X0

s , for (r, s) ∈ P with r < s. (8)

From the definitions of Sr & Tr, and equations (4) and (6) we have:

Sr ⊆ S ∩Xr = S ∩
⋂
s>r

Hrs ⊆ S ∩
⋂
s>r

Ts = Sr , for r ∈ Q ∩ [0, 1). (9)

So by (8) and noting that all the set containments in (9) are actually equality,
we have found closed subsets {Xr : r ∈ Q} of (X,τ ) with the properties:

for r, s ∈ Q, r < s , Xr ⊆ X0
s , and Xr ∩ S = Sr. (10)

Finally define Φ(x) = inf{r : x ∈ Xr}, x ∈ X. By (6), Φ : (X,τ ) → [0, 1],
and since φ(x) = inf{r : x ∈ Sr}, we have Φ(x) = φ(x), for all x ∈ S; that is, Φ

is an extension of φ. If a, b ∈ R with a < b, then it follows immediately from the
definition of Φ that Φ−1((a, b)) =

⋃
{X0

s \Xr : r, s ∈ Q and a < r < s < b}, and
so Φ is continuous; that is, Φ is a continuous extension of φ, as required. �
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10.3.44 Proposition. Let (X,τ ) be a Hausdorff topological space. The
following conditions are equivalent:

(i) (X,τ ) is normal;

(ii) for every closed subspace (S,τ 1) of (X,τ ) and each continuous map φ of
(S,τ 1) into the open unit interval (0, 1) with the euclidean topology, there
exists a continuous extension Φ : (X,τ )→ (0, 1) of φ.

Proof. That (ii) implies (i) is proved analagously to that in Proposition 10.3.43.

So assume that (i) is true and that φ is a continuous map of (S,τ 1) into (0, 1).
We want to find a continuous map Γ : X → (0, 1) such that Γ(x) = φ(x), for all
x ∈ S. By Proposition 10.3.43, there exists a continuous map Φ : (X,τ ) → [0, 1],
such that Φ(x) = φ(x), for all x ∈ X.

Let D = {x : x ∈ X, Φ(x) ∈ {0, 1}}. Then S and D are disjoint closed sets. As
(X,τ ) is a normal space, by Urysohn’s Lemma 10.3.22, there exists a continuous
map θ : (X,τ )→ [1

2 , 1] such that θ(x) = 1 for all x ∈ S, and θ(x) = 1
2 for all x ∈ D.

So if we define Γ : (X,τ ) → (0, 1) by Γ(x) = Φ(x).θ(x).θ(x) + 1 − θ(x), we can
easily verify that Γ is a continuous extension of φ, as required. �

10.3.45 Lemma. Let (S,τ 1) be a subspace of the topological space
(X,τ ) and (Y,τ 2) and (Z,τ 3) homeomorphic topological spaces. If every
continuous map φ : (S,τ 1)→ (Y,τ 2) has a continuous extension Φ : (X,τ )→
(Y,τ 2), then every continuous map γ : (S,τ 2)→ (Z,τ 3) also has a continuous
extension Γ : (X,τ )→ (Z,τ 3).

Proof. Exercise.

As an immediate consequence of Proposition 10.3.44 and Lemma 10.3.45 we
have:
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10.3.46 Proposition. Let (X,τ ) be a Hausdorff topological space. The
following conditions are equivalent:

(i) (X,τ ) is normal;

(ii) for every closed subspace (S,τ 1) of (X,τ ) and each continuous map φ of
(S,τ 1)→ R, there exists a continuous extension Φ : (X,τ )→ R of φ. �

10.3.47 Definition. Let (Y,τ 1) be a subspace of a topological space
(X,τ ). Then (Y,τ 1) is said to be a retract of (X,τ ) if there exists a continuous
map θ : (X,τ )→ (Y,τ 1) with the property that θ(y) = y, for all y ∈ Y .

10.3.48 Example. [0, 1] is a retract of R. (Verify this.) �

10.3.49 Lemma. Let (S,τ 1) be a subspace of the topological space
(X,τ ). Further, let (Y,τ 2) and (Z,τ 3) be topological spaces such that (Z,τ 3)

is a retract of (Y,τ 2). If every continuous map φ : (S,τ 1) → (Y,τ 2) has
a continuous extension Φ : (X,τ ) → (Y,τ 2), then every continuous map
γ : (S,τ 1)→ (Z,τ 3) also has a continuous extension Γ : (X,τ )→ (Z,τ 3).

Proof. Let γ : (S,τ 1)→ (Z,τ 3) be any continuous map. As (Z,τ 3) is a retract
of (Y,τ 2), there exists a continuous map θ : (Y,τ 2) → (Z,τ 3) with θ(z) = z, for
all z ∈ Z.

As γ is also a continuous map of (S,τ 1) into (Y,τ 2), by assumption there
exists a continuous extension Φ : (X,τ ) → (Y,τ 2) of γ. Putting Γ = θ ◦ Φ, we
have that Γ : (X,τ ) → (Z,τ 3) is a continuous extension of γ : (S,τ 1) → (Z,τ 3),
as required. �
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10.3.50 Lemma. Let (S,τ 1) be a subspace of the topological space
(X,τ ). Let I be any index set and (Y,τ i), i ∈ I, a set of topological spaces.
If every continuous mapping φi : (S.τ 1) → (Yi,τ i), i ∈ I, has a continuous
extension
Φi : (X,τ )→ (Yi,τ i), then the product map φ : (S,τ 1)→

∏
i∈I

(Yi,τ i), given by

φ(x) =
∏
i∈I

φi(x), x ∈ S, has a continuous extension Φ : (X,τ )→
∏
i∈I

(Yi,τ i).

Proof. Defining Φ to be the product map of the Φi, i ∈ I, immediately yields
the result. �

Finally, using Lemmas 10.3.50 and 10.3.49, Proposition 10.3.46 and Example
10.3.48, we obtain (a rather general version of) the Tietze Extension Theorem.

10.3.51 Theorem. (Tietze Extension Theorem) Let (X,τ ) be a
Hausdorff topological space, m any cardinal number, and (Y,τ 2) any infinite
topological space which is a retract of the product space Rm. The following
conditions are equivalent:

(i) (X,τ ) is normal;

(ii) for every closed subspace (S,τ 1) of (X,τ ) and each continuous map φ

of (S,τ 1) into (Y,τ 2), there exists a continuous extension Φ : (X,τ ) →
(Y,τ 2) of the map φ.

In particular, this is the case when (Y,τ 2) is any non-trivial interval in R. �
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10.3.52 Remark. The condition in Theorem 10.3.51(ii) that (S,τ 1) is closed
in (X,τ ) is necessary. For example let φ : (0, 1] → R be the map φ(x) = sin 1

x,
for x ∈ (0, 1]. Then φ is continuous, but there is no extension of φ to a map
Φ : [0, 1]→ R which is continuous. (Verify this.)

�

We end this section with a useful result on extending continuous maps from a
dense subspace which shall be useful in our discussion of the Wallman compactification
in §A6.4 of Appendix 6
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10.3.53 Proposition. Let (S,τ 1) be a dense subspace of a topological
space (X,τ ) and φ : (S,τ 1) → (K,τ 2) a continuous map of (S,τ 1) into a
compact Hausdorff space (K,τ 2). The following conditions are equivalent:

(i) the map φ has a continuous extension Φ : (X,τ )→ (K,τ 2);

(ii) for every pair of closed subsets C1, C2 of (K,τ 2), the inverse images
φ−1(C1) and φ−1(C2) have disjoint closures in (X,τ ).

Proof. Firstly assume (i) is true, that is the continuous extension Φ exists. By
continuity, Φ−1(C1) and Φ−1(C2) are closed disjoint sets in (X,τ ). So

Φ−1(C1) ∩ Φ−1(C2) = Φ−1(C1) ∩ Φ−1(C2) = Ø.

Hence (ii) is true.

Now assume that (ii) is true. For every x ∈ X, let N (x) be the set of all open
neighbourhoods of x ∈ (X,τ ). Let

F(x) = {φ(S ∩N) : N ∈ N (x)} (1)

Each member of F(x) is obviously a closed subset of (K,τ 2).

We shall verify that F(x) has the finite interesection property, for each x ∈ X.
Let N1, N2, . . . , Nn ∈ N (x). Then

φ(S ∩N1) ∩ φ(S ∩N2) ∩ · · · ∩ φ(S ∩Nn) ⊇ φ(S ∩N1 ∩N2 ∩ · · · ∩Nn) (2)

As S is dense in (X,τ ), it intersects the open set N1 ∩N2 ∩ · · · ∩Nn non-trivially.
So S ∩N1∩N2∩ · · · ∩Nn 6= Ø which implies φ(S ∩N1 ∩N2 ∩ · · · ∩Nn) 6= Ø. Thus
F(x) has the finite intersection property. As (K,τ 2) is compact, Proposition 10.3.2
implies that

⋂
Fi∈F(x)

Fi 6= Ø, for each x ∈ X. Define

Φ(x) =
⋂

Fi∈F(x)

Fi, for each x ∈ X. (3)

We need to verify that for each x ∈ X, Φ(x) is a single point, and that
Φ : (X,τ )→ (K,τ 2) is continuous. If Φ(x) is a single point, then, by the previous
paragraph, Φ(x) = φ(x), for all x ∈ S.

Suppose that y1, y2 ∈ Φ(x), for some x ∈ X with y1 6= y2.
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As (K,τ 2) is compact Hausdorff, by Remark 10.3.28 it is regular and Hausdorff
and so there exist open neighbourhoods U1, U2 of y1, y2, respectively such that
U1∩U2 = Ø. By our assumption, φ−1(U1)∩φ−1(U2) = Ø. Putting O1 = X\φ−1(U1)

and O2 = X \ φ−1(U2), we have X = O1 ∪O2. So x ∈ Oj for j = 1 or j = 2. Since

Uj∩φ(S\φ−1(Uj) = Ø and Uj is an open set in (K,τ ), we have Uj∩φ(S \ φ−1(Uj) =

Ø, which implies that yj /∈ φ(S \ φ−1(Uj)) = φ(S ∩Oj) ∈ F(x). By (3), then,
yj /∈ Φ(x). This is a contradiction and so our supposition was false, and Φ(x) is a
single point for each x ∈ X.

Our final task is to show that Φ : (X,τ )→ (K,τ 2) is continuous. Let U be an
open neighbourhood of Φ(x) in (K,τ 2). By (1) and (3),

{Φ(x)} =
⋂

N∈N (x)

φ(S ∩N) ⊆ U (4).

This implies that
⋃

N∈N (x)
(K \ φ(S ∩N) ⊇ K \ U . As K \ U is compact and each

K \ φ(S ∩N) is open, there exist N1, N2, . . . , Nk ∈ N (x) such that

(K \ φ(S ∩N1)) ∪ (K \ φ(S ∩N2)) ∪ · · · ∪ (K \ φ(S ∩Nk)) ⊇ K \ U.

So
k⋂
i=1

φ(S ∩Ni) ⊆ U (5).

As
k⋂
i=1

Ni = N ∈ N (x), (1), (2), (4) and (5) imply that Φ(z) ∈ φ(S ∩N) ⊆ U , for

every z ∈ N ; that is, Φ(N) ⊆ U . So Φ is indeed continuous. �
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Exercises 10.3

Lindelöf Spaces

1. A topological space (X,τ ) is said to be a Lindelöf space if every open covering
of X has a countable subcovering. Prove the following statements.

(i) Every regular Lindelöf space is normal.
[Hint: use a method like that in Lemma 10.3.30. Note that we saw in
Exercises 9.4 #8 that every second countable space is Lindelöf.]

(ii) The Sorgenfrey line (R,τ 1) is a Lindelöf space.

(iii) If (X,τ ) is a topological space which has a closed uncountable discrete
subspace, then (X,τ ) is not a Lindelöf space.

(iv) It follows from (iii) above and Exercises 8.1 #12 that the product space
(R,τ 1)× (R,τ 1) is not a Lindelöf space.
[Now we know from (ii) and (iv) that a product of two Lindelöf spaces is
not necessarily a Lindelöf space.]

(v) Verify that a topological space is compact if and only if it is a countably
compact Lindelöf space. (See Exercises 7.2 #17.)

2. Prove that any product of regular spaces is a regular space.

3. Verify that any closed subspace of a normal space is a normal space.

4. If (X,τ ) is an infinite connected Tychonoff space, prove that X is uncountable.
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kω-spaces

5. A Hausdorff space (X,τ ) is said to be a kω-space if there is a countable
collection Xn, n ∈ N of compact subsets of X, such that
(a) Xn ⊆ Xn+1, for all n,

(b) X =
⋃∞
n=1Xn,

(c) any subset A of X is closed if and only if A∩Xn is compact for each n ∈ N.

Prove that
(i) every compact Hausdorff space is a kω-space;
(ii) every countable discrete space is a kω-space;
(iii) R and R2 are kω-spaces;
(iv) every kω-space is a normal space;
(v) every metrizable kω-space is separable;
(vi) every metrizable kω-space can be embedded in the Hilbert cube;
(vii) every closed subspace of a kω-space is a kω-space;
(viii) if (X,τ ) and (Y,τ ′) are kω-spaces then (X,τ )× (Y,τ ′) is a kω-space.
(ix) if S is an infinite subset of the kω-space (X,τ ), such that S is not contained

in any Xn, n ∈ N, then S has an infinite discrete closed subspace;
(x) if K is a compact subspace of the kω-space (X,τ ), then K ⊆ Xn, for some

n ∈ N.
(xi)* a topological space (X,τ ) is said to be σ-metrizable if X =

⋃∞
n=1Xn,

where Xn ⊆ Xn+1 for each n ∈ N, and each Xn with its induced topology is
a closed metrizable subspace of (X,τ ). If every convergent sequence in the
σ-metrizable space (X,τ ) is contained in Xn, for some n ∈ N, then (X,τ )

is said to be strongly σ-metrizable.
(α) every closed subspace of a σ-metrizable space is σ-metrizable;
(β) every closed subspace of a strongly σ-metrizable space is a strongly
σ-metrizable space;

(γ) If (X,τ ) is strongly σ-metrizable, then every closed compact subspace
K of (X,τ ) is contained in Xn, for some n ∈ N.4

6. Prove that every T
31
2
-space is a T3-space.

7. Prove that for metrizable spaces the conditions (i) Lindelöf space, (ii)
separable, and (iii) second countable, are equivalent.

4This result is in fact true without the assumption that K is a closed subspace, see Banakh [26].
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First Axiom of Countability

8. A topological space (X,τ ) is said to satisfy the first axiom of countability (or
to be first countable if for each x ∈ X, there exists a countable family Ui, i ∈ N
of open sets containing x, such that if V ∈ τ and x ∈ V , then V ⊇ Un′ for
some n.

(i) Prove that every metrizable space is first countable.
(ii) Verify that every second countable space is first countable, but that the

converse is false. [Hint: Consider discrete spaces.]
(iii) If {(Xi,τ i) : i ∈ N}, is a countable family of first countable spaces, prove

that
∏∞
i=1(Xi,τ i) is first countable.

(iv) Verify that every subspace of a first countable space is first countable.

(v) Let X be any uncountable set. Prove that the cube IX is not first countable,
and hence is not metrizable.
[Note that IX is an example of a [compact Hausdorff and hence] normal
space which is not metrizable.]

(vi) Generalize (v) above to show that if J is any uncountable set and each
(X,τ j) is a topological space with more than one point, then

∏
j∈J(Xj ,τ j)

is not metrizable.

9. Prove that the class of all Tychonoff spaces is the smallest class of
topological spaces that contains [0, 1] and is closed under the formation
of subspaces and cartesian products.

10. Prove that any subspace of a completely regular space is a completely
regular space.

11. Using Proposition 8.6.8, prove that if (G,τ ) is a topological group, then (G,τ )

is a regular space.

[It is indeed true that every topological group is a completely regular space, but
this is much harder to prove.]
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12. Prove that if {(Xi, τ i) : i ∈ I} is any set of connected spaces, then∏
j∈I(Xi, τ i) is connected.

[Hint: Let x =
∏
i∈I xi ∈

∏
i∈I Xi. Let S consists of the set of all points

in
∏
i∈I Xi which differ from x =

∏
i∈I xi in at most a finite number of

coordinates. Prove that CX(x) ⊇ S. Then show that S is dense in
∏
i∈I(Xi,τ i).

Finally use the fact that CX(x) is a closed set.]

13. Let {(Xj,τ j) : j ∈ J} be any set of topological spaces. Prove that∏
j∈j(Xj, τ j) is locally connected if and only if each (Xj, τ j) is locally

connected and all but a finite number of (Xj, τ j) are also connected.

14. Let (R,τ 1) be the Sorgenfrey line. Prove the following statements.
(i) (R,τ 1) is a normal space.

(ii) If (X,τ ) is a separable Hausdorff space, then there are at most c distinct
continuous functions f : (X,τ )→ [0, 1].

(iii) If (X,τ ) is a normal space which has an uncountable closed discrete
subspace, then there are at least 2c distinct continuous functions f :

(X,τ )→ [0, 1]. [Hint: Use Urysohn’s Lemma.]

(iv) Deduce from (ii) and (iii) above and Exercises 8.1 #12, that (R,τ 1)×(R,τ 1)

is not a normal space.
[We now know that the product of two normal spaces is not necessarily
a normal space.]

(v) A topological space (X,τ ) is said to be hereditarily separable if (X,τ ) and
each of its subspaces are separable. Show that the Sorgenfrey line (R,τ 1)

is hereditarily separable.

(vi) Show that if (R,τ 1) is the Sorgenfrey line, then the product space (R,τ 1)×
(R,τ 1), known as the Sorgenfrey plane is separable but not hereditarily
separable. [So we see that the product of two heritarily separable spaces
need not be hereditarily separable and that a subspace of a separable
space need not be separable.

[Hint: Show that the subspace {(x,−x) : x ∈ R} of the Sorgenfrey plane is
an uncountable discrete space.]
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15. If S is a set of infinite cardinality m, verify that the cardinality of the set of all
finite subsets of S is also m.

16. Verify (1’) in the proof of Proposition 10.3.43.

17. Prove Lemma 10.3.45.

18. Prove that every closed interval (Y,τ ) of R is a retract of R.

19. Let (Y,τ 1) be a subspace of a topological space (X,τ ). Prove that (Y,τ 1)

is a retract of (X,τ ) if and only for every topological space (Z,τ 2) and every
continuous map φ : (Y,τ 1) → (Z,τ 2) can be extended to a continuous map
Φ : (X,τ )→ (Z,τ 2).

20. Verify the statement in Remark 10.3.52.
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k-spaces

21. A topological space (X,τ ) is said to be a k-space (or a compactly-generated
space) if for each subset S of (X,τ ) and each compact subspace (K,τ 1) of
(X,τ ), S is closed in (X,τ ) if and only if S ∩K is closed in (K,τ 1).

(i) Prove that a subset U of a k-space is open in (X,τ ) if and only if U ∩K is
an open subset of (K,τ 1).

(ii) Prove that every compact Hausdorff space, every metrizable space, every
kω-space, and every Hausdorff sequential space is a k-space.

(iii) Is a closed subspace of a k-space necessarily a k-space?

(iv) Is an open subspace of a k-space necessarily a k-space?

σ-compact Spaces

22. A topological space (X,τ ) is said to be σ-compact if there exist compact
subsets Kn, n ∈ N, of X such that X =

⋃
n∈N

Kn. Prove the following:

(i) If X is any countable set, then for any topology τ on X, (X,τ ) is a σ-
compact space.

(ii) Every compact space (X,τ ) is σ-compact.

(iii) For each n ∈ N, the euclidean space Rn is σ-compact.

(iv) Every kω-space is σ-compact. Further, Q is an example of a σ-compact
space which is not a kω-space.

(v) The topological space I of all irrational numbers with the euclidean topology
is not a σ-compact space. (See Exercise 5 above.)

(vi) Every σ-compact space is a a Lindelöf space.

(vii) Let (X,τ ) and (Y,τ 1) be σ-compact spaces. The product space (X,τ )×
(Y,τ 1) is σ-compact. Deduce for this that any finite product of σ-compact
spaces is σ-compact.

(viii)* Prove that if each of the topological spaces (Xn,τn), n ∈ N, is homeomorphic
to the discrete space Z, then

∏
n∈N

(Xn,τn) is not σ-compact and so an

infinite product (even a countably infinite product) of σ-compact spaces is
not necessarily σ-compact.
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Hemicompact Spaces

23. A topological space (X,τ ) is said to be hemicompact if it has a sequence
of compact subsets Kn, n ∈ N, such that every compact subset C of (X,τ )

satisfies C ⊆ Kn, for some n ∈ N. Prove the following:

(i) In the above definition, X =
⋃
n∈N

Kn. (Deduce that every hemicompact

space is σ-compact.)

[Hint: Use the fact that each singleton set in (X,τ ) is compact.]

(ii) R is hemicompact.

(iii) Every kω-space is hemicompact. (Deduce that R is hemicompact.)

(iv) If X is an uncountable set and τ is the discrete topology on X, then (X,τ )

is not hemicompact. (Deduce that a metrizable locally compact space is not
necessarily hemicompact.)

(v) A first countable hemicompact space is locally compact. (Deduce that
a metrizable hemicompact space is locally compact. Deduce that every
first countable kω space is locally compact)

(vi) A locally compact Hausdorff σ-compact space is hemicompact.

(vii) The topological space Q of all rational numbers with its usual topology is
σ-compact but not hemicompact.

(viii) A hemicompact Hausdorff k-space is a kω-space.

(ix) If (X,τ ) is a hemicompact space and (Y, d) is a metric space, then the
space, C(X, Y ), of all continuous functions f : (X,τ ) → (Y, d) with the
compact-open topology is metrizable. (See Definitions A5.6.4(b).)

[Hint: Let Kn, n ∈ N be compact subsets of X such that each compact set
is a subset of some Kn, n ∈ N. For each n ∈ N and each f, g ∈ C(X, Y )

define dn(f, g) = sup
x∈Kn

d(f(x), g(x)). Put

d(f, g) =
∞∑
n=1

1

2n
dn(f, g)

1 + dn(f, g)

and verify that this is a metric on C(X, Y ) and induces the compact-open
topology.]
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24. Using previous exercises, prove the correctness of the picture below:
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Refinement of a Cover

25. Let X be a set and for some index set I, let {Ai : i ∈ I} be a cover of X; that
is each Ai ⊆ X and

⋃
i∈I

Ai = X. Then {Bj : j ∈ J}, J some index set, is said

to be a refinement of the cover {Ai : i ∈ I} if {Bj : j ∈ J} is a cover of X
and for each j ∈ J , there exists an i ∈ I such that Bj ⊆ Ai.

(i) Prove that every cover {Ai : i ∈ I} of X is is also a refinement of itself.

(ii) Prove that every subcover of {Ai : i ∈ I} is a refinement of {Ai : i ∈ I}.

26. A set S of subsets of a topological space (X,τ ) is said to be locally finite in
(X,τ ) if each point x in (X,τ ) has a neighbourhood Nx such that Nx∩S = Ø,
for all but a finite number of S ∈ S. Prove the following statements:

(i) If the set S of subsets of any topological space (X,τ ) is finite, then S is
locally finite.

(ii) If the set S is such that every point of X lies in at most one S in S, then S
is locally finite in (X,τ ) for any topology τ on X.

(iii) Let X be an infinite set and τ the finite-closed topology on X. If S is the
set of all open sets in (X,τ ), then S is not locally finite in (X,τ ).

(iv) Let S be a locally finite set of subsets of (X,τ ). Define T to be the set of
all closed sets T = S for S ∈ S. Then T is locally finite.

(v) If S is an infinite set of subsets of the infinite set X and (X,τ ) is a compact
space, then S is not locally finite in (X,τ ).

[Hint: Suppose that (X,τ ) is locally finite and for each x ∈ X, choose a
neighbourhood Ux which intersects only finitely-many members of S non-
trivially. Then {Ux : x ∈ X} is an open covering of the set X and by the
compactness of X, this has a finite subcovering of X. Show this leads to a
contradiction.]

(vi) Let S be an uncountable set of subsets of X. If S is a cover of the space
(X,τ ) and (X,τ ) is either a Lindelöf space or a second countable space,
then S is not locally finite.
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Shrinking Lemma for Normal Spaces

27. For an index set I, let {Ui : i ∈ I} be an open covering of the topological space
(X,τ ). The open covering {Vi : i ∈ I} of (X,τ ) is said to be a shrinking of
the cover {Ui : i ∈ I} if Vi ⊆ Vi ⊆ Ui, for every i ∈ I. Prove the following
results leading to the Shrinking Lemma for Normal Spaces.
Let (X,τ ) be a normal Hausdorff space.
(i) For each x ∈ X and every open neighbourhood U of x, there exists an open

neighbourhood V of x such that x ∈ V ⊆ V ⊆ U .
(ii) If V is a closed set and U is an open set such that V ⊆ U , then there exists

an open set W such that V ⊆ W ⊆ W ⊆ U . (This property characterizes
normality.)

(iii) Let {U, V } be an open covering of X. Then there exists an open set W
such that W ⊆ W ⊆ U and {W,V } is an open covering of X.

(iv) Every finite open covering of (X,τ ) has a shrinking; that is, for every
open covering {Ui : i = 1, 2, . . . , n} of X, there exists an open covering
{Vi : i = 1, 2, . . . , n} of X, such that Vi ⊆ Vi ⊆ Ui, for i = 1, 2, . . . , n. (This
property characterizes normality.)

(v)* For every locally finite open covering {Ui : i ∈ N} of X, there exists an open
covering {Vi : i ∈ N} of X, such that Vi ⊆ Vi ⊆ Ui, for i ∈ N.
(Without the assumption that the open covering {Ui : i ∈ N} is locally finite,
the Axiom of Choice can be used to prove this result would be false. This
is related to Dowker spaces, named after Clifford Hugh Dowker
(1912–1982). A Dowker space (X,τ ) is a normal space for
which the product space (X,τ )× [0, 1] is not a normal space.
See Rudin [330].)

Dowker

(vi)* (Shrinking Lemma for Normal Spaces) For I any index set and
{Ui : i ∈ I} a locally finite open covering of X, there exists an open
covering {Vi : i ∈ I} of X, such that Vi ⊆ Vi ⊆ Ui, for i ∈ I. (C.
H. Dowker proved that if (X,τ ) satisfies the Shrinking Lemma for every
open covering, rather than every locally finite open covering, then it is a
paracompact space - a property introduced in Exercise 29 below.)

[Hint: For the infinite case you may use the Axiom of Choice in the form of
the Well-Ordering Theorem, Transfinite Induction and/or Zorn’s Lemma.]
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Partitions of Unity and Bernstein Polynomials

28. Let (X,τ ) be a topological space. A set {fi : i ∈ I} of continuous functions
from (X,τ ) to the closed unit interval [0,1], for some index set I, is said to be
a partition of unity if for every x ∈ X:

(a) there is a neighbourhood Nx of x, such that for all but a finite number of
i ∈ I, fi vanishes on Nx, that is fi(y) = 0, for all y ∈ Nx; and

(b)
∑
i∈I

fi(x) = 1.

A partition of unity is said to be subordinate to a covering U , of X if each fi,
i ∈ I, vanishes outside some U ∈ U ..
(i) Verify that for each locally finite open cover U = {Ui : i ∈ I}, for an index

set I, of a normal Hausdorff space, there is a partition of unity which is
subordinate to U .
[Hint: Using Exercise 27 (vi) above, deduce that there is an open covering
V = {Vi : i ∈ I} of (X,τ ) such that each Vi ⊆ Ui. Then using Urysohn’s
Lemma 10.3.22, construct continuous functions gi : (X,τ ) → [0, 1], i ∈ I,
such that gi(Vi) = {1}, gi(X \ Ui) = {0}. Finally define

fi =
gi∑

i∈I
gi
, for each i ∈ I.

Verify that the fi are properly defined and have the required properties.]
(ii) [Bernstein (Basis) Polynomials5] The Bernstein (basis) polynomials

of degree n ∈ N are defined to be Bi,n(x) =
(n
i

)
xi(1 − x)n−i, for i =

0, 1, . . . , n, Bi,n = 0, for i < n or i > n. Calculate the Bernstein basis
polynomials of degree 1, 2, and 3. (There are two of degree 1, three of
degree 2, and four of degree 3.)

(iii) Verify that each Bernstein basis polynomial of degree n can be written in
terms of Bernstein basis polynomials of degree n− 1; more explicitly,

Bi,n(x) = (1− x)Bi,n−1(x) + xBi−1,n−1(x).

(iv) Using (iii) above, prove by mathematical induction that all Bernstein basis
polynomials satisfy Bi,n(x) > 0 when x ∈ [0, 1] and Bi,n(x) > 0 when
x ∈ (0, 1).

5For a discussion of Bernstein polynomials in the context of the Weierstrass Approximation
Theorem, see Remark A7.1.6.
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(v) Verify that
k∑
i=0

Bi,k(x) =
k−1∑
i=0

Bi,k−1(x) , where k ∈ N .

(vi) Verify that the n+ 1 Bernstein basis polynomials of degree n are a
partition of unity by using (v) to show that

n∑
i=0

Bi,n(x) =
n−1∑
i=0

Bi,n−1(x) =
n−2∑
i=0

Bi,n−2(x) = · · · =
1∑
i=0

Bi,1(x) = (1−x)+x = 1.

(vii) Noting that every polynomial can be written as a linear sum of {1, x, x2, . . . , xn},
prove that every polynomial of degree n can also be written as a linear
sum of Bernstein basis polynomials of degree 1, 2, . . . , n.
[Hint: Using mathematical induction, verify that

xk =
n−1∑
i=k−1

( i
k

)(n
k

)Bi,n(x).]

(viii) Verify that the Bernstein basis polynomials, B0,n(x), B1,n(x), . . . , Bn,n(x)

are linearly independent by showing that

0 = λ0B0,n(x)+λ1B1,n(x)+· · ·+λnBn,n(x) = 0 , for all x , =⇒ λi = 0 , for i = 1, 2, . . . , n.

(ix) Some writers on this topic (foolishly) define a Bernstein polynomial Bn(x)

to be any linear combination
n∑

m=0
am
(m
n

)
xm(1 − x)n−m of Bernstein basis

polynomials of degrees 1, 2, . . . , n, where a1, a2, . . . , an ∈ R. Using (vii)
above, verify that with this definition every polynomial is a Bernstein
polynomial.

Paracompactness

29. A topological space (X,τ ) is said to be paracompact6 if every open cover has
an open refinement that is locally finite7. Prove the following statements:

(i) Every compact space is paracompact.
(ii) Every closed subspace of a paracompact space is paracompact.

6Some authors include Hausdorffness in the definition of paracompact.
7Paracompact spaces were introduced into the literature by Jean Alexandre Eugène Dieudonné

who also proved that every Hausdorff paracompact space is a normal space.
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(iii)** Every Fσ-set S in a regular paracompact space is paracompact.
(iv) Every regular Lindelöf space is paracompact.
(v) Rn is paracompact, for every n ∈ N.
(vi) The Sorgenfrey line is paracompact.
(vii) Let (X,τ ) be the product of uncountable many copies of Z. Prove that

(X,τ ) is not paracompact.
(viii) Deduce from (vii) above, that if (X,τ ) is the product of uncountable many

copies of any infinite discete space, then (X,τ ) is not paracompact.
(ix) Deduce from (viii) above, that if (X,τ ) is the product of uncountable many

copies of R, then (X,τ ) is not paracompact.
(x) Would (ix) above remain true, if R were replaced by an arbitrary infinite

non-compact metrizable space?
(xi) Every Hausdorff Lindelöf space is paracompact.

(xii)* Every Hausdorff paracompact space is a regular space.
(xiii)* Every Hausdorff paracompact space is a T4-space; that is a Hausdorff normal

space.
(xiv) The space (X, τ ) is a paracompact Hausorff space if and only if

for every open cover U of (X,T), then there is a partition of unity
subordinate to U . [Hint: Use (xiii) above and Exercises 10.3 #28(i).]

(xv)* Every metrizable space is paracompact.
(xvi) If (X, τ ) is paracompact Hausdorff space and (Y, τ1) is a compact

Hausdorff space, then the product space (X, τ )× (Y, τ1) is paracompact
Hausdorff;.

(xvii) If f : (X,τ ) → (Y,τ 1) is a continuous closed surjective map of the
paracompact Hausdorff space (X,τ ) onto the Hausdorff space (Y,τ 1), then
(Y,τ 1) is paracompact. [Hint: Use (xii) above.]

(xviii) Every countably compact paracompact space is compact.
(xix) A topological space (X,τ ) is said to be metacompact if for any open cover

{Ai : i ∈ I} of (X,τ ), there is a refinement {Bj : j ∈ J} which is also an
open cover of (X,τ ) with the property that every point x ∈ X is contained
in only finitely many sets Bj, j ∈ J . Prove that every paracompact space
is metacompact and the product of a metacompact Hausdorff space
and a compact Hausdorff space is metacompact.
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30. Using previous exercises, prove the correctness of the picture below:
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Cellularity

31. Let (X,τ ) be a topological space, the cellularity of the topological space (X,τ )

is the cardinal number 8 c(X) given by
c(X) = ℵ0 + sup{card U : U is a set of pairwise disjoint open sets in (X,τ ).}

The density of (X,τ ) is the cardinal number d(X) given by

d(X) = ℵ0 + min{card S : S ⊆ X and S is dense in X}.

The spread of (X,τ ) is the cardinal number s(X) given by

s(X) = ℵ0 + sup{card (D) : D is a discrete subspace of X}.

The Lindelöf degree, L(X), of (X,τ ) is the smallest infinite cardinal number
ℵ such that every open cover of X has a subcover of cardinality 6 ℵ. Of course
L(X) = ℵ0 if and only if (X,τ ) is a Lindelöf space.

Write down and verify the obvious relations between cellularity, density, spread,
Lindelöf degree, and weight of any topological space (X,τ ).

G-bases
32. Recall9 the definition of poset in Definition 10.2.1. A subset A of the poset P

is said to be cofinal in P if for each x ∈ P , there exists an a ∈ A such that
x 6 a.
A subset A of the poset P is said to be coinitial in P if for each x ∈ P , there
exists a b ∈ A such that b 6 x.
A subset A of P is said to be bounded if there exists an x ∈ P such that for
all a ∈ A, a 6 x.
A poset P is said to be lower complete if for every subset A of X has a greatest
lower bound.
The cofinality of a poset P , denoted by cf(P ) is the least of the cardinalities
of the cofinal subsets of P .

8There are numerous cardinal invariants (cardinal functions) associated with each topological
space. We have introduced only 4 of these in this exercise. For more detailed discussion, see Juhász
[211] and Chapter 1 of Kunen and Vaughan [234].

9This exercise is inspired by the beautiful manuscript, Banakh [27]. Most of the material here
appears in that manuscript of Taras Banakh (1968– ).
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Let P and Q be posets. The poset Q is said to be Tukey dominated by P ,
denoted by Q 6T P , if there exists a function f : P → Q that maps every
confinal subset of P to a cofinal subset of Q. The posets P and Q are said to
be Tukey equivalent if P 6T Q and Q 6T P .

If (X,τ ) is a topological space, for each point x ∈ X the set Nx of all
neighbourhoods in (X,τ ) of x is a poset if we give it the partial order of reverse
inclusion; that is, if N1, N2 ∈ Nx then N2 6 N1 precisely when N1 ⊆ N2. So
Nx is a directed lower complete poset. (A poset P is said to be directed if for
every a, b ∈ P , there exists a c ∈ P such that a 6 c and b 6 c.) For x ∈ X, the
poset Nx is Tukey dominated by ω if and only if the topological space (X,τ ) is
first countable at the point x.
Let P be a poset. The topological space (X,τ ) is said to have a neighbourhood
P -base at the point x ∈ X if the poset Nx of all neighbourhoods of x is Tukey
dominated by P . Since Nx is lower complete, this happens if and only if at
each x ∈ X, the space (X,τ ) has a neighbourhood base {Uα[x] : α ∈ P}
such that Uβ[x] ⊆ Uα[x] for all α 6 β ∈ P . If a topological space (X,τ )

has a neighbourhood P -base {Uα : α ∈ P} at each x ∈ X, then these
neighbourhood bases can be encoded by the set {Uα : α ∈ P} of the entourages
Uα = {(x, y) ∈ X × X : y ∈ Uα[x]}, α ∈ P . Such a family {Uα : α ∈ P} is
said to be a P -based topological space. A topological space (X,τ ) has a
neighbourhood P -base at each point if and only if it has a P -base.
Banakh [27], Banakh and Leiderman [28], Gabriyelyan and Ka̧kol [140], Leiderman
et al. [243], and Gabriyelyan et al. [141] study topological spaces, topological
groups and topological vector spaces with an ωω-base. (Note that by ωω we
mean the uncountable cardinal number of the set NN with co-ordinatewise
partial ordering 6, given by f 6 g when f(n) 6 g(n), for f, g : N → N and
n ∈ N, not the countable ordinal number.) In some literature these are known
as topological spaces with a G-base.

(i) Let P and Q be posets and f : P → Q. Verify that Q is Tukey dominated
by P if and only if f−1(B) is bounded in P for every bounded subset B of
P .

(ii) Verify that a poset is Tukey dominated by ω if and only if P is a directed
poset of countable cofinality.
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(iii) Let P and Q be posets. If Q has a greatest element, verify that P is Tukey
dominated by Q.

(iv) Let P and Q be posets. If both P and Q have greatest elements, the P and
Q are Tukey equivalent.

(v) Verify that a topological space (X,τ ) is first countable if and only if it has
an ω-base.

(vi) Verify that every topological space with an ω-base has an ωω-base. Deduce
that every metrizable space has an ωω- base.

Banach spaces, Dual Spaces, Weak Topologies, and Reflexivity

33. Let N be a normed vector space over K, which is the field R of real numbers
or C of complex numbers, with norm || ||. A linear map from the underlying
vector space of N into K is said to be a linear functional. Denote the set
of all continuous linear functionals from N into K by N∗. If φ, φ1, φ2 ∈ N∗

and λ ∈ K, define (φ1 + φ2)(x) = φ1(x) + φ2(x) and (λφ)(x) = λ(φ(x)). With
these operations N∗ is a vector space over K. Define a norm || ||op on N∗ by
||φ||op = sup{|φ(x)| : x ∈ N , ||x|| 6 1}, for φ ∈ N∗. (op is short for operator.)

(i) Verify that N∗, with || ||op, is indeed a normed vector space. (The normed
vector space N∗ is called the dual space of N .)

(ii) Verify that with this norm, N∗ is in fact a Banach space.

[Hint: Let φn be a Cauchy sequence of members of N∗. For each x ∈ N ,
consider the sequence φn(x) in the field K of scalars. Use the fact that K
is a complete metric space.]

(iii)** Verify each of the following:

(a) if N is Rn, n ∈ N, then N∗ is isometrically isomorohic to Rn;
(b) if N is `p for 1 < p <∞, then N∗ is isometrically isomorphic to `q, where

1
p + 1

q = 1;

(c) if N is `2, then N∗ is isometrically isomorphic to `2;

(d) if N is c0, then N∗ is isometrically isomorphic to `1;

(e) if N is `1, then N∗ is isometrically isomorphic to `∞.
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(iv) Consider the double dual N∗∗ of N ; that is, N∗∗ = (N∗)∗. Verify that
the natural map Γ : N → N∗∗ given by Γ(x)(φ) = φ(x), for x ∈ N ,
φ ∈ N∗ is one-to-one, linear and norm preserving; that is, ||Γ(x)||op = ||x||,
for all x ∈ N . Deduce that if N is a Banach space, then the Banach
spaces N and Γ(N) are isomorphic as Banach spaces; that is, the map
Γ : N → Γ(N) ⊆ N∗∗ is one-to-one and onto and an isometric isomrphism
of N onto Γ(N).

(v) A normed vector space is said to be reflexive if in the notation above,
Γ(N) = N∗∗. Deduce that if N is reflexive, then it is a Banach space and
N and N∗∗ are isometric Banach spaces.

(vi) Let N be a normed vector space over the scalar field K which is R or C,
as usual. Then the norm on N induces a topology on N which is called the
strong topology. Let N∗ be the dual space of N , which we have seen is
a Banach space. Obviously the strong topology is such that, by definition,
every φ : N → K, where φ ∈ N∗, is continuous. However, there may be
coarser topologies on the vector space N such that all such φ are continuous.
The coarsest topogy τ on the vector space N such that for each φ ∈ N∗,
the linear functional (N,τ )→ K is continuous is called the weak topology.
The coarsest topology τ ∗ on the vector space N∗ such that every linear
functional Γ(x) : N∗ → K, given by Γ(x)(φ) = φ(x), for each x ∈ N and
φ ∈ N∗, is called the weak*-topology. Verify from the definitions that the
weak*-topology on N∗ is coarser than the weak topology on N∗ but the two
topologies coincide if N is a reflexive Banach space.
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(vii) [Banach-Alaoglu Theorem] (Leonidas Alaoglu (1914–1981) was a Canadian
mathematician who extended Banach’s result from separable spaces to the
general case.) If N is a normed vector space, then the closed unit ball
of N∗ is weak*-compact; that is, compact in the weak*-topology on
N∗. (This result should be contrasted with that in Exercises 8.3 #3 (vi).)
Prove this theorem by verifying each of the following steps.

(a) Let B∗ = {φ : φ ∈ N∗, ||φ||∗ 6 1} be the closed unit ball of N∗, where
|| ||∗ is the norm on N∗. Then each linear functional φ ∈ B∗ maps
the closed unit ball B = {x : x ∈ N, ||x|| 6 1} of N into the disc
D = {c : c ∈ K, |c| 6 1}.

(b) So we can identify B∗ with a subset of the product space DB. the space

(c) We can readily check that the weak*-topology on B∗ is in fact the
subspace topology from the product topology on DB.

(d) Indeed, B∗ is a closed subspace of DB.

(e) As D is compact, Tychonoff’s Theorem 10.3.4 implies that DB is
compact.

(e) So the closed subspace B∗ of DB is compact; that is, B∗ is weak*-
compact. �

(viii) Let K be the real number field R or the complex number field C and V,W
vector spaces over K. A linear operator from V to W is a map φ : V → W

such that φ(λx+µy) = λφ(x)+µφ(y), for all x, y ∈ V and all λ, µ ∈ K. If V
and W are normed vector spaces, a linear operator φ : V → W is said to be
bounded if there exists a positive real numberM such that ||φ(x)|| 6M ||x||
for every x ∈ V . Prove that a linear operator φ : V →W is bounded if
and only if it is continuous. The smallest such M is called the operator
norm and denoted || ||op, and the set B(V,W ) of all linear operators from
V to W with this norm || ||op is a normed vector space. (Observe that the
norm || ||op depends on the norms on V and W .) The normed vector space
(B(V,W ), || ||op) is called the space of bounded linear operators. Define
bounded linear functional and deduce from what we just proved that a linear
functional φ : V → K is bounded if and only if it is continuous.
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(ix) Let V = C[0, 1] the Banach space of all continuous functions f : [0, 1]→ R

with the norm given by ||f || =
(∫ 1

0 |f(x)|2dx
)1
2 . Define a linear functional

φ : V → R by φ(f) = f(0), for all f ∈ C[0, 1]. Verify (a) V is a normed
vector space; (b) V is a Banach space; (c) φ is a linear functional; (d) by
considering functions fn : [0, 1]→ R such that fn(0) = n but

∫ 1
0 (fn(x))2 = 1,

for each positive integer n, that φ is not a bounded linear functional.

(x)* (One-dimensional version of the Hahn-Banach Theorem over R The
Hahn-Banach Theorem was proved independently in the 1920s by the
Austrian mathematician Hans Hahn (1879–1934) and the Polish mathematician
Stefan Banach (1892–1945).) Prove the following lemma.
Lemma. Let B be a normed vector space, E a vector subspace of B, and
f : E → R a bounded linear functional. Then for any x ∈ B \ E, there
exists a linear functional f1 : E1 = span{E, x1} → R that extends f (that
is, f(x) = f1(x), for all x ∈ E) and satisfies ||f ||op = ||f1||op. (If X is a
subset of a vector space L, span(L) denotes the smallest vector subspace
of L which contains X.)

[Hint. If ||f ||op = 0, the result is seen trivially to be true. So we can, without
loss of generality, assume ||f ||op = 1. Now if x ∈ E1, then x = λx1 + y, for
λ ∈ R and y ∈ E. To define f1 as an extension of f it suffices to choose
an appropriate value of f1(x1) – by appropriate we mean a value such that
||f ||op = ||f1||op. Let us put f1(x1) = a1, so that f1(λx1 +y) = λa1 +f(y).
It therefore suffices to choose a1 such that |f1(x)| 6 ||x||, for all x ∈ E1;
that is,

−||λx1 + y|| 6 λa1 + f(y) 6 ||λx1 + y|| , for all λ ∈ R and y ∈ E.

This holds for λ = 0 by hypothesis on f , so we can assume λ 6= 0. This
allows us to rewrite the above inequality as

−
∣∣∣∣∣∣x1 +

y

λ

∣∣∣∣∣∣− f (y
λ

)
6 a1 6

∣∣∣∣∣∣x1 +
y

λ

∣∣∣∣∣∣− f (y
λ

)
, for all λ ∈ R and y ∈ E.

Equivalently − ||x1 + z|| − f(z) 6 a1 6 ||x1 + z|| − f(z), for all z ∈ E.

Show that for any z1, z2 ∈ E

−||x1 + z1|| − f(z1) 6 ||x1 + z2|| − f(z2).
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Observe that this implies
−∞ < sup

z1∈E
[−||x1 + z1|| − f(z1)] 6 inf

z2∈E
[||x1 + z1|| − f(z2)] <∞.

So we can choose for a1 any value between sup
z1∈E

[−||x1 + z1|| − f(z1)] and

inf
z2∈E

[||x1 + z1|| − f(z2)] .]

(xi)* [Hahn-Banach Theorem] Let B be a normed vector space over
a field K, where K is R or C, and E a vector subspace of B.
If f : M → K is a bounded linear functional, then there exists a
bounded linear function f1 : B → K that extends f . Using (x) above
and Zorn’s Lemma, prove the Hahn-Banach Theorem.

[Hint. For convenience we discuss only the case that K = R. We saw in (x)
above how to extend a bounded linear functional from E to a vector space,
one dimension greater. We could extend once more to a vector space of
dimension 2 greater. Indeed we could do such an extension a finite number
of times. But to extend to a space of uncountable dimension greater, it is
necessary to use the Axiom of Choice or its equivalent, Zorn’s Lemma. Let
B consist of all pairs (N, fN ) such that

(a) N is a vector subspace of B that contains E;

(b) fN is a bounded linear functional on N ;

(c) fN extends f ; that is fN (x) = f(x) for all x ∈ E;
(d) ||fN ||op = ||f ||op.
Now put a partial order on B as follows:

(N, fN ) 6 (N ′, fN ′) if N ⊆ N ′ and fN ′ extends fN on N .
Complete the proof by considering a totally ordered subset of B, observing
that it has an upper bound, deducing by Zorn’s Lemma that the partial
ordering has a maximal element (NM , fM ) and using (x) to show (NM , fM )

cannot be a maximal element unless BM = B.]
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(xii) Let B be a normed vector space over R and 0 6= x1 ∈ B. Using the
Hahn-Banach Theorem show that there exists a bounded linear functional
f1 : B → R with ||f ||op = 1 and f1(x1) = ||x1||.
[Hint. Let E be the vector subspace of B spanned by x1. Define a linear
functional f on E by f(λx1) = λ||x1||. Show that f is a bounded linear
functional and ||f ||op = 1. Then extend f to all of B using the Hahn-Banach
Theorem.]

(xiii) Let B be a normed vector space and E a proper closed subspace of B.
Then there exists a bounded linear functional f : B → R with ||f ||op = 1

and f(x) = 0, for all x ∈ E. (This result generalizes that in (xii) above.)

(xiv) Prove the following statement: Let E be a normed vector space. If E∗

is separable, then E is separable.

[Hint. Noting that the unit sphere in E∗ is separable, let {fn ∈ E∗ : n ∈ N}
be a countable dense subset of this unit sphere. Verify that for each n ∈ N,
there exists xn ∈ E with ||xn|| = 1 such that |fn(xn)| > 1

2. Then let W be
the closed linear span of {xn : n ∈ N}. The aim is to show that W = B.
Suppose to the contrary that W is a proper closed subspace of B. By (xiii)
there exists an f ∈ B∗ with ||f ||op = 1 and f(x) = 0, for all x ∈ W . So
f(xn) = 0, for all n ∈ N. Show that this implies that for all n ∈ N

1

2
6 |fn(xn)| = |fn(xn)− f(xn)| 6 ||fn − f ||op||xn|| = ||fn − f ||op.

But this contradicts the assumption that {fn : n ∈ N} is dense in the unit
sphere of B∗.]



10.3. TYCHONOFF’S THEOREM 319

(xv) Let (N, || ||N ) be a normed vector space and E a closed vector subspace
of N . We define an equivalence relation ∼ on N by x ∼ y if x − y ∈ E,
x, y ∈ N and define N/E to be the set of all these equivalence classes. We
define the map g : N → N/E by g(x) is the equivalence class of x. Define
||z||N/E = inf

x∈N
{||x||N : g(x) = z}. Prove the following:

(a) Define the natural vector space structure on N/E induced by the vector
space structure on N . Verify that N/E is indeed a vector space;

(b) || ||N/E is a norm on the vector space N/E;

(c) g is an open continuous linear operator;

(d) if N is a Banach space, then (N/E, || ||N/E) is a Banach space.

The normed vector space ||(N/E, || ||N/E) is said to be the quotient space
of N by E.
(See also quotient (topological) space in Definitions 11.1.1 and quotient
(topological) group in Proposition A5.2.16.)

(xvi) Let N be a normed vector space, E a subset of N . Then E⊥ is defined to
be {f ∈ N∗ : f(x) = 0, for all x ∈ E}, and is called the annihilator of E.
Prove that E⊥ is a closed vector subspace of N∗ and that E⊥ = (spanE)⊥.
If F is a subset of N∗, then F⊥ is defined to be {x ∈ N : f(x) = 0,∀f ∈ F}
and is called the pre-annihilator of F . Prove also that F⊥ is a closed vector
subspace of N and F⊥ = (spanF )⊥.
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(xvii)* Prove the following statement: Let N be a normed vector space and E
a vector subspace of N . Then

(a) E∗ is isometrically isomorphic to N∗/E⊥;

(b) If E is closed, then (N/E)∗ is isometrically isomorphic to E⊥.

(Note that this result for Banach spaces is the analogue of Corollary A5.9.6
and Corollary A5.9.7 in Pontryagin Duality of topological groups.)

[Hint. (a) Let Θ : N∗ → N∗/E⊥ be the natural mapping. Consider f ∈ E∗.
By the Hahn-Banach Theorem there exists a bounded linear functional
f1 : N → R such that f1 is an extension of F and ||f1||op = ||f ||op.
Now prove that the map φ : E∗ → N∗/E⊥ given by φ(f) = Θ(f1) is an
isometry of E∗ onto N∗/E⊥.
(b) Let Γ : N → N/E be the natural quotient mapping. Define the map
δ : (N/E)∗ → E∗ by δ(f) = f ◦ Γ. Verify that δ is linear and δ(f)(x) = 0,
for all x ∈ E. Deduce from this that δ maps (N/E)∗ into E⊥. Now prove
that δ is an isometry of (N/E)∗ onto E⊥.]

(xviii) Prove the following statement: Let B be any Banach space and let
Φ : B → B∗∗ be the canonical linear mapping given by Φ(x)(γ) = γ(x),
for all γ ∈ B∗ and x ∈ B. Then Φ maps B isometrically onto the
subspace Φ(B) of B∗∗.

(xix) Prove the following result: A Banach space B is reflexive if and only if
B∗ is reflexive.

[Hint. Firstly consider the case that B is reflexive. As B is reflexive,
the canonical linear operator Φ : B → B∗∗ is an isometry. Using (xviii)
above, to prove that B∗ is reflexive, it suffices to show that the canonical
bounded linear operator Ψ from B∗ to B∗∗∗ is surjective. Let γ ∈ B∗∗∗.
So γ ∈ (Φ(B))∗; that is, γ is a bounded linear functional from Φ(B) to R.
Let fγ : B → R be defined by fγ(b) = γ(Φ(b)), for all b ∈ B. Verify that
fγ ∈ B∗ and that Ψ(fγ) = γ. This shows that Ψ has the required properties.
Conversely, suppose that B is not reflexive. Then Φ(B) is a proper subspace
of B∗∗. Use (xiii) above to obtain a contradiction.]
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(xx) Deduce the following theorem using the Banach-Alaoglu Theorem: The
Banach space B is reflexive if and only if its closed unit ball T is
weakly compact.

[Hint. First use the Banach-Alaoglu Theorem to prove that the closed unit
ball in a reflexive Banach space B is weakly compact. Observe that if B is a
reflexive Banach space, then B = B∗∗ and the weak topology on B coincides
with the weak*-topology on (B∗)∗ = B. Deduce that T is weakly compact.
Conversely assume that T is weakly compact and let T ′′ be the closed unit
ball in B∗∗. The embedding of B in B∗∗ is weak-weak* continuous, so the
image of T under this embedding is weak*-compact in B∗∗. Using the fact
that the image of T is weak*-dense in T ′′, we can see the image of T is in
fact T ′′. From this it follows that the image of B in B∗∗ equals B∗∗, that
is B is reflexive.]

(xxi) A Banach space B is said to be weakly compactly generated or WCG if
it has a subset S which is weakly compact (that is, compact in the weak
topology on B) such that the closed linear span of S is B. Prove using
Exercises 8.3 #3(vi) that every separable Banch space is a WCG space
and using (xx) above that every reflexive Banach space is also a WCG
space.

(xxii) Let B be a Banach space and E a closed subspace of B. By considering
the quotient Banach space B/E, show that for any x1 ∈ B \ E there exists
a bounded linear functional fx1 : B → R such that fx1(y) = 0, for all y ∈ E
but fx1(x1) 6= 0. Deduce that if E is a closed vector subspace of the
Banach space B, then E is a closed subspace of B with its weak
topology.

(xxiii)* Using (xx) prove that every closed subspace of a reflexive Banach space
is a reflexive Banach space.

[Hint. Let B be a reflexive Banach space and E a closed subspace of B. Let
T and S be the closed unit balls in B and E, respectively. As B is reflexive,
T is weakly compact. Using this and (xxii) above, show that S is weakly
compact.]
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(xxiv)** Prove that a Banach space B is separable if and only if the closed
unit ball of B∗ is weak*-metrizable. (This result complements that of
Exercises 8.3 #3 (vi).)

(xxv) In the 1930s the Polish mathematicians Stefan Banach and Stanisław
Mazur (1905–1981) stated a question, which has become known as the
Separable Quotient Problem and is still unanswered. Does every infinite-
dimensional Banach space have a quotient space which is an infinite-
dimensional separable Banach space? This has been proved to be true
for a variety of special cases, such as when the infinite-dimensional Banach
space B is reflexive. (For other special cases, see Argyros et al. [13].) To
verify the reflexivity special case, check that the following statements are
true:

(a) Every infinite-dimensional Banach space has a subspace which is an
infinite-dimensional separable Banach space.

(b) Every closed subspace of a reflexive Banach space is reflexive.

(c) If a Banach space B is such that B∗ is separable, then B is separable.

(d) If a separable reflexive Banach space B, then B∗ is separable.

(e) If B is any infinite-dimensional reflexive Banach space, then its dual space
B∗ has an infinite-dimensional separable reflexive Banach subspace E

which implies that B∗∗ has an infinite-dimensional separable (reflexive)
quotient Banach space E∗.

(f) If B is an infinite-dimensional reflexive Banach space, then B has
an infinite-dimensional separable (reflexive) quotient Banach space.
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(xxvi) A Banach space B is said to an Asplund space, named after Edgar Asplund
(1931–1974), if every separable closed subspace of B has a separable dual.

(a) Using (xxv) above, verify that every reflexive Banach space is an
Asplund space.

(b) Verify that every closed subspace on an Asplund space is an Asplund
space.

(c) Noting that the dual space of the separable Banach space `1 is the non-
separable space `∞, we see that not every separable Banach space
is an Asplund space. Deduce that not every weakly compactly
generated space is an Asplund space.

(d) Prove that a separable Banach space B is an Asplund space if and
only if its dual B∗ is a separable Banach space.

(e) Verify that every Banach space which is a quotient space of an
Asplund space is an Asplund space.

(f) Verify that every finite product of Asplund spaces is an Asplund
space.

Remarks. (α) As a generalization of (f) we mention that being an
Asplund space is a three space property; that is, if B is a Banach
space which has a closed vector subspace E such that E and the quotient
Banch space B/E are Asplund spaces, then B is an Asplund space. (See
Exercises A5.12 #5 where the three space property was introduced.) This
result is Theorem 4.11a of Castillo and González [72].
(β) If B is a Banach space and the dual space B∗ is a WCG space, then
B∗ is an Asplund space. (See Theorem 4.11b of Castillo and González
[72].)

(g) Verify that if B is an infinite-dimensional Asplund space, then its
dual space B∗ has a quotient space which is an infinite-dimensional
separable Banach space.

(h) Verify that every reflexive Banach space (i) is an Asplund space and
(ii) is the dual of an asplund space. Deduce that (g) above includes
as a special case (xxv)(f).
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(i) Prove that if the Banach space B has a subspace E, where E is
an infinite-dimensional Asplund space, then the dual space B∗ has
a quotient space which is an infinite-dimensional separable Banach
space. In particular, this is the case if E is a reflexive Banach
space.

(j) Verify from the above that if B is a Banach space which contains as
a subspace c0 or `p, for 1 < p <∞, or any Hilbert space, then B∗

has an infinite-dimensional separable quotient Banach space.

(xxvii) Using Exercises 8.3 #3(xi) prove that if the Banach space B has Banach
subspaces B1 ⊂ B2 ⊂ · · · ⊂ Bi ⊂ · · · ⊂ . . . with each
Bi+1/Bi having dimension 1, and

⋃∞
i=1Bi dense in B, then B has

an infinite-dimensional separable quotient Banach space.

(xxviii)(a) Let B be an infinite-dimensional Banach space such that its dual space B∗

has a separable infinite-dimensional Banach quotient space. Using (xviii)
show that B∗∗∗ has a separable infinite-dimensional Banach quotient
space. Deduce that B∗∗∗∗∗, B∗∗∗∗∗∗∗, etc. have infinite-dimensional
separable quotient Banach spaces.

(b) Let B be a Banach space with an infinite-dimensional Banach subspace E.
If E∗ has a separable infinite-dimensional Banach quotient space, show
that B∗∗∗ has a separable infinite-dimensional Banach quotient space.
Deduce that B∗∗∗∗∗, B∗∗∗∗∗∗∗, etc. have infinite-dimensional separable
quotient Banach spaces.

(c) Deduce from the above that if a Banach space B has a subspace E
which is an infinite-dimensional Asplund space, then the dual spaces
B∗∗∗, B∗∗∗∗∗, etc have infinite-dimensional separable quotient
Banach spaces.
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10.4 Stone-C̆ech Compactification

10.4.1 Definition. Let (X,τ ) be a topological space, (βX,τ ′) a
compact Hausdorff space and β : (X,τ ) −→ (βX,τ ′) a continuous mapping,
then (βX,τ ′) together with the mapping β is said to be the Stone-C̆ech
compactification of (X,τ ) if for any compact Hausdorff space (Y,τ ′′) and any
continuous mapping φ : (X,τ ) −→ (Y,τ ′′), there exists a unique continuous
mapping
Φ : (βX,τ ′) −→ (Y,τ ′′) such that Φ ◦ β = φ; that is, the diagram below
commutes:

(X,τ ) (βX,τ ′)

(Y,τ ′′).

..................................................................................................................................................................................... ............
β

............................................................................................................................................................................................................................................................................................................................................................................ ........
....

φ

..............................................................................................................................................................
.....
.......
.....

Φ

WARNING The mapping β is usually not surjective, so β(X) is usually not equal
to βX.
10.4.2 Remark. Those familiar with category theory should immediately
recognize that the existence of the Stone-C̆ech compactification follows from the
Freyd Adjoint Functor Theorem using the forgetful functor from the category of
compact Hausdorff spaces and continuous functions to the category of topological
spaces and continuous functions. For a discussion of this see MacLane [254], Freyd
[136]10

While the Stone-C̆ech compactification exists for all topological spaces, it
assumes more significance in the case of Tychonoff spaces. For the mapping β

is an embedding if and only if the space (X,τ ) is Tychonoff. The “only if” part of
this is clear, since the compact Hausdorff space (βX,τ ′) is a Tychonoff space and
so, therefore, is any subspace of it.

10Peter Freyd’s book “Abelian categories: An introduction to the theory of functors” is available
as a free download at various sites including
http://www.emis.de/journals/TAC/reprints/articles/3/tr3.pdf.

http://www.emis.de/journals/TAC/reprints/articles/3/tr3.pdf
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We now proceed to prove the existence of the Stone-C̆ech compactification for
Tychonoff spaces and of showing that the map β is an embedding in this case.

10.4.3 Lemma. Let (X,τ ) and (Y,τ ′) be Tychonoff spaces and F(X) and
F(Y ) the family of all continuous mappings of X and Y into [0, 1], respectively.
Further let eX and eY be the evaluation maps of X into

∏
f∈F(X) If and Y

into
∏
g∈F(Y ) Ig, respectively, where If ∼= Ig ∼= [0, 1], for each f and g. If φ is

any continuous mapping of X into Y , then there exists a continuous mapping Φ

of
∏
f∈F(X) If into

∏
g∈F(Y ) Ig such that Φ ◦ eX = eY ◦φ; that is, the diagram

below commutes.
(X,τ ) (Y,τ ′)

∏
f∈F(X)

If
∏

g∈F(Y )
Ig

.............................................................................................................................. ............
φ

........................................................................................................................................................
.....
.......
.....

eX

...................................................... ............

Φ

........................................................................................................................................................
.....
.......
.....

eY

Further, Φ(eX(X)) ⊆ eY (Y ).

Proof. Let
∏
f∈F(X) xf ∈

∏
f∈F(X) If . Define Φ

(∏
f∈F(X) xf

)
=
∏
g∈F(Y ) yg,

where yg is defined as follows: as g ∈ F(Y ), g is continuous map from (Y,τ ′) into
[0, 1]. So g ◦φ is a continuous map from (X,τ ) into [0, 1]. Thus g ◦φ = f , for some
f ∈ F(X). Then put yg = xf , for this f , and the mapping Φ is now defined.

To prove continuity of Φ, let U =
∏
g∈F(Z) Ug be a basic open set containing

Φ(
∏
f∈F(X) xf ) =

∏
g∈F(Y ) yg. Then Ug = Ig for all g ∈ F(Y ) \ {gi1, . . . , gin},

for gi1, . . . , gin. Put fi1 = gi1 ◦ φ, fi2 = gi2◦, . . . , fin = gin ◦ φ. Now define
V =

∏
f∈F(X) Vf , where Vf = If , for some f ∈ F(X) \ {fi1, fi2, . . . , fin}, and

Vfi1
= Ugi1

, Vf12
= Ugi2

, . . . , Vfin
= Ugin . Clearly

∏
f∈F(X) xf ∈ V and Φ(V ) ⊆ U .

So Φ is continuous.
To see that the diagram commutes, observe that

Φ(eX(x)) = Φ
( ∏
f∈F(X)

f(x)
)

=
∏

g∈F(Y )

g(φ(x)), for all x ∈ X.

So Φ ◦ eX = eY ◦ φ.
Finally as Φ is continuous, Φ(eX(X)) ⊆ eY (Y ), as required. �
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10.4.4 Lemma. Let Φ1 and Φ2 be continuous mappings of a topological
space (X,τ ) into the Hausdorff space (Y,τ ′). If Z is a dense subset of (X,τ )

and Φ1(z) = Φ2(z) for all z ∈ Z, then Φ1 = Φ2 on X.

Proof. Suppose Φ1(x) 6= Φ2(x), for some x ∈ X. Then as (Y,τ ′) is
Hausdorff, there exist open sets U 3 Φ1(x) and V 3 Φ2(x), with U ∩ V = Ø.
So Φ−1

1 (U) ∩ Φ−1
2 (V ) is an open set containing x.

As Z is dense in (X,τ ), there exists a z ∈ Z such that z ∈ Φ−1
1 (U) ∩ Φ−1

2 (V ).
So Φ1(z) ∈ U and Φ2(z) ∈ V . But Φ1(z) = Φ2(z). So U ∩ V 6= Ø, which is a
contradiction.

Hence Φ1(x) = Φ2(x), for all x ∈ X. �
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10.4.5 Proposition. Let (X,τ ) be any Tychonoff space, F(X) the family
of continuous mappings of (X,τ ) into [0, 1], and eX the evaluation map of
(X,τ ) into

∏
f∈F(X) If , where each If

∼= [0, 1]. Put (βX, T ′) equal to

eX(X) with the subspace topology and β : (X,τ ) −→ (βX,τ ′) equal to the
mapping eX . Then (βX,τ ′) together with the mapping β is the Stone-C̆ech
compactification of (X,τ ).

Proof. Firstly observe that (βX,τ ′) is indeed a compact Hausdorff space, as it
is a closed subspace of a compact Hausdorff space.

Let φ be any continuous mapping of (X,τ ) into any compact Hausdorff space
(Y,τ ′′). We are required to find a mapping Φ as in Definition 10.4.1 so that the
diagram there commutes and show that φ is unique.

Let F(Y ) be the family of all continuous mappings of (Y,τ ′′) into [0, 1] and eY
the evaluation mapping of (Y,τ ′′) into

∏
g∈F(Y ) Ig, where each Ig ∼= [0, 1].

By Lemma 10.4.3, there exists a continuous mapping Γ :
∏
f∈F(X) If −→∏

g∈F(Y ) Ig, such that eY ◦ φ = Γ ◦ eX , and Γ(eX(X)) ⊆ eY (Y ); that is,

Γ(βX) ⊆ eY (Y ).

As (Y,τ ′′) is a compact Hausdorff space and eY is one-to-one, we see that
eY (Y ) = eY (Y ) and eY : (Y,τ ′′) −→ (eY (Y ),τ ′′′) is a homeomorphism, where
τ ′′′ is the subspace topology on eY (Y ). So e−1

Y : (eY (Y ),τ ′′′) −→ (Y,τ ′′) is a
homeomorphism.

Put Φ = e−1
Y ◦ Γ so that Φ is a continuous mapping of (βX,τ ′) into (Y,τ ′′).

Further,
Φ(β(x)) = Φ(eX(x), for any x ∈ X

= e−1
Y (Γ(eX(x)))

= e−1
Y (eY (φ(x))), as eY ◦ φ = Γ ◦ eX

= φ(x).

Thus Φ ◦ β = φ, as required.

Now suppose there exist two continuous mappings Φ1 and Φ2 of (βX,τ ′) into
(Y,τ ′′) with Φ1 ◦ β = φ and Φ2 ◦ β = φ . Then Φ1 = Φ2 on the dense subset β(X)
of (βX,τ ′). So by Lemma 10.4.4, Φ1 = Φ2. Hence the mapping Φ is unique. �
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10.4.6 Remark. In Definition 10.4.1 referred to the Stone-C̆ech compactification
implying that for each (X,τ ) there is a unique (βX,τ ′). The next Proposition
indicates in precisely what sense this is true. However we first need a lemma.

10.4.7 Lemma. Let (X,τ ) be a topological space and let (Z,τ 1) together
with a mapping β : (X, T ) −→ (Z,τ 1) be a Stone-C̆ech compactification of
(X,τ ). Then β(X) is dense in (Z,τ 1).

Proof. Suppose β(X) is not dense in (Z,τ 1). Then there exists an element
z0 ∈ Z \ β(X). As (Z,τ 1) is a compact Hausdorff space, by Remark 10.3.28, it is a
Tychonoff space.

Observing that Z \β(X) is an open set containing z, we deduce that there exists
a continuous mapping Φ1 : (Z,τ 1) −→ [0, 1] with Φ1(z0) = 1 and Φ1(β(X)) = {0}.
Also there exists a continuous mapping Φ2 : (Z,τ 1) −→ [0, 1

2 ] with Φ2(z0) = 1
2 and

Φ2(β(X)) = {0}. So we have the following diagrams which commute

(X,τ ) (Z,τ 1)

[0, 1]

............................................................................................................................................................................................... ............
β

............................................................................................................................................................................................................................................................................................................................................................................ ........
....

φ

..............................................................................................................................................................
.....
.......
.....

Φ1

(X,τ ) (Z,τ 1)

[0, 1]

[0, 1
2 ]

....................................................................
.....
.......
.....

e

.......................................................................................................................................................................................................................................................................... ............
β

........................................................................................................................................................................................................................................................................................................................................................................................................ ........
....

φ

....................................................................
.....
.......
.....

Φ2

..............................................................................................................................................................
.....
.......
.....

Φ3

where φ(x) = 0, for all x ∈ X and Φ3 is defined by Φ3 = e ◦ Φ2, where e is the
natural embedding of [0, 1

2 ] into [0, 1]. We see that the uniqueness of the mapping
Φ in Definition 10.4.1 implies that Φ1 = Φ3, which is clearly false as Φ1(z0) = 1 and
Φ3(z0) = 1

2. So our supposition is false and hence β(X) is dense in (Z,τ 1). �
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10.4.8 Proposition. Let (X,τ ) be a topological space and (Z1,τ 1)

together with a mapping β1 : (X,τ ) −→ (Z1,τ 1) a Stone-C̆ech compactification
of (X,τ ). If (Z2,τ 2) together with a mapping β2 : (X,τ ) −→ (Z2,τ 2) is also a
Stone-C̆ech compactification of (X,τ ) then (Z1,τ 1) ∼= (Z2,τ 2). Indeed, there
exists a homeomorphism Θ: (Z1,τ 1)→ (Z2,τ 2) such that Θ ◦ β1 = β2.

(X,τ ) (Z1,τ 1)

(Z2,τ 2).

........................................................................................................................................................................................ ............
β1

............................................................................................................................................................................................................................................................................................................................................................................ ........
....

β2

..............................................................................................................................................................
.....
.......
.....

Θ

Proof. As (Z1,τ 1) together with β1 is a Stone-C̆ech compactification of (X,τ )

and β2 is a continuous mapping of (X,τ ) into the compact Hausdorff space (Z2,τ 2),
there exists a continuous mapping Θ: (Z1,τ 1) −→ (Z2,τ 2), such that Θ ◦β1 = β2.

Similarly there exists a continuous map Θ1 : (Z2,τ 2) −→ (Z1,τ 1) such that
Θ1 ◦ β2 = β1. So for each x ∈ X, Θ1(Θ(β1(x))) = Θ1(β2(X)) = β1(x); that is, if
idZ1 is the identity mapping on (Z1,τ 1) then Θ1 ◦ Θ = idZ1 on β1(X), which by
Lemma 10.4.7 is dense in (Z1,τ 1). So, by Lemma 10.4.4, Θ1 ◦Θ = idZ1 on Z1.

Similarly Θ ◦Θ1 = idZ2 on Z2. Hence Θ = Θ−1
1 and as both are continuous this

means that Θ is a homeomorphism. �

10.4.9 Remark. Note that if if (X, τ ) is any Tychonoff space and (βX,τ ′)
together with β : (X,τ ) → (βX,τ ′) is its Stone-C̆ech compactification then the
proof of Proposition 10.4.5 shows that β is an embedding. Indeed it is usual, in
this case, to identify X with βX, and so regard (X, τ ) as a subspace of
(βX, τ ′). We, then, do not mention the embedding β and talk about (βX,τ ′) as
the Stone-C̆ech compactification. �
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10.4.10 Remark. For the case that (X,τ ) is a compact Hausdorff space, the
Stone-C̆ech compactification of (X,τ ) is (X,τ ) itself. Obviously (X,τ ) together
with the identity mapping into itself has the required property of a Stone-C̆ech
compactification. By uniqueness, it is the Stone-C̆ech compactification. This
could also be seen from the proof of Proposition 10.4.5 where we saw that for
the compact Hausdorff space (Y,τ ′′) the mapping eY : (Y,τ ′′) −→ (eY (Y ),τ ′′′) is
a homeomorphism. �

10.4.11 Remark. Stone-C̆ech compactifications of even nice spaces are usually
complicated. For example [0, 1] is not the Stone-C̆ech compactification of (0, 1],
since the continuous mapping φ : (0, 1] −→ [−1, 1] given by φ(x) = sin(1

x) does not
extend to a continuous map Φ: [0, 1] −→ [−1, 1]. Indeed it can be shown that
the Stone-C̆ech compactification of (0, 1] is not metrizable. We shall conclude this
section be proving that the Stone-C̆ech compactification of R,Q, (0, 1], and N each
have cardinality 2c. �

Proposition 10.4.12 follows from our construction of the Stone-C̆ech compactification
in Proposition 10.4.5.

10.4.12 Proposition. Let (X,τ ) be a topological space, (K,τ 1) a
compact Hausdorff space, and θ : (X,τ ) → (K,τ 1) a continuous map. If
for every continuous map φ : (X,τ ) → [0, 1] there exists a unique continuous
map
Φ : (K,τ i) → [0, 1] such that θ ◦ Φ = φ, then (K,τ 1) is the Stone-C̆ech
compactification of (X,τ ).

Proof. Exercise. �
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10.4.13 Proposition. Let N have its discrete subspace topology in R and
let βR be the Stone-C̆ech compactification of R. If the closure in βR of N is
denoted by clβRN , then clβRN is βN, the Stone-C̆ech compactification of N.

Proof. Let θ be any continuous map of N into [0, 1]. By the Tietze Extension
Theorem 10.3.51, there is a continuous extension φ : R→ [0, 1] of θ. Therefore there
exists a continuous extension Φ : βR → [0, 1] of φ. So Φ|clβR(N), the restriction
of the map Φ to clβRN , maps clβRN to [0, 1] and is a continuous extension of θ.
As N is dense in clβRN , this is the unique continuous extension. So by Proposition
10.4.12, clβRN is βN. �

10.4.14 Remark. It can be proved in a similar manner to that in Proposition
10.4.13 that clβQN = βN. �

10.4.15 Proposition. Let (X,τ ) be any separable topological space.
Then card βX 6 card βN.

Proof. As (X,τ ) is separable, it has a a dense countable subspace (Y,τ 1).
So there exists a continuous surjective map γ : N → (Y,τ 1). Thus there exists
a continuous map Φ : βN → βX which has dense image in βX. But as the
image is compact and βX is Hausdorff, Φ(βN) = βX, from which the proposition
immediately follows. �

10.4.16 Proposition. card βN = card βQ = card βR.

Proof. This follows immediately from Propositions 10.4.15 and 10.4.13 and
Remark 10.4.14. �



10.4. STONE-C̆ECH COMPACTIFICATION 333

10.4.17 Proposition. card βN = card βQ = card βR = 2c.

Proof. By The Corollary 10.3.42 of the Hewitt-Marczewski-Pondiczery Theorem
10.3.41, the compact Hausdorff space [0, 1]c is separable. So by Proposition 10.4.15,
card [0, 1]c 6 card βN; that is, 2c 6 card βN.

By the construction in Proposition 10.4.5, βN is a subspace of [0, 1]I , where I
is the set of (continuous) functions from N to [0, 1]. So card I = cℵ0 = c. Then
card ([0, 1]I) = cc = 2c. Thus card βN 6 2c. Hence card βN = 2c. The proposition
then follows from Proposition 10.4.17. �

10.4.18 Proposition. Let X be any unbounded subset of Rn, for any
n ∈ N. If τ is the euclidean subspace topology on X, then βX, the Stone-
C̆ech compactification of (X,τ ), has a subspace homeomorphic to βN , and so
card (βX) = 2c.

Proof. Exercise. �

10.4.19 Corollary. Let (X,τ ) be any closed subspace of Rn, n ∈ N. Then
(X,τ ) is compact if and only if card (βX) 6= 2c.

Proof. Exercise. �

10.4.20 Corollary. If (X,τ ) is an infinite discrete topological space of
cardinality m, then card (βX) = 22m.

Proof. Exercise. �
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Exercises 10.4

1. Let (X,τ ) by a Tychonoff space and (βX,τ ′) its Stone-C̆ech compactification.
Prove that (X,τ ) is connected if and only if (βX,τ ′) is connected.

[Hint: Firstly verify that providing (X,τ ) has at least 2 points it is connected if
and only if there does not exist a continuous map of (X,τ ) onto the discrete
space {0, 1}.]

2. Let (X,τ ) be a Tychonoff space and (βX,τ ′) its Stone-C̆ech compactification.
If (A,τ 1) is a subspace of (βX,τ ′) and A ⊇ X, prove that (βX,τ ′) is also the
Stone-C̆ech compactification of (A,τ 1).

[Hint: Verify that every continuous mapping of (X,τ ) into [0, 1] can be extended
to a continuous mapping of (A,τ 1) into [0, 1]. Then use the construction of
(βX,τ ′).]

3. Let (X,τ ) be a dense subspace of a compact Hausdorff space (Z,τ 1). If
every continuous mapping of (X,τ ) into [0, 1] can be extended to a continuous
mapping of (Z,τ 1) into [0, 1], prove that (Z,τ 1) is the Stone-C̆ech compactification
of (X,τ ).

4. Prove that card β(0, 1) = card β(0, 1] = card βP = 2c, where P is the topological
space of irrational numbers with the euclidean topology.

5. Prove Proposition 10.4.18 and Corollary 10.4.19.

6. Is it true that if X is an unbounded set in an infinite-dimensional normed vector
space, then card (βX) > 2c?

7. Using a similar method to that in the proof of Proposition 10.4.17, prove
Corollary 10.4.20.
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10.5 Postscript

At long last we defined the product of an arbitrary number of topological spaces
and proved the general Tychonoff Theorem. (An alternative and more elegant proof
of the Tychonoff Theorem using the concept of a filter appears in Appendix 6.)
We also extended the Embedding Lemma to the general case. This we used to
characterize the Tychonoff spaces as those which are homeomorphic to a subspace
of a cube (that is, a product of copies of [0, 1]).

Urysohn’s Lemma allowed us to obtain the following relations between the
separation properties:

T4 ⇒ T
31
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

Further, each of the properties compact Hausdorff and metrizable imply T4.

We have also seen a serious metrization theorem – namely Urysohn’s Metrization
Theorem, which says that every regular second countable Hausdorff space is
metrizable.

We introduced the Stone-C̆ech compactification, which is a rich and serious topic
of study in its own right. (See Gillman and Jerison [152]; Hindman and Strauss
[179]; Walker [393].) In order to show that the Stone-C̆ech compactification is
huge, we proved other important resullts. One of these is the Hewitt-Marczewski-
Pondiczery Theorem 10.3.41 which in particular showed the surprising fact that
a product of c copies of R is separable. In a series of steps we proved the Tietze
Extension Theorem 10.3.51 and stated it in a slightly more general form than is usual
in most books. With the aid of these results we were able to prove, in Proposition
10.4.18, that if X is any unbounded subset of Rn, n ∈ N, then card (βX) = 2c. In
particular, card βN = card βQ = card βR = card βP = 2c.

In Exercises 10.3 #33 we have some beautful results from Banach space Theory.
These include the Banach-Alaoglu Theorem, the Hahn-Banach Theorem, and a
wealth of information on the duals of Banach spaces, the weak topology, the weak*-
topology on the dual space, reflexive Banach spaces, weakly compactly generated
Banach spaces, the annihilator, quotients of Banach spaces, and the Open Question
known as the Separable Quotient Problem. In particular, we show that every infinite-
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dimensional reflexive Banach space has a quotient Banach space which is a separable
and infinite-dimensional Banach space. It is known, but not proved here, that every
infinite-dimensional WCG space and every infinite-dimensional dual of a Banach
space has a quotient Banach space which is infinite-dimensional and separable.
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Chapter 11

Quotient Spaces

Introduction

We have seen how to create new topological spaces from given topological spaces
using the operation of forming a subspace (of a topological space) and the operation
of forming a (finite or infinite) product of a set of topological spaces. In this
chapter we introduce a third operation, namely that of forming a quotient space (of
a topological space). As examples we shall see the Klein bottle and Möbius strip.

11.1 Quotient Spaces

11.1.1 Definitions. Let (X,τ ) and (Y,τ 1) be topological spaces. Then
(Y,τ 1) is said to be a quotient space of (X,τ ) if there exists a surjective
mapping f : (X,τ )→ (Y,τ 1) with the property (*).

For each subset U of Y , U ∈ τ 1 ⇐⇒ f−1(U) ∈ τ . (*)

A surjective mapping f with the property(*) is said to be a quotient mapping.

11.1.2 Remark. From Definitions 11.1.1 it is clear that every quotient mapping
is a continuous map. �

337
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11.1.3 Remark. Property (*) is equivalent to property (**).

For each subset A of Y , A is closed in (Y,τ 1) ⇐⇒ f−1(A) is closed in (X,τ ).

(**)
�

11.1.4 Remark. Let f be a one-to-one mapping of a topological space (X,τ )

onto a topological space (Y,τ 1). Then f is a homeomorphism if and only if it is a
quotient mapping. �

11.1.5 Proposition. Let f be a continuous mapping of a compact space
(X,τ ) onto a Hausdorff space (Y,τ 1). Then f is a quotient mapping.

Proof. We shall use property(**) above. Let A be a subset of Y . If f−1(A)

is closed in (X,τ ), then by Proposition 7.2.4 it is compact. As f is continuous,
by Proposition 7.2.1, f(f−1(A)) is a compact subspace of the Hausdorff space
(Y,τ 1), and therefore by Proposition 7.2.5 is closed in (Y,τ 1). As f is surjective,
f(f−1(A)) = A, and we have that A is closed.

Conversely, if A is closed in (Y,τ 1), then by continuity of f , f−1(A) is closed
in (X,τ ).

Hence f has property(**) and so is a quotient mapping. �

As an immediate consequence of Proposition 11.1.5 and Remark 11.1.4 we
obtain:

11.1.6 Corollary. Let f be a one-to one continuous mapping of a compact
space (X,τ ) onto a Hausdorff space (Y,τ 1). Then f is a homeomorphism. �
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11.1.7 Definitions. Let (X,τ ) and (Y,τ 1) be topological spaces. A
mapping f : (X,τ )→ (Y,τ 1) is said to be a closed mapping if for every closed
subset A of (X,τ ), f(A) is closed in (Y,τ 1). A function f : (X,τ )→ (Y,τ 1)

is said to be an open mapping if for every open subset A of (X,τ ), f(A) is
open in (Y,τ 1).

11.1.8 Remark. In Exercises 7.2 #5 we saw that there are examples of
mappings f which are

(i) open but not closed;

(ii) closed but not open;

(iii) open but not continuous;

(iv) closed but not continuous;

(v) continuous but not open;

(vi) continuous but not closed,

and that if (X, τ ) and (Y, τ1) are compact Hausdorff spaces and f : (X, τ )→ (Y, τ1)

is a continuous mapping, then f is a closed mapping.

11.1.9 Remark. Clearly if f : (X, τ )→ (Y, τ1) is a surjective, continuous
and open mapping, then it is also a quotient mapping. Similarly if f is a
surjective, continuous and closed mapping, then it is a quotient mapping.
However, there exist quotient maps which are neither open nor closed maps.

11.1.10 Proposition. Let f be a continuous mapping of a compact space
onto a Hausdorff space (Y,τ 1). Then f is a closed mapping.

Proof. Let A be a closed subset of (X,τ ). Then A is compact by Proposition
7.2.4. So by Proposition 7.2.1, f(A) is a compact subset of (Y,τ 1). As (Y,τ 1) is
Hausdorff, by Proposition 7.2.5, f(A) is a closed set. So f is a closed mapping. �
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11.1.11 Example. Let f : [0, 1] → S1 be given by f(x) − (cos 2πx, sin 2πx).
Clearly f is continuous and surjective. By Proposition 11.1.10, f is a closed mapping
and by Remark 11.1.9 is therefore also a quotient mapping. �

Exercises 11.1

1. Verify Remark 11.1.3.

2. Verify Remark 11.1.4.

3. Verify both assertions in Remark 11.1.9.

4. Let (X,τ ), (Y,τ 1) and (Z,τ 2) be topological spaces and f : (X,τ )→ (Y,τ 1)

and g : (Y,τ 1) → (Z,τ 2) be quotient maps. Prove that the map g ◦ f :

(X,τ ) → (Z,τ 2) is a quotient map. (So the composition of two quotient
maps is a quotient map.)

5. Noting the definition of S1 in Exercises 6.1 #15, let f : R → S1 be given by
f(x) = (cos 2πx, sin 2πx). Show that f is a quotient mapping but not a closed
mapping. Is f an open mapping?

6. Find an example of a quotient mapping which is neither an open mapping nor a
closed mapping.

7. Show that every compact Hausdorff space is a quotient space of the Stone-C̆ech
compactification of a discrete space.

8. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a
quotient mapping. Prove that if (X,τ ) is a sequential space then (Y,τ 1) is also
a sequential space. (See Exercises 6.2.)

9. Let (X,τ ) and (Y,τ 1) be topological spaces and f : (X,τ ) → (Y,τ 1) a
quotient mapping. If (X,τ ) is metrizable, is (Y,τ 1) necessarily metrizable?

10. Is a Hausdorff quotient space of a kω-space necessarily a kω-space?

11. Is a quotient space of a k-space necessarily a k-space?
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12. Let (X,τ ) and (Y,τ 1) be topological spaces and f a quotient mapping of (X,τ )

onto (Y,τ 1).

(i) If (X,τ ) is a metrizable space, prove that (Y,τ 1) is a sequential space. (See
Exercises 6.2 #11.)

(ii) If (X,τ ) is a first countable space, prove that (Y,τ 1) is a sequential space.

(iii)∗ Can sequential spaces be characterized as quotient spaces of metrizable
spaces?

11.2 Identification Spaces

We begin by recalling the definition of an equivalence relation.

11.2.1 Definitions. A binary relation ∼ on a set X is said to be an
equivalence relation if it is reflexive, symmetric and transitive; that is, for all
a, b, c ∈ X,

(i) a ∼ a (reflexive);

(ii) a ∼ b =⇒ b ∼ a (symmetric);

(iii) a ∼ b and b ∼ c =⇒ a ∼ c (transitive).

If a, b ∈ X, then a and b are said to be in the same equivalence class if a ∼ b.

11.2.2 Remark. Note that = is an equivalence relation on the set R of all real
numbers and ∼= (homeomorphic) is an equivalence relation on any set of topological
spaces. �

11.2.3 Remark. Let X and Y be sets and f a mapping of X onto Y . We can
define an equivalence relation ∼ on the set X as follows:

for a, b ∈ X, a ∼ b ⇐⇒ f(a) = f(b).

So two points a, b ∈ X are in the same equivalence class if and only if f(a) = f(b).�
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11.2.4 Remark. Using Remark 11.2.3 we now observe that quotient spaces
arise in a very natural way.

Let (X,τ ) be any topological space and ∼ any equivalence relation on X. Let
Y be the set of all equivalence classes of ∼. We can denote Y by X/ ∼. The
natural topology to put on the set Y = X/ ∼ is the quotient topology under the
map which identifies the equivalence classes; that is, maps each equivalence class
to a point.

Because of this example, quotient mappings are often called identification
mappings and quotient spaces are often called identification spaces.

Of course, as we have seen in Remark 11.2.3, this example is in fact quite
general, because if f is any mapping of a set X onto a set Y , we can define an
equivalence relation by putting a ∼ b if and only if f(a) = f(b), where a, b ∈ X. �

11.2.5 Definition. For any space (X,τ ), the cone (CX, τ1) over X is
the quotient space ((X,τ ) × I)/ ∼, where I denotes the unit interval with its
usual topology and ∼ is the equivalence relation (x, 0) ∼ (x′, 0), for all x, x′ ∈ X;
that is, CX = ((X,τ )× I)/(X × {0}).

11.2.6 Remark. Intuitively1, CX is obtained from X × I by pinching X ×{0}
to a single point. So we make X into a cylinder and collapse one end to a point.
The elements of CX are denoted by 〈x, a〉. It is readily verified that x 7→ 〈x, 1〉 is a
homeomorphism of (X,τ ) onto its image in (CX,τ 1); that is, it is an embedding.
So we identify (X,τ ) with the subspace {〈x, 1〉 : x ∈ X} ⊂ (CX,τ 1). �

1A useful introductory book on algebraic topology covering topics such as cone and suspension is
“Algebraic Topology” by Allen Hatcher and is freely downloadable from
http://www.math.cornell.edu/~hatcher/AT/AT.pdf. Our presentation here is based on Brown [61].

http://www.math.cornell.edu/~hatcher/AT/AT.pdf
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11.2.7 Example. If in Remark 11.2.6 the space X is a circle in the euclidean
space R2, then the cylinder X × I is a subspace of R3 and the cone CX is also a
subspace of R3, as indicated in the diagrams below.

Note that if X is a disk in R2 rather than a circle, then the cone CX is a solid
cone. �

We need a little notation before discussing cones further.

11.2.8 Definitions. Let | | be the Euclidean norm on Rn defined by
| 〈x1, x2, . . . , xn〉 | =

√
x1

2 + x2
2 + . . . xn2.

The cell En is defined by En = {x ∈ Rn : |x| 6 1}.
The ball Bn is defined by Bn = {x ∈ Rn : |x| < 1}.
The sphere Sn−1 is defined by Sn−1 = {x ∈ Rn : |x| = 1}.

We see that S1 is the unit circle in R2, and E0 = B0 = {0} and S0 = {−1, 1}.
Note that Sn−1 and En are closed bounded subsets of Rn, and so by the

Generalized Heine Borel Theorem 8.3.3, both are compact.

11.2.9 Proposition. For m,n ∈ N, Em × En is homeomorphic to Em+n.

Proof. Exercise. �
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11.2.10 Proposition. For each n ∈ N, CSn−1 is homeomorphic to En.

Proof. Consider the map f : Sn−1 × I → En, given by f(s, x) = sx. (By xs
we mean simply x times s.) From the definitions of Sn−1, I and En, clearly f is
surjective and continuous. By Tychonoff’s Theorem 8.3.1 Sn−1×I is compact, and
so Proposition 11.1.10 implies f is a quotient mapping. As f−1{0} = Sn−1 × {0},
En−1 is homeomorphic to CSn. �

11.2.11 Definition. For any topological space (X,τ ) the suspension,
(SX, τ2), is the quotient space of the cone (CX,τ 1) obtained by identifying
the points X × {1}; that is,

SX = CX/(X × {1}) = ([(X,τ )× I]/[X × {0}])/(X × {1}).

.
Thus (SX,τ 2) is the quotient space of (X,τ )× I where the equivalence relation is

(x, 1) ∼ (x′, 1) and (x, 0) ∼ (x′, 0), for all x, x′ ∈ X.

Intuitively, SX is obtained from X × I by pinching each of the sets X × {0} and
X × {1}.

If the space (X,τ ) is a circle, then the diagram below is a representation of
SX.
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11.2.12 Proposition. For each integer n > 2, the suspension, S(Sn−1),
of Sn−1 is homeomorphic to Sn.

Proof. Define the sets En+ and En− as follows:

En+ = {(x, t) ∈ Sn : x ∈ Rn, t > 0} = the northern hemisphere of Sn.

En− = {(x, t) ∈ Sn : x ∈ Rn, t 6 0} = the southern hemisphere of Sn.

Let p : Rn+1 = Rn×R→ Rn be the projection map which omits the last coordinate.
Then consider the map p restricted to En+ .

Then p : En+ → En is continuous, one-to-one and onto and hence is a homeomorphism,
by the compactness of En+. Similarly p : En− → En is a homeomorphism.

Now let φ : (X,τ ) × I → CX be the canonical quotient map, for any (X,τ ).
Put C+X = φ(X × [1/2, 1] and C−X = φ(X × [0, 1/2].

It is readily verified that φ : (X,τ ) × [1
2 , 1] → C+X and φ : (X,τ ) × [0, 1

2 ] →
C−X are quotient maps. So we have a quotient map:

(X,τ )× I −→ (X,τ )× [0, 1/2] −→ C−X

(x, t) −→ (x, t/2) −→ φ(x, t/2)

which shrinks (X,τ ) × {0}. So CX is homeomorphic to C−X. Similarly the map
I → [1

2 , 1] given by t 7→ 1− t
2, yields CX is homeomorphic to C+X.

Putting our results together we have C+Sn−1 ∼= C+Sn−1 ∼= En ∼= En+. So
En+
∼= C+Sn−1 and En−

∼= C−Sn−1 and these homeomorphisms agree on the set
En+ ∩ En− = {(x, 0) : x ∈ Rn}. They both map (x, 0) to (x, 1

2).) Hence we can
“glue” the homeomorphisms together to obtain Sn ∼= S(Sn−1). �
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Exercises 11.2

1. If (X,τ ) is a point, verify that the cone (CX,τ 1) is the unit interval [0, 1].

2. Prove that every topological space (X, τ ) is homeomorphic to a subspace
of a path-connected space by verifying that the cone CX is path-connected.

3. Prove Proposition 11.2.9.

4. Prove that En+ is a retract of Sn, for n ∈ N.
Reduced Cone and Reduced Suspension

5. Let (X,τ ) be a topological space and x0 ∈ X. Define the reduced cone,
denoted by ΓX, as ΓX = (X × I)/(X × {0} ∪ {x0} × I) and the reduced
suspension, denoted by ΣX, as ΣX = (X × I)/(X ×{0, 1}∪{x0}× I). Prove
that ΓSn−1 ∼= En and that ΣSn−1 ∼= Sn, for any positive integer n > 2.

6. Let (X,τ ) be the topological space obtained from the real line R with the
euclidean topology by indentifying the set of all integers to a point; that is
n ∼ m if and only if n,m ∈ Z. Prove that (X,τ ) is a sequential space which is
not a first countable space. (See Exercises 6.2 #11.)

11.3 Möbius Strip, Klein Bottle and Real Projective Space

11.3.1 Remark. It is not always easy to picture a 3-dimensional object, let
alone a 4-dimensional one which cannot exist in 3-dimensional space, such as the
Klein bottle. It is therefore useful and convenient to use 2-dimensional polygonal
representations of figures in higher dimensions, where we adopt a convention for
when edges are identified. A simple example will demonstrate how this is done.
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11.3.2 Example. We represent a cylinder as a square with one pair of opposite
sides identified. So the two sides labelled “b” are identified in such a way that the two
vertices marked “A” are identified and the two vertices marked “B” are identified.

So the cylinder is the quotient space I × I/ ∼, where ∼ is the equivalence relation
on I × I given by (t, 0) ∼ (t, 1), for all t ∈ I. �
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11.3.3 Example. The Möbius strip or Möbius band, denoted by M, is
defined to be the quotient space I × I/ ∼, where ∼ is the equivalence relation
(t, 0) ∼ (1− t, 1), for all t ∈ I.

If an insect crawled along the entire length of the Möbius strip, it would return to its
starting point without ever crossing an edge, but it would have crawled along both
sides of the Möbius strip. �
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11.3.4 Examples. The real projective plane, denoted by RP2, is defined to
be the quotient space I×I/ ∼, where ∼ is the equivalence relation (0, t) ∼ (1, 1− t)
and (t, 0) ∼ (1− t, 1), for all t ∈ I.

This is not a subspace of R3, that is, it cannot be embedded in 3-dimensional
euclidean space (without crossing itself).
While it is not immediately obvious, RP2 can be thought of as the space of all lines
through the origin, but excuding the origin, in R3. Each line is of course determined
by a non-zero vector in R3, unique up to scalar multiplication. RP2 is then the
quotient space of R3 \ {0} under the equivalence relation v ∼ λv, for all λ ∈ R,
λ 6= 0. (See also Definitions A5.0.1 and the following discussion.)
In fact, we can generalize this to real projective space, denoted by RPn. Let
X = Rn+1 \ {(0, 0, . . . , 0)}. Give X the topology τ as a subspace of Rn+1.
Then RPn is the quotient space (X,τ )/∼, where the equivalence relation ∼ is given
by (a1, a2, . . . , an+1) ∼ (b1, b2, . . . , bn+1), if there exists a λ ∈ R \ {0}, such that
bi = λai, for i = 1, 2, . . . , n+ 1.
Let φ : (X,τ ) → RPn be the quotient/identification map. Since Sn ⊆ X, we can
consider the restriction of φ to Sn, namely φ : Sn → RPn. Since

φ((x1, x2, . . . , xn+1)) = φ((
1

λ
x1,

1

λ
x2, . . . ,

1

λ
xn+1)),

where λ = |(x1, x2, . . . , xn+1)| =
√
x2

1 + x2
2 + · · ·+ x2

n+1 and (1
λx1,

1
λx2, . . . ,

1
λxn+1) ∈

Sn, we see that the map φ : Sn → RPn is surjective. It is continuous and, by the
compactness of Sn, is a quotient map. Clearly if a, b ∈ Sn, then

φ(a) = φ(b) ⇐⇒ a = (a1, a2, . . . , an+1) and b = (−a1,−a2, . . . ,−an+1);
that is, a and b are antipodal points. (Antipodal points on a sphere are those which
are diametrically opposite.) So RPn ∼= Sn/ ≈, where ≈ is the equivalence relation
on Sn which identifies antipodal points. �
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11.3.5 Example. The quotient space I × I/ ∼, where ∼ is the equivalence
relation (0, t) ∼ (1, t) and (t, 0) ∼ (1− t, 1), is called the Klein bottle2, denoted by
K.

Like the real projective plane in Examples 11.3.4, the Klein bottle cannot be
embedded in 3-dimensional euclidean space (without crossing itself), but it can
be embedded in R4. When embedded in R4, like the Möbius strip, it is one-sided.�

Exercises 11.3

1. Verify that the Möbius strip is a compact Hausdorff subspace of R3 with
boundary homeomorphic to a circle.

2The beautiful representation on this page of the Klein bottle in 3-dimensions was produced by
Professor Thomas F. Banchoff, a geometer, of Brown University, Providence, Rhode Island, USA.
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2. The diagram below represents the quotient space I × I/∼. Write down the
equivalence relation ∼ and then verify that the diagram represents a torus.
Deduce that the torus is a compact Hausdorff topological space.

3. Verify that the boundary of the Klein bottle in R4 is the empty set.

11.4 Postscript

In this chapter we introduced the important notions of quotient space and its
associated quotient mapping or identification mapping. We noted that every
continuous mapping of a compact space onto a Hausdorff space is a quotient
mapping. Quotients were used to produce new and interesting spaces including
cylinders, cones, the Klein bottle, real projective spaces and the Möbius strip. We
introduced the cone and suspension which are of relevance to study in algebraic
topology. In the final section we showed how to use polygonal representations to
define figures such as the Klein bottle which cannot be embedded in 3-dimensional
euclidean space.

This short chapter is but the smallest taste of what awaits you in further study
of topology.
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11.5 Credit for Images

1. Klein Bottle.
Dear Professor Morris,
You have my permission to use our Klein bottle in your freely available online
book "Topology Without Tears". The parametrization was due to me and
the particularly nice rendering was produced by a student, Jeff Beall. Of all
the images that have come from our work, this is the one most requested for
reproduction. Tom Banchoff, Professor Emeritus Brown University (as of 2014)
August 8, 2017.



Chapter 12

The Stone-Weierstrass Theorem

Weierstrass Stone

Bernoulli Výborný

Introduction

Section 1 is devoted to the Weierstrass Theorem,
proved by Karl Weierstrass (1815–1897) in 1885
when he was aged 70. It is a very powerful theorem,
with very many applications even to this day. Over
the next 30 years there was a variety of proofs by
famous mathematicians. In 1964 Kuhn [231], gave
an elementary proof using the Bernoulli inequality
(named after Jacob Bernoulli (1655–1705)).

In Section 1 we give a quite elementary1 proof
using the Bernoulli inequality. The proof we present
here is primarily due to my teacher, Rudolf Výborný
in his paper Výborný [392] but is also influenced by
the presentation of Păltineanu [314] which was also
influenced by Výborný [392].

In Section 2, we prove the generalization of the Weierstrass Theorem first proved
in 1937 by Marshall Harvey Stone (1903–1989), Stone [363], and with a simpler proof
in 1948, Stone [364]. This elegant generalization is known as the Stone-Weierstrass
Theorem.

The beautiful Stone-Weierstrass Theorem is a theorem in Pure Mathematics
but has very important applications.

1Readers should understand that elementary does not mean easy. Rather it means that it uses
only elementary mathematics.

353
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12.1 The Weierstrass Approximation Theorem

We begin by stating and proving the Bernoulli inequality which was named after the
Swiss mathematician Jacob Bernoulli (1654–1705).

12.1.1 Proposition. Let x ∈ R such that x > −1, and n ∈ N. Then
(1 + x)n > 1 + nx.

Proof. This is proved using mathematical induction.

Clearly it is true if n = 1.

Assume that for some integer k, (1 + x)k > 1 + kx, for all x > −1.

Then (1 + x)k+1 = (1 + x)k.(1 + x)

> (1 + kx).(1 + x), by the inductive assumption

= 1 + kx+ kx+ kx2

> 1 + kx+ kx

= 1 + (k + 1)x, as required.

So if the Bernoulli inequality is true for n = k, then it is true for n = k + 1. Thus
by mathematical induction, the Bernoulli inequality is true for all n ∈ N.

We shall prove the Weierstrass Theorem on Polynomial Approximation.

The Weierstrass Approximation Theorem. If f : [a, b] → C is a
continuous function and ε is a positive real number, then there exists a
polynomial P such that |f(x)− P (x)| < ε, for all x ∈ [a, b].
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If you think about this, you can see that it is quite surprising. It says that no
matter how strange a continuous function may be, it can be approximated as close
as we like by a very nice simple function, namely a polynomial2. Not only is this
result quite surprising, it is very useful in practical applications.

We shall prove the Weierstrass Approxmation Theorem with C replaced by R,
from which the Theorem easily follows. The main idea of the proof is to show
that if f can be approximated by a polynomial on some interval, then it can be
approximated by a polynomial on a slightly larger interval. To show this we shall use
the following lemma.

First we mention a definition:

12.1.2 Definition. Let an ∈ C and b ∈ C, for each n ∈ N. If for each
ε > 0, there exists an Nε ∈ N such that |an − b| < ε, for n > Nε, then the
sequence of complex numbers an is said to have b as its limit. This is denoted
by lim

n→∞
an = b or equivalently an → b.

2Even if the function f is continuous but nowhere differentiable, it can be approximated by an
infinitely differentiable function, namely a polynomial.
This remarkable result is not to be confused with Taylor polynomials or Taylor series which require
f to be not just differentiable but infinitely differentiable. See Exercises 10.3 #28(vii).
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12.1.3 Lemma. Let X be an arbitrary set, U a function mapping X into
R such that 0 < U(x) < 1, for all x ∈ X. Let A and B be disjoint subsets of
X. If there exists a k ∈ N such that U(x) < 1

k , for all x ∈ A and U(x) > 1
k , for

all x ∈ B, then

lim
n→∞

(1− [U(x)]n)k
n

= 1, for all x ∈ A, and

lim
n→∞

(1− [U(x)]n)k
n

= 0, for all x ∈ B.

Proof.
1 > 1− [U(x)]n)k

n
> 1− kn[U(x)]n, by Proposition 12.1.1

= 1− [kU(x)]n

→ 1, for x ∈ A.

0 6 1− [U(x)]n)k
n

=
(1− [U(x)]n)k

n
[kU(x)]n

[kU(x)]n

<
(1− [U(x)]n)k

n

[kU(x)]n
(1 + kn[U(x)]n)

6
(1− [U(x)]n)k

n
(1 + [U(x)]n)k

n

[kU(x)]n
, by Proposition 12.1.1

=
(1− [U(x)]2n)k

n

[kU(x)]n

<
1

[kU(x)]n

→ 0, for x ∈ B.
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12.1.4 Lemma. Let a, b, c, d ∈ R with a < d < c < b and let η be any
postive real number. Then for each n ∈ N, there exists a polynomial pn such
that

0 6 pn(x) 6 1, for x ∈ [a, b]; (1)

1− η 6 pn(x), for x ∈ [a, d]; (2)

pn(x) 6 η, for x ∈ [c, b]; (3)

lim
n→∞

pn(x) = 1, for x ∈ [a, d]; (4)

lim
n→∞

pn(x) = 0, for x ∈ [c, b]. (5)

Proof.

Here is an example

Let

e =
c+ d

2
, and

U(x) =
1

2
+

x− e
2(b− a)

, for all x ∈ [a, b].
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Noting that a < d < e < c < b we have

U(a) =
1

2
+

a− e
2(b− a)

> 0 ;

U(d) =
1

2
+

d− e
2(b− a)

<
1

2
;

U(c) =
1

2
+

c− e
2(b− a)

>
1

2
;

U(b) =
1

2
+

b− e
2(b− a)

=
1

2
+

b− a
2(b− a)

+
a− e

2(b− a)

= 1 +
a− e

2(b− a)
< 1 .

From its definition we see that U is an increasing function and it then follows
from the above inequalities that

0 < U(x) < 1 , x ∈ [a, b]

U(x) <
1

2
, x ∈ [a, d]

U(x) >
1

2
, x ∈ [c, b]

Define the polynomial pn, for each n ∈ N, by pn(x) =
(
1 − [U(x)]n

)2n, for all
x ∈ [a, b].

Clearly we have 0 6 pn(x) 6 1 , for all x ∈ [a, b] which proves (1) in the
statement of the Lemma.

Applying Lemma 12.1.3 for k = 2, A = [a, d], and B = [c, b], we have that

lim
n→∞

pn(x) = 1, for x ∈ [a, c] ;

lim
n→∞

pn(x) = 0, for x ∈ [d, b] ,
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which proves (4) and (5) in the statement of the Lemma.

By (4) there exists n1 ∈ N such that pn1(x) > 1− η, for all x ∈ [a, d] and by (5)
there exists n2 ∈ N such that pn2(x) < η, for all x ∈ [c, b]. Putting n equal to the
greater of n1 and n2, we have that (4) and (5) imply (2) and (3), which completes
the proof of the Lemma.

12.1.5 Theorem. [The Weierstrass ApproximationTheorem]
If f : [a, b] → C is a continuous function and ε is a positive real number, then
there exists a polynomial P such that

|f(x)− P (x)| < ε, for all x ∈ [a, b]. (6)

Proof. Let g(x) = <(f(x)) and h(x) = =(f(x)) the real and imaginary parts of
f(x) respectively, for x ∈ [a, b], so that g and h are continuous functions from [a, b]

into R.
If there exist polynomials Pg and Ph such that for all x ∈ [a, b], |g(x)−Pg(x)| < ε

2

and |h(x) − Ph(x)| < ε
2, then putting P (x) = Pg(x) + iPh(x) we have that the

polynomial P satisfies |f(x)− P (x)| < ε.

So to prove this theorem, it suffices to prove it for the special case:
f is a continuous function of [a, b] into R.

We shall now assume, without loss of generality, that f is indeed a continuous
function of [a, b] into R.

For the given ε > 0, let Sε be the set of all t 6 b such that there exists a
polynomial Pε with the property that

|f(x)− Pε(x)| < ε, for all x ∈ [a, t]. (7)

We need to show Sε is not the empty set.

By continuity of f , there exists t0 > a such that

|f(x)− f(a)| < ε, for all x ∈ [a, t0]. (8)
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Consequently, f can be approximated by the constant function f(x) = f(a) on
[a, t0], so Sε 6= Ø.

Let s = supSε. Clearly a < s 6 b.

The proof of the Theorem will be complete if we can prove that s = b.

By continuity of f at s, there is a δ > 0 such that

|f(x)− f(s)| 6 ε

3
, for s− δ 6 x 6 s+ δ and a 6 x 6 b. (9)

By the definition of supremum, there is a c with s− δ 6 c 6 s and c ∈ Sε. This
means that there is a polynomial Pε satisfying (7) for x ∈ [a, c]. Let

m = max{|f(x)− Pε(x)| : a 6 x 6 c}.

So m < ε. (10)

Recall Proposition 7.2.15 says that if φ is a continuous function from [a, b] into
R, then φ([a, b]) = [v, w], for some v, w ∈ R.

As the function f and the polynomial Pε are continuous on [a, b], the function
φ defined by φ(x) = |f(x) − Pε(x)| + |f(x) − f(s)| is continuous on [a, b]. So
φ([a, b]) = [v, w], for some v, w ∈ R. Therefore we can choose M ∈ R such that

M > |f(x)− Pε(x)|+ |f(x)− f(s)|, for all x ∈ [a, b] (11).

We shall apply Lemma 12.1.4 for d = s − δ. Noting that, by (10), m < ε,
choose 0 < η < 1 so small that

m+Mη < ε and Mη <
2ε

3
. (12)

Apply Lemma 12.1.4 to find a polynomial pn satisfying (1), (2) and (3).

Now we define the required polynomial P by

P (x) = f(s) + |Pε(x)− f(s)]pn(x). (13)

and we shall show that it satisfies condition (6) of the statement of the Theorem.
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First we have

|f(x)− P (x)| =
∣∣f(x)− f(s)− [Pε(x)− f(s)]pn(x)

∣∣
=
∣∣[f(x)− Pε(x)]pn(x) + [f(x)− f(x)pn(x)− f(s) + f(s)pn(x)]

∣∣
=
∣∣[f(x)− Pε(x)]pn(x) + [(f(x)− f(s))(1− pn(x)]

∣∣
6
∣∣f(x)− Pε(x)

∣∣pn(x) + |f(x)− f(s)
∣∣(1− pn(x)) (14)

On the interval [a, s− δ]
|f(x)− P (x)|
6
[
|f(x)− Pε(x)| − |f(x)− Pε(x)|(1− pn(x))

]
+ |f(x)− f(s)|(1− pn(x)) , by (14)

6 |f(x)− Pε(x)|+
[
|f(x)− Pε(x)|+ |f(x)− f(s)|

]
(1− pn(x))

6 m+Mη , by (10), (11) and (2) as [a, s− δ] ⊆ [a, c]

< ε , by (12). (15)

On the interval [s− δ, c]
|f(x)− P (x)| 6

∣∣f(x)− Pε(x)
∣∣pn(x) + |f(x)− f(s)

∣∣(1− pn(x)), by (14)

6 εpn(x) +
ε

3
(1− pn(x)), by (10) and (9) noting that

s− δ 6 c 6 s 6 s+ δ

< ε , by (1). (16)

On the interval [c, s+ δ] ∩ [c, b] we have

|f(x)− P (x)| 6
∣∣f(x)− Pε(x)

∣∣pn(x) + |f(x)− f(s)
∣∣(1− pn(x)), by (14)

6Mpn(x) +
ε

3
(1− pn(x)), by (11) and (9) as s− δ 6 c 6 s 6 b

<
2ε

3
+
ε

3
, by (2), (1), and the second part of (16)

= ε , by (1). (17)

By (15),(16), and (17), we have

|f(x)− P (x)| < ε, for all x ∈ [a, s+ δ] ∩ [c, b]. (18)

Suppose s < b. Then (18) contradicts the definition of s as the supremum
of the set Sε. So s = b; that is, [a, s] = [a, b], which completes the proof of the
Theorem.
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Bernstein

12.1.6 Remark. In the literature there are
many somewhat different proofs of the Weierstrass
Approximation Theorem 12.1.5. Our proof above,
uses proof by contradiction which is avoided in
the constructive proof using Bernstein Polynomials,
discovered in 1912 by the Russian mathematician
Sergei Natanovich Bernstein (1880–1968), and
which is motivated by probability theory. Bernstein
[38] proved that for any continuous function f :

[0, 1] → R, f can be expressed as an infinite sum
of polynomials:

f(x) = lim
n→∞

n∑
m=0

f
(m
n

)(m
n

)
xm(1− x)n−m,

and so f can be approximated as closely as we like by the partial sum from m = 0

to m = n. For each n ∈ N, the polynomial Bn(f) =
n∑

m=0
f
(
m
n

)(m
n

)
xm(1−x)n−m is

called the Bernstein polynomial of degree n associated with f . (See Bernstein
basis polynomials in Exercises 10.3 #28.) So Bernstein polynomials provide a
very concrete and practical method of approximating continuous functions.
We will see this is extemely useful in Remark 12,1.7.

Noting that for any a0, a1, a2, . . . , an ∈ R, there exists a continuous function
f : [0, 1] → R with f

(m
n

)
= am, m = 0, 1, 2, . . . , n (Exrercises 12.1 #5) we

see that every polynomial
n∑

m=0
am
(m
n

)
xm(1 − x)n−m is the Bernstein polynomial

of degree nassociated with some continuous function f : [0, 1] → R. But, noting
Exercises 10.3 #28 (ix), we see that every polynomial can be written in this form. So
every polynomial is the Bernstein polynomial associated with some continuous
function f : [0, 1]→ R.
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Casteljau

Bezier

12.1.7 Remark. It is worth mentioning that
Bernstein polynomials are at the heart of what are
known as Bézier curves used in graphics. They
were developed by the French mathematician Paul
de Casteljau (1930–) at Citroën and the French
engineer Pierre Bézier (1910–1999) at Renault who
used them to design car bodies. Today this
mathematics is at the core of computer graphics
and CAD/CAM (computer-aided-design/computer-
aided manufacturing). Quoting from “The first
years of CAD/CAM and the UNISURF CAD
System” by Pierre Bézier, in Piegl [306]: In the
words of Pierre Bézier himself: There is no doubt
that Citroën was the first company in France that
paid attention to CAD, as early as 1958. Paul de
Casteljau, a highly gifted mathematician, devised a
system based on the use of Berstein polynomials
. . . the system devised by de Casteljau was oriented
towards translating already existing shapes into
patches, defined in terms of numerical data. . . .

Due to Citroën’s policy, the results obtained by de Casteljau were not published until
1974, and this excellent mathematician was deprived of part of the well deserved
fame that his discoveries and inventions should have earned him.

We can deduce a stronger version of The Weierstrass Approximation Theorem
12.1.6 as a corollary of the theorem itself. If P is such that P (x) = a0+a1x+. . . anx

n,
where each aj = rj + isj, where aj and bj are rational (real) numbers for j ∈
{1, 2, . . . , n}, then the polynomial P is said to have rational number coefficients.

12.1.8 Corollary. If f : [a, b] → C is a continuous function and ε is a
positive real number, then there exists a polynomial P with rational number
coefficients such that |f(x)− P (x)| < ε, for all x ∈ [a, b].

Proof. Exercise.
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12.1.9 Proposition. Let C[0, 1] be the set of all continuous functions of
[0, 1] into R. If τ is the topology on C[0, 1] induced by the supremum metric in
Example 6.1.6, then

(i) the set of all polynomials is dense in (C[0, 1],τ );

(ii) the set of all polynomials with rational number coefficients is dense in
(C[0, 1],τ );

(iii) (C[0, 1],τ ) is a separable space; and

(iv) the cardinality of C[0, 1] is 2ℵ0.

Proof. Exercise.

To make the proof of The Weierstrass Approximation Theorem 12.1.5 as
elementary as we could, we avoided any mention of uniform convergence. But
we do mention it now before completing this section.

12.1.10 Definition. Let S be any subset of R and pn, n ∈ N, a sequence
of functions S → C. Then pn, n ∈ N is said to be pointwise convergent to a
function f : S → C if given any x ∈ S and any ε > 0, there exists N(x, ε) ∈ N
such that

|f(x)− pn(x)| < ε, for every n ∈ N such that n > N(x, ε).

Note that the notation N(x, ε) means that this number depends on both x and
ε. Contrast this definition with the next one.

12.1.11 Definition. Let S be any subset of R and pn, n ∈ N, a sequence
of functions S → C. Then pn, n ∈ N, is said to be uniformly convergent to a
function f : S → C if given any ε > 0, there exists N(ε) ∈ N such that

|f(x)− pn(x)| < ε, for every x ∈ S and n ∈ N such that n > N(ε).



12.1. THE WEIERSTRASS APPROXIMATION THEOREM 365

12.1.12 Remark. Clearly uniform convergence of a sequence of functions
implies pointwise convergence of that sequence. However, the converse is false.
For example, it is easy to see that if pn(x) = nx

1+n2x2
, for all x ∈ S = (0,∞), then

pn, n ∈ N, is pointwise convergent to the function f(x) = 0, for all x ∈ (0,∞).
However, for every 0 < ε < 1

2,
∣∣f( 1

n)− pn( 1
n)
∣∣ =

∣∣0− 1
2

∣∣ = 1
2 > ε and so pn, n ∈ N, is

not uniformly convergent to f . Thus pointwise convergence does not imply uniform
convergence.

12.1.13 Remark. We can now restate The Weierstrass Approximation Theorem
12.1.5:
If f : [a, b] → C is a continuous function, then there exists a sequence pn, n ∈ N,
of polynomials on [a, b] which is uniformly convergent to f .

12.1.14 Remark. Having seen in the Weierstrass Approximation Theorem
12.1.5 that a continuous function can always be approximated by a polynomial, it is
perhaps appropriate to underline the difference in behaviour of continuous functions
and polynomials, indeed of (i) continuous functions, (ii) analytic functions (iii) C∞

functions and (iv) polynomials. we begin with some definitions.

12.1.15 Definitions. Let U be an open subset of R. A function f : U → R
is said to be smooth if it is infinitely differentiable at every point x0 ∈ U . The
function f is said to be analytic at a point x0 ∈ U if there exists an open
neighbourhood O ⊆ U of x0 such that f is infinitely differentiable at every
x ∈ O, and the Taylor series

T (x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

converges (pointwise) to f(x) for all x in O, where f (n)(x0) denotes the nth

derivative of f evaluated at x0. The function f is said to be analytic on RRR if
it is analytic at every x0 ∈ R.

The set of analytic functions on R properly contains the set of all polynomials
on R, but is a proper subset of the set C∞ of smooth (ie infinitely differentiable)
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functions on R. An example of a smooth function which is not analytic is given in
Exercises 12.1 #10.

12.1.16 Theorem. Let f be a function of R into itself and Z be the set
of zeros of f ; that is, Z = {x : x ∈ R such that f(x) = 0}.

(i) If f is a non-constant polynomial, then Z is a finite set.

(ii) If f is a non-constant analytic function, then Z is a discrete subspace of R.

(iii) If Z is any closed subset of R, then a C∞ function f can be chosen with Z
its set of zeros.

Proof. Exercise.

12.1.17 Remark. Having discussed differentiability of a function f : R → R,
we conclude this section by discussing differentiability3 of a function f : Rn → Rm,
a topic that is needed for the important study of differentiable manifolds.
Recall that a function f : R→ R is said to be differentiable at a point x0 ∈ R if
there exists a number f ′(x0) ∈ R such that for h ∈ R

f(x0 + h)− f(x0)

h
converges to f ′(x0) as h→ 0.

We usually write this as

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0). (1)

We reformulate this so that it can be generalized in a natural way to higher
dimensional euclidean space.
If we define a linear transformation λ : R→ R by λ(h) = f ′(x0)h, then equation (1)
becomes

lim
h→0

f(x0 + h)− (f(x0) + λ(h))

h
= 0. (2)

3See Spivak [349].
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12.1.18 Definition. Let U be an open subset of Rn, n ∈ N. A function
f : U → Rm, m ∈ N, is said to be differentiable at a point x0 ∈ U , if
there exists an open neighbourhood O ⊆ U of x0 such that for some linear
transformation λ : Rn → Rm

lim
h→0

|f(x0 + h)− (f(x0) + λ(h))|
|h|

= 0

where h ∈ Rn and |.| denotes the euclidean norm both in Rn and Rm. The
linear transformation λ is said to be the derivative of f at x0 and is denoted
by Df(x0).

12.1.19 Proposition. Let U be an open subset of Rn, n ∈ N. If
f : U → Rm, m ∈ N, is differentiable at x0 ∈ U , then there is a unique
linear transformation λ : Rn → Rm such that

lim
h→0

|f(x0 + h)− (f(x0) + λ(h))|
|h|

= 0

.

Proof. Exercise.

At this stage, the unique linear transformation in Proposition 12.1.19 and
Definition 12.1.18 is somewhat mysterious. We proceed to remove that mystery.

12.1.20 Definition. Let U be an open subset of Rn, n ∈ N. If f : U → R
and r = (r1, r2, . . . , rn) ∈ U , the limit

lim
h→0

f(r1, r2, . . . ri−1, ri + h, ri+1, . . . , rn)− f(r1, r2, . . . , rn)

h

if it exists is said to be the ith partial derivative of f at r and is denoted by
Dif(r).
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Of course if we put g(x) = f(r1, r2, . . . , ri−1, x, ri+1, . . . , rn), then Dif(r) equals
g′(r), the derivative of the function g at ri.

12.1.21 Proposition. Let U be an open subset of Rn, n ∈ N, and
f : U → Rm, m ∈ N. Put f = (f1, f2, . . . , fm), where each f i : U → R.
If f is differentiable at x0 ∈ U , then Djf i(x0) exists for 1 6 i 6 m, 1 6 j 6 n

and f ′(x0) is the m× n matrix (Djf
i(x0)).

We now see that it is quite straightforward to calculate the derivative of a
differentiable function mapping Rn into Rm. For a much more detailed discussion
of the derivative of functions of several variables, see Spivak [349].

Exercises 12.1

1. Prove Corollary 12.1.8.

2. Prove Proposition 12.1.9.

3. Prove Lemma 12.1.4 with η replaced by 1
n.

[Hint. Be careful, as this is not as trivial as it first appears to be.]

4. Calculate the Bernstein polynomials B1(f) and B2(f) of each of the functions
f = f1, f = f2, and f = f3, where f1(x) = x, x ∈ [0, 1], f2(x) = x2, x ∈ [0, 1],
and f3(x) = x3, x ∈ [0, 1], respectively.

5. Let x0, x1, . . . , xn ∈ [0, 1], with x0 < x1 < · · · < xn, and let a0, a1, . . . , an ∈ R.
Show that there exists a continuous function f : [0, 1]→ R such that f(xi) = ai,
for i = 0, 1, . . . , n.

6. Prove the following statement (Rudin [332], Theorem 7.8):
Let pn, n ∈ N, be a sequence of functions on a subset S of R. The sequence
pn, n ∈ N, is uniformly convergent to some function f : S → R if and only if for
each ε > 0, there exists N ∈ N such that

|pm(x)− pn(x)| < ε, for all x ∈ S and m,n ∈ N with m,n > N.
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7. (i) Let S be a subset of R and pn, n ∈ N, a sequence of continuous functions of
S into C. If the sequence pn, n ∈ N, is uniformly convergent to the function
f : S → C, prove that f is a continuous function.
[Rudin [332], Theorem 7.12.]

(ii) Let C[0, 1] denote the normed vector space of all continuous functions
f : [0, 1] → R, where ||f || = sup

x∈[0,1]
|f(x)|. Using (i) prove that C[0, 1] is

a Banach space.

(iii) Let X be a compact Hausdorff space and F be R or C. Prove that the
normed vector space C(X,F ) of all continuous functions f : X → F with
the sup (or uniform) norm, given by ||f || = sup

x∈X
|f(x)|. is a Banach space.

Dini’s Theorem

8. Dini’s Theorem. (Rudin [332], Theorem 7.13.) Let K be a subset of R
and pn, n ∈ N, a sequence of continuous functions mapping K into R such
that the sequence pn, n ∈ N, is pointwise convergent to a continuous function
f : K → R. If (i) K is compact and (ii) pn(x) > pn+1(x), for all x ∈ K, then
the sequence pn, n ∈ N, is uniformly convergent to f .

[Dini’s Theorem is named after the Italian mathematician
Ulisse Dini (1845–1918).]

Dini
9. Verify Theorem 12.1.5 (i).

Support of a Function and Bump Functions

10. The support of a function f : R→ R is {x : f(x) 6= 0}. A function f : R→ R
is said to be a bump function if it is smooth and its support is a compact
subset of R. Verify that the function b : R→ R given by

b(x) =

{
exp

(
− 1

1−x2
)

for |x| < 1

0 for |x| > 1

is a bump function, and so is a smooth function, but is not an analytic function.
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Uniformly Convergent Series

11. Let Z be any closed subset of R. Verify the following:
(i) R \Z is the union of open intervals Ui, i ∈ I ⊆ N, where at most two of the

Ui are unbounded.

(ii) For each i ∈ I, let bi be a bump function on Ui such that if Ui is unbounded,
then bi is constant outside some bounded interval. (See Exercise 10 above.)
We can choose ci > 0 such that |cib

(j)
i (x)| < 2−i, for 0 6 j 6 i, for all

x ∈ R, where b(j)i denotes the jth derivative of the bump function bi.

(iii) Define f(x) =
∑
i∈I cifi(x). Then each series

∑
i∈I cif

(j)(x) converges
absolutely and unformly for all x ∈ R.
[Recall that a series

∑∞
n=1 θn(x), x ∈ R, is said to be uniformly convergent

if for every ε > 0, there exists an N , (N independent of x), such that for
all n > N and all x ∈ R, |sn(x)− s(x)| < ε, where sn(x) =

∑n
k=1 θk(x) and

s(x) =
∑∞
k=1 θk(x).]

(iv) Then f is a smooth function.

(v) So Theorem 12.1.16 (iii) is true.

(vi) The function f : R→ R is a smooth function but not an analytic function,
where

f(x) =

{
e
− 1

1−x2 , if |x| < 1,
0, otherwise.

[Hint: Use Theorem 12.1.16 (ii).]
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12. Let f : R→ R be a non-constant function analytic on R. Let Z = {x : f(x) =

0}. Assume that there exists an x0 ∈ R such that f(x0) = 0. As f is analytic,
there exists an open neighbourhood O of x0 such that

∞∑
n=0

f (n)(x0)

n!
(x− x0)n → f(x), for all x ∈ O.

Putting an =
f (n)(x0)

n! , this says

∞∑
n=0

an(x− x0)n → f(x), for all x ∈ O.

Since f(x0) = 0, a0 = 0. Without loss of generality, assume a0 = a1 = · · · =

ak = 0 and ak+1 6= 0, where k > 0. So we can write the Taylor series for f
about x0 as

∞∑
n=k

an(x− x0)n = (x− x0)k
∞∑
n=0

an+k(x− x0)n = (x− x0)kg(x)

where g(x) =
∑∞
n=0 an+k(x−x0)n and is analytic in the open neighbourhood O

of x0. So g is a continuous function of O into R. Since g(x0) = ak 6= 0, verify
each of the following:

(i) There exists an ε > 0 such that for |x− x0| < ε, |g(x)− ak| <
|ak|
2 .

(ii) g(x) 6= 0, for |x− x0| < ε.

(iii) Z ∩ (x0 − ε, x0 + ε) = {x0}.
(iv) From (iii) above, Z is a discrete countable subspace of R and so Theorem

12.1.15(ii) is true.

13. Prove Proposition 12.1.19.

14. Prove that if f : Rn → Rm, n,m ∈ N, is a constant function (that is, for some
y ∈ Rm, f(x) = y for all x ∈ Rn), then Df(x) = 0, for all x ∈ Rn.

15. Prove that if f : Rn → Rm, m,n ∈ N, is a linear transformation, then for each
x ∈ Rn, Df(x) = f(x).
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16. Prove that if f, g : Rn → R, n ∈ N, are differentiable at x0 ∈ Rn, then

D(f + g)(x0) = Df(x0) +Dg(x0),

D(fg(x0)) = g(x0)Df(x0) + f(x0)Dg(x0), and

D(f/g)(x0)) =
g(x0)Df(x0)− f(x0)Dg(x0)

(g(x0))2
, for g(x0) 6= 0.

17. Find the partial derivatives of the following:

(i) f(x, y, z) = xy + z.

(ii) f(x, y, z) = cos(xy) + sin(z).

18. Prove Proposition 12.1.21.

19. Let f : Rn → Rm, m,n ∈ |N . Define what it should mean that f is a smooth
function and what it should mean that f is an analytic function.

12.2 The Stone-Weierstrass Theorem

In §1 we saw that the set of polynomials can be used to approximate any continuous
function of [0, 1] into R, or put differently, the set of all polynomials is dense in
C([0, 1],R) with the supremum metric. We immediately saw generalizations of this,
namely that the smaller set of all Bernstein polynomials is dense in C([0, 1],R) as is
the set of all polynomials with rational number coefficients. So we might ask: which
subsets of C([0, 1],R) are dense? But we shall see much more.

The Stone-Weierstrass Theorem addresses the more general problem of identifiying
the dense subsets of C(X,R) and C(X,C), where X is a compact Hausdorff space.
The Weierstrass Approximation Theorem 12.1.5 is a special case.

To address this problem we shall introduce some new concepts and definitions
which are of importance in their own right. First, we make an insightful observation.
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12.2.1 Definition. Let S be a set of functions from a set X into a set Y .
Then S is said to separate points (of X) if for each a, b ∈ S with a 6= b, there
exists a φ ∈ S such that φ(a) 6= φ(b).

12.2.2 Examples.

(a) The set of all real-valued polynomials separates points of [0, 1] as for any
a, b ∈ [0, 1] with a 6= b, the polynomial p given by p(x) = x, for all x ∈ [0, 1] is
such that pa(a) = a 6= b = p(b).

(b) The set of all real-valued Bernstein polynomials separates points of [0, 1] as for
any a, b ∈ [0, 1] with a 6= b, the Bernstein polynomial B1(f), where f(x) = x, for
all x ∈ [0, 1], is readily seen to satisfy B1(f) = f . So (B1(f))(a) 6= (B1(f))(b).

(c) On the other hand, the set {fn : fn(x) = sin(2πnx), x ∈ [0, 1], n ∈ N} of
functions of [0, 1] into R does not separate the points 0 and 1, since

fn(0) = sin(0) = 0 = sin(2πn) = fn(1), for all n ∈ N.

Our next proposition gives us a necessary (but not sufficient) condition for a
subset S of C[0, 1] to be dense, namely that it separates points of [0, 1]. Indeed it
provides a necessary condition for a subset S of C(X,F ) to be dense, for F equal
to R or C, and X a compact Hausdorff space.



374 CHAPTER 12. THE STONE-WEIERSTRASS THEOREM

12.2.3 Proposition. Let (X,τ ) be a compact Hausdorff space, F equal
to R or C, and S a subset of C(X,F ), the set of all continuous function of
(X,τ ) into F with the topology induced by the supremum metric. If S is dense
in C(X,F ), then S separates points of X.

Proof. Suppose S does not separate points of X. Then there exist a, b ∈ X with
a 6= b such that φ(a) = φ(b), for all φ ∈ S. As S is dense in C(X,F ), for each ε > 0

and each f ∈ C(X,F ), there exists a φ ∈ S such that

sup
x∈X
|f(x)− φ(x)| < ε.

As X is compact Hausdorff, there is a continuous function f ∈ C(X,F ) such
that f(a) = 0 and f(b) = 1, and put ε = 1

3. So we have

|f(a)− φ(a)| < ε =
1

3
, (19)

and |f(b)− φ(b)| < ε =
1

3
. (20)

Now 1 = |f(b)− f(a)| = |(f(b)− φ(b)) + (φ(b)− f(a))|
= |(f(b)− φ(b)) + (φ(a)− f(a))|, as φ(a) = φ(b)

6 |f(b)− φ(b)|+ |φ(a)− f(a)|

<
2

3
, by (19) and (20).

As it is not true that 1 < 2
3, we have a contradiction and so our supposition that

S does not separate points of C(X,F ) is false, which completes the proof of the
proposition.
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We now define the notion of an algebra over F , where F = R or F = C. It is
roughly speaking a vector space with a multiplication of vectors. So an algebra is a
set together with operations of addition, scalar multiplication, and multiplication.

12.2.4 Definitions. Let F be the field R or C. An algebra A over F is
a vector space over F together with a multiplication, that is a binary operation
· : A×A → A such that for any x, y, z ∈ A and α, β ∈ F :

(i) (x+ y) · z = x · y + x · z;

(ii) x · (y + z) = x · y + x · z; and

(iii) (αx) · (βy) = (αβ)(x · y).

The algebra A is said to be a unital algebra over F if there exists an identity
element I ∈ A such that I · x = x · I = x, for all x ∈ A.
The algebra A is said to be an associative algebra over F if x·(y ·z) = (x·y)·z,
for all x, y, z ∈ A.
The algebra A is said to commutative if x · y = y · x, for all x, y ∈ A.

12.2.5 Example. For each n ∈ N, the set Mn of all n × n matrices with
real number entries is an algebra over R, where the multiplication · is matrix
multiplication. This algebra is unital and associative but not commutative (Exercises
12.2 #2).

12.2.6 Example. C(X,R) is an algebra over the vector space R if we define ·
as follows: for f, g ∈ C(X,R) and α ∈ R, f + g, αf , and f · g are given by

(f + g)(x) = f(x) + g(x), for all x ∈ R
(αf)(x) = α(f(x), for all x ∈ R

(f · g)(x) = f(x)g(x), for all x ∈ R.

Indeed C(X,R) is a commutative associative unital algebra, where the identity I is
the function f(x) = 1, for all x ∈ R.
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12.2.7 Definition. Let S be a subset of an algebra A. If S is itself an
algebra with the operations of addition of vectors, scalar multiplication, and the
binary operation · of A, then S is called a subalgebra of A.

12.2.8 Example.

(i) The set P of all polynomials on [0, 1] is a unital subalgebra of the algebra
(C[0, 1],R);

(ii) The set of all Bernstein polynomials on [0, 1] is a unital subalgebra of the algebra
(C[0, 1],R);

(iii) Let A be a subalgebra of (C[0, 1],R) containing the identity function fI and the
constant function f1, where fI is given by fI(x) = x, for all x ∈ [0, 1], and the
constant function f1 is given by f1(x) = 1, for all x ∈ [0, 1]. Then A contains
P [Exercise].

(iv) It follows immediately from (iii) above and Proposition 12.1.9 (i) that the algebra
A in (iii) above is dense in (C[0, 1],R).

12.2.9 Definitions. Let A be an associative algebra over F , where F is R
or C. Let A also be a normed vector space over F with norm || ||. Then A is
a normed algebra if for all x, y ∈ A, ||x · y|| 6 ||x|| ||y||.
If the norm || || is also complete, that is A is a Banach space, then the normed
algebra is called a Banach algebra.

12.2.10 Remark. it is readily seen that if A is a normed algebra, then the
multiplication · : A×A → A is a continuous mapping.

12.2.11 Example. For any n ∈ N, and F equal to R or C, Fn with the
norm ||x|| = |x|, for all x ∈ F , is a Banach algebra if multiplication is given by
(x1, x2, . . . , xn)·(y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn), for (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈
Fn. (Exercise).
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12.2.12 Proposition. Let X be a compact Hausdorff space and F equal to
either C or R. Then C(X,F ) is a unital Banach algebra if for each f ∈ C(X,F ),
||f || = sup

x∈X
|f(x)|.

Proof. Exercise.

For completeness here, we repeat the definition of a partial order in a set which
appeared in Definitions 10.2.1 (See Davey and Priestley [93].)

12.2.13 Definition. A partial order on a set X is a binary relation,
denoted by 6, which has the properties:

(i) x 6 x, for all x ∈ X (reflexive)

(ii) if x 6 y and y 6 x, then x = y, for x, y ∈ X (antisymmetric), and

(iii) if x 6 y and y 6 z, then x 6 z, for x, y, z ∈ X (transitive)

The set X equipped with the partial order 6 is called a partially ordered set
and denoted by (X,6). If x 6 y and x 6= y, then we write x < y.
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12.2.14 Definitions. Let X be a non-empty partially ordered set and let
S ⊆ X. An element u ∈ X is said to be an upper bound of S if s 6 u, for
every s ∈ S.

The element l ∈ X is said to be a lower bound of S if l 6 s, for
every s ∈ S.

If the element x ∈ X is an upper bound of S and is such that
x 6 u for each upper bound u of S, then x is said to be the least upper
bound of S.

If the element x ∈ X is a lower bound of S and is such that
l 6 x for each lower bound l of S, then x is said to be the greatest
lower bound of S.

Let x, y ∈ X and put S = {x, y}. If the least upper bound of S exists,
then it is denoted by x ∨ y.

Let x, y ∈ X and put S = {x, y}. If the greatest lower bound of S

exists, then it is denoted by x ∧ y.

If x ∨ y and x ∧ y exist for all x, y ∈ X, then X is said to be a lattice.

Let L be a lattice with partial order 6. If S is a subset of L, then S is said to
be a sublattice of L if S with the partial order 6 is also a lattice.

12.2.15 Example. Let X be any compact Hausdorff space and f, g ∈ C(X,R).
Then C(X,R) is a partially ordered set if f 6 g is defined to mean f(x) 6 g(x), for
each x ∈ X. Indeed, noting that

(f ∨ g)(x) = max{f(x), g(x)}
(f ∧ g)(x) = min{f(x), g(x)},

we see that C(X,R) is a lattice.
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12.2.16 Remark. We now begin our proof of the Stone-Weierstrass Theorem
in earnest. The proof follows that in Simmons [341]. The first step is to prove a
version of the Stone-Weierstrass Theorem for certain sublattices of C(X,R). Then
we use the Weierstrass Approximation Theorem 12.1.5 to prove that any closed
subalgebra of C(X,R) is a sublattice of C(X,R). Then it is easy to prove the
Stone-Weierstrass Theorem for C(X,R). Finally we prove the Stone-Weierstrass
Theorem for C(X,C).

12.2.17 Proposition. Let X be a compact Hausdorff space with more than
one point and let L be a closed sublattice of C(X,R). If L has the property
that for any x, y ∈ X with x 6= y and any a, b ∈ R, there exists φ ∈ L such that
φ(x) = a and φ(y) = b, then L = C(X,R).

Proof. Let f ∈ C(X,R). We need to show that f ∈ L.
Let ε > 0 be given. Since L is closed in C(X,R), it suffices to find a function

g ∈ L such that |f(x)− g(x)| < ε, for all x ∈ X, as this implies that

||f − g|| = sup{|f(x)− g(x)| : x ∈ X} < ε

and so L is dense (and closed) in C(X,R).

Fix a point x ∈ X and let y ∈ X, y 6= x. By our assumption on L, there
exists a function φy ∈ L such that φy(x) = f(x) and φy(y) = f(y). Let Oy be
the open set given by Oy = {t : t ∈ X, φy(t) < f(t) + ε}. Clearly x, y ∈ Oy. So
{Oy : y ∈ X} is an open covering of the compact space X. So there is a finite
subcover O1, O2, . . . , On of X. If the corresponding functions in L are denoted by
φ1, φ2, . . . , φn, the function

Φx = φ1 ∧ φ2 ∧ · · · ∧ φn ∈ L

and Φx(x) = x and Φx(t) < f(t) + ε, for all t ∈ X.

For each x ∈ X, define the open set Ux = {t : t ∈ X, Φx(t) > f(t)− ε}. Since
x ∈ Ux, the sets Ux, x ∈ X are an open covering of the compact space X. So there
is a finite subcover U1, U2, . . . , Um of X. We denote the corresponding functions in
L by Φ1,Φ2, . . . ,Φm. Define a function g ∈ L by

g = Φ1 ∨ Φ2 · · · ∨ Φm.
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It is clear that f(t) − ε < g(t) < f(t) + ε, for all t ∈ X, which completes our
proof.

12.2.18 Lemma. Let X be any compact Hausdorff space, f ∈ C(X,R)

and |f | defined by |f |(x) = |f(x)|, for every x ∈ X.

(i) |f | ∈ C(X,R);

(ii) f ∧ g = 1
2(f + g − |f − g|), for all f, g ∈ C(X,R);

(iii) f ∨ g = 1
2(f + g + |f − g|), for all f, g ∈ C(X,R);

(iv) let A be any vector subspace of C(X,R) with the property that
f ∈ A =⇒ |f | ∈ A. Then A is a sublattice of C(X,R).

Proof. Exercise

12.2.19 Proposition. Let X be a compact Hausdorff space. Then every
closed subalgebra of C(X,R) is a closed sublattice of C(X,R).

Proof. Let A be a closed subalgebra of C(X,R). If f, g ∈ C(X,R). By Lemma
7.2.18 (iv) it suffices to show that f ∈ A =⇒ |f | ∈ A.

Let ε > 0 be given. For any f ∈ C(X,R), define the the closed interval
[a, b] ⊂ R, where a = −||f || and b = ||f ||. The function φt : [a, b] → R given
by φt = |t|, for t ∈ [a, b] is a continuous function. from [a, b] into R. So by the
Weierstrass Theorem 12.1.5, there exists a polynomial p′ such that | |t|−p′(t) | < ε

2 ,
for every t ∈ [a, b].

Define the polynomial p by p(t) = p′(t) − p′(0), for all t ∈ [a, b], and note that
|p′(0)| < ε

2. So we have p(0) = 0 and
| |t| − p(t) | = | |t| − p′(t) + p′(0) | 6 | |t| − p′(t) |+ |p′(0)| < ε, for every t ∈ [a, b].

Since A is an algebra, the function p(f) ∈ C(X,R), given by (p(f))(x) = p(f(x))

for all x ∈ X, is in A. Since f(x) ∈ [a, b], for all x ∈ X, the previous paragraph
implies that | |f(x)|−p(f(x)) | < ε, for all x ∈ X. So || |f |−p(f) || < ε. As p(f) ∈ A
and A is a closed set, this implies that |f | ∈ A, which completes the proof.
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12.2.20 Theorem. [The (Real) Stone-Weierstrass Theorem] Let X
be a compact Hausdorff space and A a closed subalgebra of C(X,R) which
contains a non-zero constant function. Then A = C(X,R) if and only if A
separates points of X.

Proof. Firstly, from Proposition 12.2.3, if A = C(X,R) then A must separate
points of X.

We now consider the case that A separates points of X.

If X has only one point, then each f ∈ C(X,R) is a constant function and as
A contains a non-zero constant function and is an algebra, it contains all constant
functions and so equals C(X,R).

So consider the case that X has more than one point. By Proposition 12.2.17
and Proposition 12.2.19 it suffices to show that if x, y ∈ X with x 6= y and a, b ∈ R,
there exists f ∈ A such that f(x) = a and f(y) = b. As A separates points of X,
there exis a g ∈ A, such that g(x) 6= g(y). So we define f : X → R by

f(z) = a
g(z)− g(y)

g(x)− g(y)
+ b

g(z)− g(x)

g(y)− g(x)
, for z ∈ X.

Then f has the required properties, which completes the proof. �

12.2.21 Remark. If f : X → C is any function from a set X into C, then we
can write f(x) = R(f)(x) + i I(f)(x), where R(f)(x) ∈ R and I(f)(x) ∈ R. So
f = R(f) + i I(f). The conjugate function, f is defined to be R(f) − i I(f).
Note that

R(f) =
f + f

2
and I(f) =

f − f
2i

.
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12.2.22 Theorem. [The (Complex) Stone-Weierstrass Theorem]
Let X be a compact Hausdorff space and A a closed subalgebra of C(X,C)

which contains a non-zero constant function. Then A = C(X,C) if and only if
f ∈ A implies the conjugate function f ∈ A and A separates points of X.

Proof. From Proposition 12.2.3, if A = C(X,C), A must separate points of X
and obviously f ∈ A = C(X,C) implies the conjugate function f ∈ A.

So we consider the converse statement. Define B to be the real-valued functions
in A. Clearly B is a closed subalgebra of C(X,R). We claim that it suffices to prove
that B = C(X,R). This is so, since if f ∈ C(X,C), then R(f) and I(f) are in
C(X,R) and so in B = C(X,R), and so A would be C(X,C).

We shall use the Real Stone-Weierstrass Theorem 12.2.20 to prove that B =

C(X,R). Let f ∈ C(X,C) seprate points of X. Then either R(f) or I(f) (or both)
separate points of X; so B separates points of X. Now A contains a non-constant
function g. As A is an algebra, the conjugate function g is also in A. So the
non-constant real-valued function gg = |g|2 ∈ B. So by the Real Stone-Weierstrass
Theorem 12.2.20, B = C(X,R), which completes the proof. �

7.2.23 Remark. The Weierstrass Approximation Theorem 12.1.5 is of course
a special case of The (Complex) Stone-Weierstrass Theorem 12.2.22. It is the case
X = [a, b] ⊂ R and A is the set of all polynomials.
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Fejér

12.2.24 Remark. We mentioned at the beginning
of §12.1 that in 1885 Karl Weierstrass was aged 70,
when he proved the The Weierstrass Approximation
Theorem 12.1.5. In contrast, in 1899 the Hungarian
Jewish mathematician Lipót Fejér (1880–1959), aged
19, proved the trignometric polynomial version of this
theorem from which The Weierstrass Approximation
Theorem 12.1.5 can be derived. Lipót Fejér was born
Lipót Weiss and changed his name in high school as he
expected less antisemitism. Research students that he
supervized included: Marcel Riesz, George Pólya, Gábor Szegő, John von Neumann,
Pál Turán, and Paul Erdős - an incredible heritage.

Neumannsmall.jpg

Riesz Pólya Szegő vonNeumann Turán Erdős

12.2.25 Definition. Let a0, an, bn ∈ R, n = 1, 2, . . . , N , N ∈ N with either
aN 6= 0 or bN 6= 0. Then the function f : R→ R given by

f(x) = a0 +
N∑
n=1

an cos(nx) + bn sin(nx), for x ∈ R

is said to be a real trignometric polynomial of degree N .
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12.2.26 Definition. Let a0, an, bn ∈ C, n = 1, 2, . . . , N , N ∈ N with either
aN 6= 0 or bN 6= 0. Then the function f : R→ C given by

f(x) = a0 +
N∑
n=1

an cos(nx) + i bn sin(nx), for x ∈ R

is is said to be a complex trignometric polynomial of degree N .

12.2.27 Remark. We observe that if f is a real trignometric polynomial or a
complex trignometric polynomial then

f(x) = f(x+ 2π) = f(x+ 2kπ), for all k ∈ N and x ∈ R. (21)

We shall prove that every function f : R → R satisfying (21) can be approximated
by real trignometric polynomials and every function f : R → C satisfying (21) can
be approximated by complex trignometric polynomials.

12.2.29 Remark. Let T denote the circle of diameter one centred at 0 in the
euclidean space R2 with the subspace topology from R2. Of course T is a compact
Hausdorff space. Further, any function f : R → R or f : R → C which satisfies
(21) can be thought of as a function from T to R or from T to C. Further, f is a
continuous function if and only if the corresponding function from T to R or C is
continuous.

12.2.30 Corollary. The algebra of all real trignometric polynomials is dense
in C(T,R) and the algebra of all complex trignometric polynomials is dense in
C(T,C).

Proof. These results follow from The Real Stone-Weierstrass Theorem 12.2.20
and The Complex Stone-Weierstrass Theorem 12.2.22. [Exercise]
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Kelvin

12.2.31 Remark. Lord Kelvin4 (see Kelvin
[220]), was interested in correcting the magnetic
compass in ships, which usually had a lot of iron
and steel, in order to get a true north reading and
was also interested in predicting tides. Both of these
problems were able to be addressed using trignometric
polynomial approximation. For a discussion see Sury
[366].

We conclude this section with an interesting remark, unrelated to the Stone-
Weierstrass Theorem, on the spaces C(X,R).

12.2.31 Remark. While C([0, 1],R) is just one separable Banach space, the
following result says it is much richer than you may have thought. Indeed it is a
universal separable metric space, as described below.
Banach Mazur Theorem. Every separable Banach space is isometrically
embeddable as a metric space in C[(0, 1),R).
From the Banach-Alaoglu Theorem, Exercises 10.3 #33 (vii) and the Hahn-Banach
Theorem5 the following beautiful generalization can be deduced.
If B is any Banach space, then there exists a compact Hausdorff space X

such that B is isometrically embeddable as a metric space in C(X,R).
(See Maddox [256], Theorem 27.)
As a generalization of the concept of separability of a topological space, we introduce
the following notion. The density character of a topological space X is the least
cardinal number of a dense subspace of X. In 1969 Kleiber and Pervin [225] proved
the next theorem:
The topological space C([0, 1]ℵ,R) with the uniform topology is a universal
metric space of density character ℵ; that is, C([0, 1]ℵ,R) has density
character ℵ and every metric space of density character ℵ is isometrically
embedded as a subspace of C([0, 1]ℵ,R).

4William Thompson (1824-1907), born in Belfast, Ireland, was the son of the Professor of
Mathematics at Glasgow University. He attended university classes from the age of 10. He graduated
from Camridge University and at the age of 22 returned to Glasgow University to become Professor
of Natural Sciences, a position he held for over half a century. He became a Lord in 1892, and took
the name Kelvin.

5https://tinyurl.com/zj9byaj

https://tinyurl.com/zj9byaj
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Exercises 12.2

1. Verify that the subset S of C([0, 1],R) consisting of all polynomials in C[0, 1]

with rational number coefficients is not a subalgebra of C[0, 1].

2. Prove that the setMn of all n×n matrices with real number entries is an algebra
over R in Example 12.2.3 is a non-commutative associative unital algebra over
R.

3. Let X be a compact Hausdorff space, A a subalgebra of C(X,F ), where F is
C or R, and B the closure in C(X,F ) of A. Prove that

(i) B is a subalgebra of C(X,F );

(ii) if A contains the conjugate of each of its functions, then so does B.

4. Verify Example 12.2.6 (iii).

5. Verify Example 7.2.9 is correct.

6. Prove Proposition 12.2.10.

7. Verify Lemma 7.2.16.

8. Let X be a locally compact Hausdorff space and f a continuous function from
X into F , where F is C or R. Then f is said to vanish at infinity if for each
ε > 0, there exists a compact subset K of X such that |f(x)| < ε, for all
x ∈ X \ K. Let C0(X,F ) be the Banach algebra of all continuous functions
which vanish at infinity. Prove that C0(X,F ) with the sup norm is a Banach
algebra and is unital Banach algebra if and only if X is compact.
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9. Let A be a Banach algebra over C. Then A is said to be a C∗-algebra6 7 if
there is a map ∗ : A → A which satisfies (i)–(v).

(i) x∗∗ = (x∗)∗ = x, for every x ∈ A; that is ∗ is an involution;

(ii) (x+ y)∗ = x∗ + y∗, for every x, y ∈ A;
(iii) (x · y)∗ = y∗ · x∗, for every x, y ∈ A;
(iv) (αx)∗ = αx∗, for every x ∈ A and α ∈ C, where α denotes the complex

conjugate of the complex number α;
(v) ||x∗ · x|| = ||x||2, for every x ∈ A.

For any x ∈ A, x∗ is called the adjoint of x.

(a) Using the fact that in any Banach algebra A, ||x · y|| 6 ||x|| ||y||, for all
x, y ∈ A, verify that ||x|| = ||x∗||.

(b) Prove that if X is a compact Hausdorff space, then the unital commutative
associative Banach algebra C(X,C) is a C∗-algebra if for each f ∈ C(X,C)

we define f∗ : X → C by f∗(x) = f(x), for every x ∈ X, where f(x) denotes
the complex conjugate of the complex number f(x).

Let A and B be C∗-algebras. Then A is said to be isomorphic as a C∗-
algebra to B if there is a surjective one-to-one mapping φ : A → B such
that φ(x + y) = φ(x) + φ(y), φ(αx) = αφ(x), φ(x · y) = φ(x) · φ(y), and
φ(x∗) = (φ(x))∗, for all x, y ∈ A and α ∈ C. The Gelfand-Naimark
Representation Theorem, proved using the Stone-Weierstrass Theorem, says
every commutative unital C∗-algebra A is isomorphic as a C∗-algebra to
C(X,C), for some compact Hausdorff space X.
More generally, every commutative C∗-algebra A is isomorphic as a C∗-
algebra to C0(X,C), for some locally compact Hausdorff space X. (See
Lang [238], Chapter 16, Theorem 3.3.)
It is also worth mentioning that C(X,C) is isomorphic as a C∗-algebra to
C(Y,C), for compact Hausdorff spacesX and Y , if and only ifX is homeomorphic
to Y . (See Lin [246], Theorem 1.3.9.)

6The concept of a C∗-algebra has its roots in the work on quantum mechanics of Werner Karl
Heisenberg (1901–1976), Erwin Rudolf Josef Alexander Schrödinger (1887-1961), and John von
Neumann (1903–1957) in the 1920s. (See Landsman [237].)

7Gelfand and Naimark [147]
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Chapter 13

Hilbert’s 13th Problem

13.1 Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem

Hilbert

We begin by asking a provocative question: Are
there any genuine continuous multivariate
real-valued functions? This may seem to be a
silly question, but it is in essence what David Hilbert
(1862–1943) asked as one of the 23 questions
he posed at the second International Congress
of Mathematicians, held in Paris in 1900. (See
Browder [57, 58].) These questions guided a large
proportion of the research in mathematics of the
20th century.

In his last mathematical paper, Hilbert [176],
in 19271 David Hilbert reported on the progress
on his 23 problems. He devoted 5 pages to his
13th problem and only 3 pages to the remaining
22 problems. This chapter is devoted to the
mathematics surrounding Hilbert’s 13th problem.

1Around 1925 Hilbert developed pernicious anemia, a then-untreatable vitamin B12 deficiency
whose primary symptom is exhaustion, and was not himself after this time. (See Szanton [367].)

389
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13.1.1 Remark. To set the stage, let us consider functions we often meet in
a course on functions of several variables. As usual we denote the set of all real
numbers with the euclidean topology by R, the product R × R with the product
topology by R×R, the closed unit interval [0, 1] with its subspace topology from R
by I, and the set In, n ∈ N, with the product topology by In.

(i) The function f1 : I2 → R is defined by f1(x, y) = x+ y. We see that

f1(x, y) = φ(x) + φ(y), (1)

where φ : I→ R is given by φ(x) = x. So f1, which is a function of two variables,
can be represented in terms of functions of one variable using addition.

(ii) The function f2 : I2 → R is defined by f2(x, y) = x.y. Observe that

f2(x, y) = x.y = (x+ 1)(y + 1)− (x+ 1/2)− (y + 1/2)

= e[loge(x+1)+loge(y+1)] + (−x− 1/2) + (−y − 1/2).

[We need to avoid loge x, when x = 0.]

So if we define g : R→ R by g(x) = exp(x), φ1 : I→ R by φ1(x) = loge(x+ 1),
and φ2 : I→ R by φ2(x) = −x− 1/2, we see that

f2(x, y) = g(φ1(x) + φ1(y)) + φ2(x) + φ2(y). (2)

So this function f2 of two variables can be represented in terms of functions of
one variable using addition and composition.

(iii) The function f3 : I2 → R is defined by f3(x, y) = sin(x + cos y). If we define
g : R → R by g(x) = sinx, φ1 : I → R by φ1(x) = x, and φ2 : I → R by
φ2(x) = cos x, then

f3(x, y) = g(φ1(x) + φ2(y)) (3)

So the function f3 of two variables can be represented in terms of functions of
one variable using addition and composition.

We notice that all three functions of two variables, f1, f2, and f3, can be expressed in
terms of functions of one variable using addition and composition. This observation
and representations (1), (2), and (3) are a hint about what is to come. �
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Hilbert formulated his 13th problem as follows:
Prove that the equation of the seventh degree

x7 + ax3 + bx2 + cx+ 1 = 0

is not solvable with the help of any continuous functions of only two variables.

This, in particular, conjectures that there are continuous functions of
3 variables (for example, x(a, b, c)) which are not representable as continuous
functions of two variables (such as {a, b}, {a, c} and {b, c}).

Kolmogorov

Arnol’d

Hilbert’s 13th problem conjectured that there
are continuous functions of several variables which
cannot be expressed as composition and addition of
continuous functions of two variables.

To be more precise, Hilbert conjectured that there
exists a continuous function f : I3 → R, where
I = [0, 1], which cannot be expressed in terms of
composition and addition of continuous functions
from R2 → R; i.e., as composition and addition of
continuous functions of two variables.

It took over 50 years to prove that Hilbert’s
conjecture is false . In 1957, 14 years after Hilbert’s
death, the solution was provided by Vladimir Igorevich
Arnol’d (1937–2010). His solution built on the work
of his PhD advisor, Andrej Nikolajewitsch Kolmogorov
(1903–1987).

In 1956 Kolmogorov proved the surprising and remarkable result that every
continuous function of any finite number of variables can be expressed in
terms of composition and addition of continuous functions of 3 (or fewer)
variables. In 1957 Arnol’d, at the age of 19, showed that 3 can be replaced by 2,
thereby proving that Hilbert’s conjecture is false. Soon thereafter, Kolmogorov
showed that 2 can be replaced by 1. (See Kolmogorov [227, 228]; Arnol’d [22].)
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Kahane

Lorentz

Sprecher

Kolmogorov’s generalization is often referred to in the
literature as the Kolmogorov Superposition Theorem. Over
the 60 years since then, the Kolmogorov Superposition
Theorem has been generalized substantially, its statement
and proof simplified, and myriads of applications found in
approximation theory, image processing, neural networks
and topological groups. It may even be of importance in
the modern world of big data. (See Hornik [187]; Braun
and Griebel [53]; Bryant [64]; Cybenko [91]; Fridman [137];
Gromov [158]; Hedberg [169]; Köppen [232]; Leiderman
et al. [242]; Lorentz [251]; Levin [245]; Sternfeld [357,
358].)

There are many generalizations and refinements of
the Kolmogorov Superposition Theorem. We state one
of these and outline the 1971 proof by the Swedish
mathematician Torbjörn Hedberg, which uses the work of
George Gunter Lorentz (1910–2006), Jean-Pierre Kahane (1926–2017) and David
A. Sprecher.

We now state the Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem. (See
Kolmogorov [227, 228]; Arnol’d [22]; Kahane [212]; Lorentz [250, 251]; Sprecher
[350].)

13.1.2 Theorem. (Kolmogorov, Arnol’d, Kahane, Lorentz, Sprecher)
For any n ∈ N, n > 2, there exist real numbers λ1, λ2, . . . , λn and continuous
functions φk : I→ R, for k = 1, . . . , 2n+ 1, such that:
for every continuous function f : In → R there exists a continuous function
g : R→ R such that for each (x1, x2, . . . , xn) ∈ In,

f(x1, . . . , xn) =
2n+1∑
k=1

g (λ1φk(x1) + · · ·+ λnφk(xn)) .

To see how beautiful and simple this theorem is, look at the case n = 2.
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13.1.3 Theorem. There exists a real number λ and continuous functions
φk : I→ R, for k = 1, . . . , 5, with the property that:
for every continuous function f : I2 → R there exists a continuous function
g : R→ R such that for each (x1, x2) ∈ I2,

f(x1, x2) =
5∑

k=1

g(φk(x1) + λφk(x2)). (4)

We emphasize the fact that the λi and φi do not depend on the function f . In
fact, the proof will show that λ1, . . . , λn can be chosen such that all (2n+ 1)-tuples
(φ1, . . . , φn) except for a “small set” (namely one of first category in the metric
space C(I2n+1)) have the stated property.

Baire

Key to Kahane’s and Hedberg’s (1970 & 1971)
proof of the Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher
Theorem 13.1.2 is the Baire Category Theorem 6.5.1,
proved by the French mathematician René-Louis Baire
(1874–1932) in his doctoral dissertation in 1899. T.W.
Körner in his book “Linear Analysis” says: “The Baire
Category is a profound triviality which condenses the folk
wisdom of a generation of ingenious mathematicians into
a single statement.”

6.5.1 Theorem. (Baire Category Theorem) Let (X, d) be a complete
metric space. If X1, X2, . . . , Xn, . . . is a sequence of open dense subsets of X,
then the set

⋂∞
n=1Xn is also dense in X.

We recall that the set C(I) of all continuous functions from I into R is a metric
space if given the metric d defined by:

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

In fact, C(I) is a Banach space with the norm ||f || = sup
x∈[0,1]

|f(x)|, for f ∈ C(I).

Similarly we can think of C(In) as a metric space and as a Banach space.
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The complete metric space C(In) satisfies the Baire Category Theorem 6.5.1,
for every n ∈ N. This is what makes the Kahane-Hedberg proof of the Kolmogorov-
Arnol’d-Kahane-Lorentz-Sprecher Theorem 13.1.2 work.

We shall give a version of Hedberg’s proof in Hedberg [169], which is technical
rather than particularly hard, of the Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher
Theorem for the special case that n = 2; that is, we prove Theorem 13.1.3. For
this case we put λ1 = 1 and λ2 = λ.

The proof for general n ∈ N is a straightforward generalization of what is
presented here.

Next we introduce a little notation for the proof of Theorem 13.1.3

Put Φi(x1, x2) = φi(x1) + λφi(x2). (5)

So equation (1) becomes

f(x1, x2) =
5∑

k=1
g(Φk(x1, x2)); i.e., f =

5∑
k=1

g ◦ Φk.

Now we clarify the existence/choice of the λ.

13.1.4 Lemma. There exists a real number λ with the property that for
any x1, x2, y1, y2 ∈ Q,

x1 + λy1 = x2 + λy2 =⇒ x1 = x2 and y1 = y2.

Proof. Choose for λ any irrational number. Then

x1 − x2 = λ(y2 − y1).

Suppose x1 6= x2 and y1 6= y2. The left side is a rational number and the right side
is an irrational number, which is impossible. So our supposition is false and x1 = x2

or y1 = y2. It is esaily seen that this implies both are equal.
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In the case of general n rather than n = 2 we use:

13.1.5 Lemma. There exist real numbers λ1, . . . , λn with the property
that for any rational numbers x1, . . . , xn and y1, . . . , yn, for n ∈ N,

λ1x1 + · · ·+ λnxn = λ1y1 + · · ·+ λnyn =⇒ each xi = yi.

Proof. Choose λi which are independent over the rational number field Q, e.g.
each λi = πi−1. The Lemma follows easily.

In short, the choice of the λ is not only not unique, but “almost all” λ will work.
(The set of λ which do not “work” has measure zero in R.)

13.1.6 Lemma. Fix λ satisfying Lemma 13.1.5. Let f ∈ C(I2), ||f || = 1,
and let Uf be the subset of [C(I)]5 described as follows: (φ1, . . . , φ5) ∈ Uf if
and only if there exists a g ∈ C(R) such that

|g(t)| 6 1/7, for t ∈ R, and (6)∣∣∣f(x, y)−
5∑
i=1

g(φi(x) + λφi(y)
∣∣∣ < 7/8, for (x, y) ∈ I2. (7)

Then Uf is an open dense subset of [C(I)]5.

Outline Proof. The set Uf is open, since if g “works” for some 5-tuple (φ1, . . . , φ5)

in [C(I)]5, it works also for all sufficiently close 5-tuples in the metric space [C(I)]5.
To prove Uf is dense, let (φ0

1, . . . , φ
0
5) ∈ [C(I)]5, and show:

given ε > 0, there exists (φ1, . . . , φ5) ∈ [C(I)]5 and g ∈ C(R) satisfying (5) and 6)
such that each ||φi − φ0

i || < ε.

Let N be a fixed positive integer, to be specified later. If i ∈ {1, . . . , 5} consider
the set of subintervals of I which remain when all of the intervals [ sN ,

s+1
N ] with

0 6 s < N, s ≡ i− 1(mod 5) are deleted. These remaining intervals, with endpoints
adjoined so they are closed, shall be designated red intervals of rank i.
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Each red interval of rank i has length 4/N, with 2 possible exceptions, see below
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If N is large enough, clearly there exists φi ∈ C(I) with

(a) φi is constant and equal to a rational number on each red interval of rank i;

(b) φi(x) 6= φi(y) for x and y in distinct red intervals of rank i and φi(x) 6= φj(z)

for x in any red interval of rank i and z in any red interval of rank j.

(c) ||φi − φ0
i || < ε, i = 1, . . . , 5
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A rectangle lying in I2 which is the cartesian product of two red intervals of rank
i (one lying in {0 6 x 6 1} and one lying in {0 6 y 6 1} will be called a
red rectangle of rank i (nearly all are squares of side 4/N). The red rectangles
of rank i will be denoted Ri,1, Ri,2, . . . .

1
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5
10

6
10

6
10

5
10

1
10

0 1

1

For i = 1 and N = 10:

We define
Φi(x, y) = φi(x) + λφi(y), i = 1, . . . , 5.

Each Φi is obviously constant on each red rectangle of rank i, and by our choice of
λ in Lemma 13.1.5:
the (constant) value, denoted by Φ(Ri,r), which Φi takes on Ri,r cannot equal the
(constant) value which Φj takes on Rj,s except trivially if i = j and r = s.

Using (uniform) continuity of f on I2, choose N so that

|f(x, y)− f(x′, y′)| 6 1/7 for (x− x′)2 + (y − y′)2 6 32
N2 . (8)

The last step is to define g : I→ R.
If f(x, y) > 0 throughout Ri,r define g(Φ(Ri,r)) = 1/7.

If f(x, y) < 0 throughout Ri,r define g(Φ(Ri,r)) = −1/7.

Because the numbers Φ(Ri,r) corresponding to distinct pairs (i, r) are distinct,
this definition is valid. Now extend g to all of R in a piecewise linear fashion so that
|g(t)| 6 1/7, for all t ∈ R.
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To complete the proof of the Lemma, we need to verify

|f(x, y)−
∑5
i=1 g(φi(x) + λφi(y))| < 7/8, for (x, y) ∈ I2. (9)

Let (x, y) ∈ I2. Since x lies in red intervals of rank i except perhaps for one
value of i and the same is true of y, (x, y) is contained in red rectangles of at least
3 different ranks.
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There are 3 cases to consider to prove

|f(x, y)−
∑5
i=1 g(φi(x) + λφi(y))| < 7/8, for (x, y) ∈ I2. (7)

Recall |f(x, y)− f(x′, y′)| 6 1/7 for (x− x′)2 + (y − y′)2 6
32

N2
. (8)

Case 1. f(x, y) > 1/7. Then by (7), f(x, y) > 0 throughout each red rectangle
containing (x, y), and we saw there are at least 3 such red rectangles. So

f(x, y)−
∑5
i=1 g(Φi(x, y)) 6 1− 3/7 + 2/7 < 7/8, (9)

Also the left side of the inequality is larger than 1/7− 5/7 = −4/7, so (4) is true.

The proof of the case f(x, y) < −1/7 is analogous.

The third case, where |f(x, y)| < 1/7, is easy, since the left hand side of (7) is less
than 6/7.
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13.1.7 Lemma. Let λ be as in Lemma 13.1.6. There exist φ1, . . . , φ5 in
C(I), with the property that, given f ∈ C(I2), there exist g ∈ C(R) satisfying

|g(t)| 6 (1/7) ||f ||, t ∈ R, (10)∣∣∣∣∣∣f − 5∑
k=1

g ◦ Φk

∣∣∣∣∣∣ 6 (8/9) ||f || (11)

where each Φk(x, y) = φk(x) + λφk(y).

Proof. Without loss of generality we can assume ||f || = 1. Let {hj : j ∈ N} be a
sequence of functions in C(I2) each having norm 1, which is dense in the unit sphere
of C(I2). Let Uj = Uhj ⊆ (C(I))5 determined by hj in the previous lemma. As each

Uj is a dense open subset of the complete metric space (C(I))5, their intersection
V is non-empty by the Baire Category Theorem 6.5.1. Choose (φ1, . . . , φ5) ∈ V .
As the sequence of the hj is dense in the unit sphere in C(I2), there is an m ∈ N,
such that ||f − hm|| 6 1/72.
Since (φ1, . . . , φ5) ∈ V ⊆ Um, there exists a g ∈ C(R), ||g|| < 1/7 such that
||hm −

∑5
k=1 g ◦ Φi|| 6 7/8.

Hence ||f −
∑5
k=1 g ◦ Φk|| 6 7/8 + 1/72 = 8/9.

We now complete the proof of Theorem 13.1.3, the n = 2 case of the
Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem 13,1.2.
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13.1.3 Theorem. There exists a real number λ and continuous functions
φk : I→ R, for k = 1, . . . , 5, with the property that:
for every continuous function f : I2 → R there exists a continuous function
g : R→ R such that for each (x1, x2) ∈ I2,

f(x1, x2) =
5∑

k=1

g(φk(x1) + λφk(x2)). (4)

Proof. From Lemma 13.1.7, there exists λ ∈ R, φ1, . . . , φ5 in C(I) and g ∈ C(R),
such that for each f in C(I), with

|g(t)| 6 (1/7) ||f ||, t ∈ R, (10)∣∣∣∣∣∣f − 5∑
k=1

g ◦ Φk

∣∣∣∣∣∣ 6 (8/9) ||f ||, (11)

where each Φk(x, y) = φk(x) + λφi(y).

Put f0 = f and g0 = g. Recursively define fj ∈ C(I2) and gj ∈ C(R), for
j = 0, 1, . . . , n, . . . , as follows:

fj+1 = fj −
5∑

k=1
gj ◦ Φi, and there exists a gj+1 satisfying (10) and (11) with gj+1

replacing g and fj+1 replacing f .

So ||gj|| 6 (1/7)||fj|| and ||fj −
5∑

k=1
gj ◦ Φk|| 6 (8/9)||fj||.

Thus ||fj|| 6 (8/9)j||f || and ||gj|| 6 (1/7)(8/9)j||f ||.

Hence the series
∞∑
j=0

gj converges in norm to an element g ∈ C(R) and we have

f =
∞∑
j=0

(fj − fj+1) =
∞∑
j=0

5∑
j=1

gj ◦ Φi =
5∑
i=1

g ◦ Φi.

This completes the proof of the theorem.

As stated earlier, a similar argument proves the Kolmogorov-Arnol’d-Kahane-
Lorentz-Sprecher Theorem 13.1.2.
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With a small modification to the proof, see Hedberg [169, pp. 272–273], we can
choose each φk to be a strictly increasing function, which yields:

13.1.8 Theorem. For any n ∈ N, n > 2, there exist real numbers
λ1, λ2, . . . , λn and strictly increasing continuous functions φk : I → R, for
k = 1, . . . , 2n+ 1, such that:
for every continuous function f : In → R there exists a continuous function
g : R→ R such that for each (x1, x2, . . . , xn) ∈ In,

f(x1, . . . , xn) =
2n+1∑
k=1

g (λ1φk(x1) + · · ·+ λnφk(xn)) .

It is natural to ask if the Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem
13.1.2 would be true if we replaced continuous by a stronger property. In Vitushkin
[385] in 1954, Anatoliy Georgievich Vitushkin (1931–2004), whose PhD advisor
was Andrej Nikolajewitsch Kolmogorov, proved that this theorem would be false
if we insisted that f and g and all φk are continuously differentiable.
However, the Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem 13.1.2
remains true if we insist that each φk is Lip(1); that is, for all x1, x2 ∈ I,
|f(x1) − f(x2)| 6 |x1 − x2|, a condition weaker (for functions: I → R) than
differentiable but stronger than continuous. (See Fridman [137].)

Kolmogorov’s proof, and the Hedberg-Kahane proof presented here, of the
Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher Theorem are not constructive. A
constructive proof was given in 2007 in Braun and Griebel [53] by Jürgen Braun
and Michael Griebel, clarifying and building on previous work of David A. Sprecher,
Sprecher [351, 352], and Mario Köppen, Köppen [232].

Our final theorem of Yasunao Hattori in 1993, Hattori [165], generalizes work
of Phillip A. Ostrand (1936–1985) in 1965, Ostrand [301], Yaki Sternfeld (1944–
2001) in 1985, Sternfeld [358, 359], and Michael Levin in 1990, Levin [245]. In
particular, we see that the mysterious 2n + 1 which appeared in the Kolmogorov-
Arnol’d-Kahane-Lorentz-Sprecher Theorem is best possible.
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13.1.9 Theorem. Let n ∈ N, n > 2. Further, let X be any compact
metric space or, more generally, a locally compact separable metric space, of
finite dimension n. Then there exist continuous functions θk : X → R, for
k = 1, . . . , 2n+ 1, such that:
for every bounded continuous function f : X → R there exists a continuous
function g : R→ R such that for each x ∈ X,

f(x) =
2n+1∑
k=1

g(θk(x)).

Further, 2n + 1 is “best possible”, i.e., 2n + 1 is the smallest positive integer
such that this is true for all f .
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13.2 Appendix on Solving Polynomial Equations

In Section 13.1 we saidthat Hilbert was interested in the polynomial equation

x7 + ax3 + bx2 + cx+ 1 = 0,

but it is not immediately clear why he should examine this equation which has no
x6 term, x5 term or x4 term rather than a general equation of the seventh degree;
that is,

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3cx
3 + a2x

2 + a1x+ a0 = 0.

Let us look very briefly at solving polynomial equations. We shall begin with
something very familiar, quadratic equations the history of which goes back over
three thousand years to the Babylonians. The Spanish Jewish mathematician
Abraham bar Hiyya HaNasi (1070–1136), known as Savasorda, published the first
book in Europe to introduce Arabic algebra and, in particular, it included the
complete solution to quadratic equations. It was written in Hebrew and later
translated into latin as “Liber Embadorum”. In 1202 Leonardo of Pisa (1175–
1250), known as Fibonacci, published “Liber Abaci” which apparently contained all
the knowledge possessed by the Arabs in algebra and arithmetic.

Consider the quadratic equation

ax2 + bx+ c = 0. (1)

Faced with the task of solving this, we might first say to ourselves that if the x
term was not there, then we would have

ax2 + c = 0 =⇒ x2 = −c/a =⇒ x = ±
√
−c/a.

So we shall solve (1) by first eliminating the x term. Let y satisfy x = y− b

2a
. Then

(1) becomes

a

(
y − b

2a

)2

+ by − b2

2a
+ c = 0 =⇒ ay2 +

b2

4a
− b2

2a
+ c = 0 =⇒ y2 =

b2 − 4ac

4a2

=⇒ x =
−b±

√
b2 − 4ac

2a
.

So we obtain the two solutions x =
−b±

√
b2 − 4ac

2a
of (1) by eliminating the x term

in (1). This is called depressing the equation.
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Having obtained the result on the solutions of a quadratic equation that you
first met in high school, let us apply a similar technique to solve the general cubic
equation

a3x
3 + a2x

2 + a1x+ a0 = 0.

Obviously there is no loss of generality in assuming a3 = 1, since if it is not then we
divide all terms by a3. So we shall consider the cubic equation:

x3 + a2x
2 + a1x+ a0 = 0. (2)

Let us again depress this cubic equation by eliminating the x2 term. Noting that

(x− b)3 = x3 − 3bx2 + 3b2x− b3

we can eliminate the x2 in (2) by putting x = y − a2
3 to obtain

(y − a2

3
)3 + a2(y − a2

3
)2 + a1(y − a2

3
) + a0

=

[
y3 − a2y

2 +
a2

2

3
y − a2

3

27

]
+

[
a2y

2 −
2a2

2

3
y +

a2
3

9

]
+
[
a1y −

a1a2

3

]
+ a0 = 0.

So gathering terms we have

y3 +

[
a1 −

a2
2

3

]
y +

[
a0 +

2a3
2 − 9a1a2

27

]
= 0

So it has reduced to an equation of the form

y3 + c1y + c0 = 0. (3)

where c1 = a1−
a2

2

3
and c0 = a0 +

2a32 − 9a1a2
27

. If c1 = 0, that is a1−
a2

2

3
= 0, then

y3 = −c0, and so y = − 3
√
c0 and the cubic equation (3) is solved. So we shall focus

on the case where c1 6= 0 .
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Bombelli

Hamilton Leibniz

Wessel

Before we look at the history of the discovery of
how to solve cubic equations (Guilbeau [161], Bewersdorff
[41]), one needs to know that at the beginning of the 16th

century not only were complex numbers not known but
even negative numbers were not known. Indeed, in Europe
the number 0 was not known2. It was in the context of
solving cubic equations that Gerolamo Cardano, in some
sense, introduced imaginary numbers (and used negative
numbers which he referred as fictitious numbers).
However, it took a couple of hundred years before complex
numbers were fully understood and accepted through
the efforts of the Italian Rafael Bombelli (1526–1572),
the Norwegian-Dane Caspar Wessel (1745–1818), and
the Irishman William Rowan Hamilton (1805–1865). In
1702 Gottfried Wilhelm Leibniz (1646–1716) referred
to complex numbers as follows:“wonder of analysis, a
monstrosity of the human imagination”.

Pacioli

da Vinci

Franciscan Friar Luca Bartolomeo de Pacioli
(c.1447–1517) was a Florentine mathematician who
wrote books in Italian, rather than Latin, illustrated by
Leonardo da Vinci, including “Summa de arithmetica,
geometria, proportioni et proportionalita” (Summary of
arithmetic, geometry, proportions and proportionality)
Renaissance mathematics. In it he asserts that a solution
to the cubic equation is as impossible as squaring the
circle.

2While the symbol 0 appeared in early manuscripts, the first known use of it as a number is in the
Bakhshali Manuscript held in the University of Oxford’s Bodleian Library and the manuscript, written
on birch bark, was recently carbon dated to the 3rd or 4th century. It is the oldest extant manuscript
on Indian mathematics.
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del Ferro

One of the earliest advances of mathematics in Europe
after those of the Arabs and the Greeks, was that of the
Italian mathematician Scipione del Ferro (1465–1526),
who was a Lecturer in Arithmetic and Geometry at the
University of Bologna. He discovered a method of solving
cubic poynomial equations of a certain type. As was
generally the case at that time, Ferro did not publish his results.

Tartaglia

Nicolò Fontana of Brescia (1506-1557), known as
Tartaglia, heard of Ferro’s result from a student of
Ferro, and in 1541 was able to come up with a method
of proving Ferro’s result. Nicolò also kept his method
secret.

In 1543, after Ferro’s death, Gerolamo Cardano (1501–1576) and Ludovico
Ferrari (1522–1565) (one of Cardano’s students) travelled to Bologna to meet
Hannival Nave, the son-in-law and successor at the University of Bologna of Ferro,
and they accessed his late father-in-law’s notebook, where the solution to the
depressed cubic equation appeared.

Cardano

In the book Cardano [66] published by Gerolamo
Cardano in 1545 under the title Artis Magnae, Sive de
Regulis Algebraicis Liber Unus (Book number one about The
Great Art, or The Rules of Algebra) the following (translated
from Latin) appeared: “Scipione Ferro of Bologna, almost
thirty years ago, discovered the solution of the cube and
things equal to a number [which in today’s notation is the
case y3 + c1y + c0 = 0], a really beautiful and admirable
accomplishment. In distinction this discovery surpasses all
mortal ingenuity, and all human subtlety. It is truly a gift
from heaven, although at the same time a proof of the power of reason, and so
illustrious that whoever attains it may believe himself capable of solving any problem.
In emulation of him, my friend Nicolo Tartaglia wanting not to be outdone, solved
the same case when he got into a contest with a pupil of Scipione, and moved
by my many entreaties, gave it to me.” Despite promising Tartaglia he would
not publish the method, Cardano published the result in his book as Scipione had
priority. Tartaglia was furious. (See Brooks [55]; Stewart [361].)
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In his book Cardano has the following approach to solve (3). Following
Bewersdorff [41], firstly observe that

(u+ v)3 = 3uv(u+ v) + u3 + v3. (4)

So comparing (3) and (4) and putting y = u+ v, we see that

3uv = −c1 and u3 + v3 = −c0.

=⇒ v = − c1
3u

(as c1 6= 0 =⇒ u 6= 0 and v 6= 0).

=⇒ u3 −
c31

27u3
= −c0 ,

=⇒ (u3)2 + c0(u3)−
c31
27

= 0 .

This is a quadratic equation in u3, which we can solve as previously indicated:

u3 = −c0
2
±

√
c20
4

+
c31
27
,

=⇒ u =
3

√√√√−c0
2

+

√
c20
4

+
c31
27

or u =
3

√√√√−c0
2
−

√
c20
4

+
c31
27
.

But we know that u3 + v3 = −c0 and so v3 = −u3 − c0 ,

=⇒ v3 = −c0
2
−

√
c20
4

+
c31
27

or v3 = −c0
2

+

√
c20
4

+
c31
27

Thus

u =
3

√√√√−c0
2

+

√
c20
4

+
c31
27

and v =
3

√√√√−c0
2
−

√
c20
4

+
c31
27

(5)

or

u =
3

√√√√−c0
2
−

√
c20
4

+
c31
27

and v =
3

√√√√−c0
2

+

√
c20
4

+
c31
27
. (6)

As we know y = u+ v, (5) and (6) show that
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y =
3

√√√√−c0
2
−

√
c20
4

+
c31
27

+
3

√√√√−c0
2

+

√
c20
4

+
c31
27
. (7)

So we have solved the cubic equation (3). [Care needs to be taken in interpreting
the solution (7). Each cube root has three possible values (some of which may be
equal) but determining the particular cube root for u determines the particular cube
root for v since we saw above that 3uv = −c1.]

Finally we know that x = y− a2
3 , c0 = a0 +

2a32−9a1a2
27 , and c1 = a2

2

3 . So we also
have solved the general cubic equation (2).
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Now we turn to the problem of solving the general quartic equation:
a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = 0.

As usual there is no loss of generality in assuming a4 = 1, so we are looking to solve

x4 + a3x
3 + a2x

2 + a1x+ a0 = 0. (8)

Ferrari

The solution was obtained in 1540 by the Italian Lodovico
Ferrari, who was educated in mathematics by Gerolamo
Cardano, but the solution of the general quartic equation
depended on the solution of the general cubic equation and
so could not be published before Cardano’s book appeared.
As used previously for solving the quadratic equation and the
cubic equation, we first eliminate the second term, that is the
x3 term. We do this by putting x = y − a3

4 to obtain an
equation of the form:

y4 + b2y
2 + b1y + b0 = 0 (9)

where b2, b1, and b0 are known in terms of a3, a2, a1, and a0.
Following Bewersdorff [41], we add 2zy2 + z2 to both sides of (9), where the

value of z will be determined later, to obtain
y4 + 2zy2 + z2 = 2zy2 + z2− [b2y

2 + b1y+ b0] = (2z− b2)y2− b1y+ (z2− b0) (10)

We shall choose z so both sides of (10) become perfect squares. From (10) we have

(y2 + z)2 =

(
y
√

2z − b2 −
b1

2
√

2z − b2

)2

+

(
z2 − b0 −

b21
4(2z − b2)

)
. (11)

So we choose z such that z2 − b0 −
b21

4(2z − b2)
= 0. (12)

(12) gives us the cubic equation in (13) for z:

z3 − b2
2
z2 − b0z +

b2b0
2
−
b21
8

= 0 (13)

We can now solve the cubic equation (13) for z in terms of the known b0, b1, and
b2. We shall not bother writing this out in detail.

Having found z, we see from (11) and (12) that

y2 = −z ±
(
y
√

2z − b2 −
√
z2 − b0

)
(14)

As we know the values of z, b0, b1, and b2 in terms of a0, a1, a2 and a3, (14) gives
us the solutions to the quartic equation (9).
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13.2.1 Remarks. Firstly, we note it is a little surprising that the solution of
the quartic equation involves the solution of a cubic equation and so gives cube
roots in the solution. Secondly, and more importantly, we observe that all solutions
of the quadratic equations, the cubic equations and the quartic equations involve
only the operations of addition, subtraction, multiplication, division, square roots,
cube roots, and fourth degree roots of the coefficients a0, a1, a2, and a3. So it
was very natural to ask if the solutions for all polynomial equations involve only
addition, subtraction, multiplication, division and radicals of the given coefficients.
This question was seriously investigated by prominent mathematicians for over 250
years before it was finally answered in the negative. For much of that period it had
been assumed that the answer was in the postive but that the failure to find solutions
for even the general quintic equation resulted from the complication increasing as
the degree of the poynomial equation increased.

Tschirnhaus

Bring

The first big step towards solving quintic equations and
equations of higher degree was by Ehrenfried Walther von
Tschirnhaus (1651–1708). He introduced what has become
known as the Tschirnhaus transformation in the paper
von Tschirnhaus [391] called “A method for removing all
intermediate terms from a given equation”. We have already
seen how to solve quadratic equations, cubic equations and
quartic equations by using the depressed equation obtained by
eliminating the term containing the second highest power of
x by using a simple substitution for x. Tschirnhaus shows
that by using a somewhat more complicated substitution,
one can eliminate the second highest power of x, the third
highest power of x, the fourth highest power of x etc.
These substutions are called Tschirnhaus transformations. To
eliminate the second and third highest powers of x he says to
put x2 = bx + y + a; to eliminate the the second, third and
fourth highest powers of x, put x3 = cx2 + bx+ y+ a; and so
on. He suggests that by such transformations one could solve
polynomial equations of all degrees (presumably using only
multiplication, division, addition, subtraction and radicals).
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But if we try to apply the Tschirnhaus transformation for a general quintic,
we end up en route having to solve a sextic (6th-degree) polynomial equation. In
1786, the Swedish mathematician Erland Samuel Bring (1736 –1798) found a way
to avoid that by using a quartic substitution: x4 = y4 + b3y

3 + b2y
2 + b1y + b0.

This extra parameter avoids increasing the degree en route. (See Harley [164].)
The British mathematician George Birch Jerrard (1804 –1863) apparently did not
know of Bring’s work, and developed an approach to do this for quintics and all
higher degree polynomials. (See Jerrard [209].) For a description of the Bring-
Jerrard method see Adamchik and Jeffrey [3]. Jerrard claimed that his methods
enabled one to solve quintic equations without in the process needing to solve any
polynomial equation of degree greater than four.

At the meeting of the British Association for the Advancement of Science
at Dublin in 1835 William Rowan Hamilton [163] presented an announcement
by Jerrard of his work on polynomial equations, and commented briefly on it.
Hamilton subsequently presented a more detailed report on Jerrard’s Method at
the next meeting of the British Association, at Bristol in 1836. Hamilton found
that Jerrard had indeed constructed a general method for transforming polynomial
equations to simpler forms by means of suitable Tschirnhaus transformations, but
that the transformations only yielded a non-trivial result if the degree of the original
polynomial equation was sufficiently large. Jerrard’s methods proved to be of no
assistance in solving the general quintic equation.

Lagrange

Around 1770, Joseph-Louis Lagrange (1736–
1813) began the groundwork that unified the many
different tricks that had been used up to that point
to solve equations, relating them to the theory of
groups of permutations. This innovative work by
Lagrange was a precursor to Galois theory, and its
failure to develop solutions for equations of fifth and
higher degrees hinted that such solutions might be
impossible, but it did not provide conclusive proof.
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Gauss

By the end of the 18th century, the German
mathematician Carl Friedrich Gauss (1777–1855), probably
the greatest mathematician of that period, wrote in Gauss
[146] “there is little doubt that this problem does not so
much defy modern methods of analysis as that it proposes
the impossible”. Early in the 19th century he wrote “After the
labours of many geometers left little hope of ever arriving at
the resolution of the general equation algebraically, it appears
more and more likely that this resolution is impossible and
contradictory. . . . . . . Perhaps it will not be so difficult to prove, with all rigour, the
impossibility for the fifth degree.”

Abel

Ruffini

In 1798, the Italian mathematician Paolo Ruffini (1765–
1822) claimed in his book “Teoria generale delle equazioni”
to have proved that the general polynomial equation xn +

an−1x
n−1 + . . . a1x+ a0 = 0, where an−1, . . . , a0 ∈ Z, has no

general solution in radicals if n > 5. His proof was difficult, and
not generally accepted as correct. Subsequently it was found
to have a gap (namely assuming that the roots were related
to the coefficients of the polynomial in a particular way). 1n
1826 the Norwegian mathematician Niels Henrik Abel3 (1802–
1829) gave a correct proof for the result which has become
known as the Abel-Ruffini Theorem. A proof of the Abel-
Ruffini Theorem can be found in many texts. However, most
of these use a method arising from Galois Theory which shows
that a polynomial equation is solvable in radicals if and only
if the Galois group is solvable4. In 1826, Galois Theory was
not known and solvable groups were not known. Indeed the
concept of a normal subgroup, used in defining solvable groups,
had not been introduced.

3Abelian groups are named after Abel.
4In the British world, solvable groups are called soluble groups.
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We shall include in this section a proof of the Abel-Ruffini Theorem for quintic
equations using some abstract algebra but not the full power of Galois Theory. So at
this point we introduce a few concepts from abstract algebra but not what is usually
regarded as an Inroduction to Abstract Algebra as may be found, for example, in
Fraleigh [133] and MacLane and Birkhoff [255].

Let us begin by recalling the definition of a group, Definitions A5.0.2 and
Examples A5.0.3. Then we vshall introduce the notion of a ring and a field which
are central to our discussion about the Abel-Ruffini Theorem.

13.2.2 Definitions. A set, G, together with an operation · , such that for
all a, b ∈ G, a · b ∈ G, is said to be a group if

(i) (a · b) · c = a · (b · c), ∀a, b, c ∈ G [associativity];

(ii) there exists an element 1 in G, such that 1 · a = a · 1 = a,; The (unique)
element 1 ∈ G with this property is said to be the identity of the group.

(iii) for each g ∈ G, there exists an element h in G such that g · h = h · g = 1.

The (unique) element h is called the inverse of g and is written g−1.

If H is a subset of the group G which has the operation · and H with the same
operation · is a group, then H is said to be a subgroup of G.
A subgroup N of a group G is called a normal subgroup if for all n ∈ N and
g ∈ G, gng−1 ∈ N .
A group G is said to be an abelian group if a · b = b · a, for all a, b ∈ G.
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13.2.3 Examples. We list some important examples:

(i) the group, R, of all real numbers with the operation of addition;

(ii) the group, Q, of all rational numbers with the operation of addition;

(iii) the subgroup, Z, of R consisting of all integers;

(iv) the group, C, consisting of all complex numbers with the group operation being
addition of complex numbers. Clearly Z, Q, and R are subgroups of C. Indeed
Z < Q < R < C, that is Z is a proper subgroup of Q, Q is a proper subgroup
of R, and R is a proper subgroup of C;

(v) if S is a set, then a permutation of S is a bijective function of S onto itself.
The set of all permutations of a given set S is said to be the permutation
group of S, where the group operation is that of composition of permutations.
If for some n ∈ N, S = {1, 2, . . . , n}, then the permutation group of S is called
the symmetric group and denoted by Sn. [The permutation which maps 1 to
2, 2 to 3, 3 to 1, 4 to 5, 5 to 4 and keeps all other elements of S fixed is denoted
(123)(45).] Cayley’s Theorem, Fraleigh [133], says that every finite group can
be considered to be a subgroup of a permutation group, that is is “isomorphic”
to a subgroup of a permutation group.

(vi) Consider the permutations of the set S = {1, 2, . . . , n}, n ∈ N. A permutation
p of S is said to be an even permutation if the polynomial P (x) =

∏
i<j

(xi−xj)

satisfies
∏
i<j

(xp(i) − xp(j)) = P (x), where i, j ∈ S, and said to be an odd

permutation if
∏
i<j

(xp(i)−xp(j)) = −P (x). The set An of all even permutations

of a set with n elements is called the alternating group where the group
operation is composition of permutations. The group An is a normal subgroup
of Sn. A group is said to be simple if it has no normal subgroups other than
itself and the subgroup consisting of the identity element. It is known that for
n > 5, An is a simple group. (See Fraleigh [133].)

(i)-(iv) are abelian groups. �
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13.2.4 Definitions. A ring R is a set equipped with two binary operations
+ and · such that for any a, b, c ∈ R
(i) R with the operation + is an abelian group where, to avoid confusion, the

identity of this abelian group will be denoted by 0;

(ii) (a · b) · c = a · (b · c), that is the multiplication · is associative;
(iii) there exists an element 1 ∈ R such that r · 1 = 1 · r = r, for all r ∈ R, that

is there exists a multiplicative identity;
[Not everyone includes the existence of a multiplicative identity in their
definition of a ring. Those that do not, refer to our notion of a ring as a
ring with identity. Some call a ring without an identity a pseudo-ring.]

(iv) a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a, that is multiplication is
distributive with respect to addition.

An element u ∈ R is said to be a unit (or invertible) if there exists a v ∈ R such
that uv = vu = 1. If the ring R satisfies r · s = s · r, for all r, s ∈ R, then R is
said to be a commutative ring. The ring R is said to be an integral domain
if it is commutative and for r, s ∈ R, r · s = 0 =⇒ r = 0 or s = 0. The ring F
is said to be a field if

(a) it is a commutative ring;

(b) F \ {0} with the operation · is a group, with 1 being the identity of that
group; that is, for each f ∈ F , there exists an element g ∈ F , such that
f · g = 1 = g · f , where g is of course denoted f−1.

[Clearly every field is an integral domain.] If F1 is a subset of the field F with
operations + and ·, such that 0, 1 ∈ F1 and F1 is a field with the operations of +

and ·, then F1 is said to be a subfield of F and F is said to be an extension field
of F1. If R is a commutative ring, then p(x) = anx

n + an−1x
n−1 + · · ·+ a0,

where n is a non-negative integer, ai ∈ R, an 6= 0 if n > 0, for i ∈ {0, 1, . . . , n}
and x is an indeterminate (i.e., a variable), is said to be a polynomial over the
ring R of degree n. If an = 1 then it is said to be a monic polynomial over
R. The set R[x] of all polynomials over the ring R is said to be the polynomial
ring over the ring R. [Note R[x] is indeed a ring. In fact if R is an integral
domain then so is R[x].] If F is a field, then it is said to be of characteristic
n, for some positive integer n, if n.a = a+ a+ · · ·+ a = 0, with n terms in the
sum, for all a ∈ F or equivalently n.1 = 0. If no such n exists, then F is said to
be of characteristic zero.
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13.2.5 Examples. Again we list some important examples.

(i) Z, Q, R and C are commutative rings;

(ii) Z, Q, R and C are integral domains;

(iii) Let n ∈ N. The set GL(n,C), introduced in Definition A5.0.4, of all non-singular
n × n matrices, is a ring under the operations of matrix addition and matrix
multiplication. It is not, however, a commutative ring as matrix multiplication
is not commutative.

(iv) Q, R and C are fields. Z is not a field.

(v) The units of Z are 1 and −1. The units of any field F , such as Q, R, and Z,
are the members of F \ {0}.

(vi) For each n ∈ N, the set Zn = {0, 1, . . . , n− 1}, with addition and multiplication
modulo n is a commutative ring. If n is a prime number, then Zn is a field;

(vii) Q, R, and C are fields of characteristic 0 and for p a prime number, Zp is a field
of characteristic p;

(viii) If F1 is a subfield of a field F , and a ∈ F \ F1, then the smallest subfield of F
which contains both F1 and a is denoted by F1(a). For example Q(

√
2), Q(π),

and Q( 3
√

2) are subfields of C and each is an extension field of Q. Further,
(Q(
√

2))( 3
√

2) is the smallest subfield of C containing both 3
√

2 and
√

2 and is
Q( 3
√

2,
√

2);

(ix) If E is a subfield of a field F , then F is easily seen to be a vector space over
the field E. The dimension of this vector space is called the degree of the
field extension and is denoted by [F,E]. If the dimension of the vector space
is finite, then F is said to be a finite extension of E otherwise it is said to be
an infinite extension. In particular, R, C, Q(

√
2), Q( 3

√
2), Q( 3

√
2,
√

2), Q(π),
and Q(a+ i b), where a+ i b ∈ C \ R, are vector spaces over Q. Further, R and
C are infinite extensions of the field Q while the others are finite extensions of
Q.
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13.2.6 Examples. Let R be a ring and F a field, both of which are also
topological spaces. Then R with its topology is said to be a topological ring if
both of the maps + : R × R → R and · : R × R → R, where R × R has the
product topology, are continuous. If F is a topological ring and the map x 7→ x−1

of F \ {0} → F \ {0} is continuous, then F is said to be a topological field. With
their usual topologies, Z and GL(n,C), for any n ∈ N, are topological rings and
Q, R, and C are topological fields. Shakhmatov [338] proved that on every field
F of infinite cardinality ℵ there are 22ℵ distinct topologies which make it into a
topological field. On the other hand the only connected locally compact Hausdorff
topological fields are R and C.

We shall now focus on polynomials with integer coefficients or rational number
coefficients. In particular, we shall examine irreducible polynomials.

Argand

First, let us remind ourselves of the Fundamental
Theorem of Algebra 8.5.1. There were many attempted
proofs of the Fundamental Theorem of Algebra over
two centuries before the French amateur mathematician
and bookstore manager Jean-Robert Argand (1768–1822)
published the first rigorous proof in 1806. He is also known
for his geometrical interpretation of complex numbers known
as the Argand Diagram.

13.2.7 Theorem. (The Fundamental Theorem of Algebra) Every
polynomial f(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0, where each ai is a

complex number, an 6= 0, and n > 1, has a root; that is, there exists a complex
number z0 such that f(z0) = 0.

If r is a root of f(z), then f(z) = (z − r)g(z), where

g(z) = bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0, with bn−1, bn−2, . . . , b0 ∈ C and bn−1 6= 0.

Using this we can readily apply mathematical induction to verify the following
corollary.
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13.2.8 Theorem. Every polynomial
f(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0,

where each ai is a complex number, an 6= 0, and n > 1 has n roots in C, some
of which may be equal.
So f(z) = an(z − r1)(z − r2) . . . (z − rn), where r1, r2, . . . , rn ∈ C.

We shall record a few elementary properties of polynomials.

13.2.9 Proposition. [The Division Algorithm] If F is a field and
a(x) 6= 0 and b(x) are polynomials over F , then there exist polynomials q(x) and
r(x) over F such that

b(x) = q(x)a(x) + r(x), (15)

where r(x) = 0 or the degree of r(x) is less than that of a(x).

Proof. We shall outline the proof.

Let the polynomial a(x) = anx
n + an−1x

n−1 + . . . a1x+ a0 and the polynomial
b(x) = bmx

m + bm−1x
m−1 + + . . . b1x+ b0.

If n > m, put q(x) = 0 and r(x) = b(x) and (15) is satisfied.

If m > n, put q1(x) = bm
an
xm−n and

r1(x) = −bm
an
xm−n

(
an−1x

n−1 + · · ·+ a0

)
+
(
bm−1x

m−1xm−1 + · · ·+ b0

)
.

The degree of r1(x) is strictly less than m. If the degree of r1(x) is not less than
that of a(x), then we repeat the procedure with r1(x) replacing b(x), and then
r2(x) replacing r1(x) etc. at each stage reducing the degree of the remainder term
r1(x), r2(x), . . . , until the degree of the remainder term is indeed less than that of
a(x).

13.2.10 Corollary. [Remainder Theorem] Let b(x) be a polynomial and
a(x) = x− c. Then r(x) in The Division Algorithm 13.2.9 is b(c).
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When r(x) in (15) is zero we say that the polynomial b(x) is divisible over F
by the polynomial a(x).

13.2.11 Definitions. Let R be a commutative ring, n a non-negative
integer and p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 a polynomial over R.

Then p(x) is said to be irreducible over R if an 6= 0, n 6= 0, and p(x) 6= a(x)b(x),
where a(x) and b(x) are both non-constant polynomials over R. If p(x)

is not irreducible, then it is said to be reducible. Let m ∈ N. Then the
polynomial p(x) is said to be irreducible modm over R if there exist polynomials
q(x), r(x) ∈ R[x] such that p(x) = q(x) +mr(x), where q(x) is irreducible over
R.

13.2.12 Examples. The following are readily verified:

(i) p(x) = 4x2 − 1 is irreducible over Z but reducible over Q, R, and C;
(ii) p(x) = x2 − 2 is irreducible over Q but reducible over R and reducible over

Q(
√

2);
(iii) p(x) = x2 + 2 is irreducible over Q, irreducible over R, and reducible over C.
(iv) If p(x) ∈ C[x], then p(x) is irreducible over C if and only if its degree is 1.
(v) It is clear that if a polynomial p(x) is irreducible modm over a ring R, for

some m ∈ {2, 3, . . . , }, then p(x) is irreducible over R. The converse is false;
for example, p(x) = x2 + 4x− 1 is irreducible over Q but not irreducible mod 2

over Q. [Observe that p(x) = [x2 − 1] + 2[2x] = (x− 1)(x+ 1) + 2[2x].] �
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13.2.13 Proposition. Let p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a
polynomial with integer coefficients and an 6= 0. If the rational number r

s is a
root of the polynomial equation p(x) = 0, where r

s is in its lowest terms (i.e.,
no nontrivial common factors), then r|a0 and s|an, where | denotes divides.

Proof. As r
s is a root, p(rs) = 0, that is

snp(rs) = 0 = anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n.

So − anrn = s(an−1r
n−1 + an−2r

n−2s+ · · ·+ a1r
n−1sn−2 + a0s

n−1).

Thus s|anrn. As r and s have no common factors, r2 and s have no comon factors
which by indiuction yields that rn and s have no common factors. Hence s|an.

Similarly − a0s
n = r(anr

n−1 + an−1r
n−2s+ · · ·+ a1s

n−1).

So r|a0s
n which implies by an analogous argument that r|a0. �

13.2.14 Corollary. [Gauss Lemma 1] Any rational number root of a
monic polynomial in Z[x] is an integer. �

13.2.15 Definition. A polynomial p(x) ∈ Z[x] is said to be primitive if the
coefficients a0, a1, . . . , an of p(x) have greatest common divisor equal to 1.

13.2.16 Examples. The polynomial 2 − 3x2 is primitive while the polynomial
2− 4x2 is not primitive. �
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13.2.17 Proposition. If f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 and
g(x) = bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0 are primitive polynomials, then

p(x) = f(x)g(x) = cn+mx
n+m + cn+m−1x

n+m−1 + · · ·+ c1x+ c0 is a primitive
polynomial.

Proof. Suppose there exists a prime number p which divides c0, c1, . . . , cn−m−1
and cn−m. Consider a0, a1, . . . , an and let ai be the first in this list which is not
divisible by p. The coefficient ai certainly exists as not all a0, a1, . . . , an are divisible
by p, as f(x) is primitive. Similarly let bj be the first of b0, b1, . . . , bm which is not
divisible by p. Now

aibj = ci+j − [a0bi+j + · · ·+ ai−1bj+1 + ai+1bj−1 + · · ·+ ai+jb0]

from which it follows that aibj is divisible by p since each term on the right hand
side is divisible by p. Sp p must divide ai or bj which is a contradiction to our
supposition. Therefore c0, c1, . . . , cn−m−1, cn+m have greatest common divisor 1.
Thus p(x) is a primitive polynomial.

13.2.18 Lemma. Any non-zero polynomial
f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ Q[x]

can be written f(x) = cff
∗(x) where f∗(x) is a primitive polynomial in Z[x] and

cf a positive integer. Further, for any given f(x) ∈ Q[x] , cf and f∗ are unique.

Proof. We know that f(x) = an
bn
xn +

an−1
bn−1x

n−1 + · · ·+ a0
b0
, where bn, bn−1, . . . , b0

are positive integers and an, an−1, . . . , a0 ∈ Z \ {0}. Put c = 1
b0b1...bn

, so that c

is a positive integer and f(x) = cg(x), where g(x) ∈ Z[x]. Let c′ be the greatest

common divisor of the coefficients of g(x). Then f∗ =
g(x)
c′ is a primitive polynomial

and f(x) = cff
∗(x), where cf = cc′.

To prove the uniqueness of f∗ and cf it suffices to prove the uniqueness of f∗(x).
If f∗(x) = cg∗(x), where f∗(x) and g∗(x) are primitive polynomials and c = u

v , with
u and v are positive integers which are relatively prime. Thus vf∗(x) = ug∗(x). So
v divides ug ∗ (x), which implies since u and v are relatively prime, that v divides
every coefficient of g∗(x). As g∗(x) is a primitive polynomial, this implies v = 1.
Similarly u = 1. So f∗(x) and cf are unique.

Our next Proposition generalizes Gauss Lemma 1.



422 CHAPTER 13. HILBERT’S 13TH PROBLEM

13.2.19 Proposition. Let f(x) ∈ Z[x]. If f(x) can be factored into
polynomials with rational coefficients, then it can be factored into polynomials
of the same degrees with integral coefficients.

Proof. Let f(x) = g(x)h(x), where g(x), h(x) ∈ Q[x]. By Lemma 13.2.18, there
exist positive integers cg and ch, and g

∗(x), h∗(x) ∈ Z[x] such that

f(x) = g(x)h(x) = (cgg
∗(x))(chh

∗(x)) = (cgch)(g∗(x)h∗(x)).

As cgch is a positive integer and g∗(x)h∗(x) is a primitive polynomial, uniqueness in
Lemma 13.2.18 implies 1 = cgch and f(x) = g∗(x)h∗(x). Observe that g(x) and
g∗(x) have the same degree as do h(x) and h∗(x).

As an immediate Corollary we obtain:

13.2.20 Proposition. [Gauss Lemma 2] Let p(x) ∈ Z[x]. If p(x) is
irreducible over Z, then it is irreducible over Q. �

13.2.21 Definitions. An element p of a ring R is said to be a prime if p
is not a unit of R and for any a, b ∈R, p|ab =⇒ p|a or p|b.
A ring R is said to be a unique factorization domain if it is an integral domain
and

(i) every non-zero element r of R except a unit equals a product of primes of
R; and

(ii) this product of primes is unique except for the order and the presence of
units, more precisely, for p1, p2, . . . , pn and q1, q2, . . . , qm primes and u1 and
u2 units,

r = u1 · p1 · p2 · · · · pn = u2 · q1 · q2 · · · · qm =⇒ n = m and pi = vi · qf(i)

for some permutation f of {1, 2, . . . , n} and each vi a unit of R.

13.2.22 Example. Z is a unique factorization domain.
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13.2.23 Proposition. Z[x] is a unique factorization domain.

Proof. By Lemma 13.2.18 if f(x) is any polynomial in Z[x], then f(x) = cff
∗(x),

where cf ∈ Z and f∗ is primitive. If f(x) is prime, then cf or f∗(x) must be a unit.

So the primes of Z[x] are the primes of Z and the primitive polynomials in Z[x]
which are irreducible over Z and, hence by the Gauss Lemma 2, also irreducible over
Q. So we have that any polynomial in Z[x],

f(x) = p1p2 . . . prq1(x)q2(x) . . . qm(x),

where each pi is a prime in Z and each qi(x) is a primitive irreducible polynomial in
Q[x].

In this factorization the polynomials qi(x) are uniquely determined to within units
in Z as the primitive parts of the unique irreducible factors of f(x) in Q[x]. Since the
qi(x) are primitive, the product p1p2 . . . pr is the greatest common divisor cf of the
coefficients of f(x) (perhaps multiplied by −1). Therefore the pi are the essentially
unique factors of cf in Z. So Z[x] is indeed a unique factorization domain. �

Eisenstein

We now introduce a simple condition for a polynomial to
be irreducible. This condition is sufficient but not necessary.
But it serves our purposes very well. It is generally known
today as the Eisenstein crierion after the German mathematician
Ferdinand Gotthold Max Eisenstein (1823–1852) who proved it
in 1850, Eisenstein [121]. At age 20 he met William Rowan
Hamilton who gave him a copy of his book with the proof
of Niels Henrik Abel’s proof of the impossibility of a general
solution in radicals of quintic equations and this stimulated
his interest in mathematical research. However the German
mathematician Theodor Schönemann (1812–1868) had already
published a stronger result than Eisenstein in 1846, Schönemann
[337] §61. To see an explanation of why it is called Eisenstein’s Criterion (whereas
at the beginning of the 20th century it was called Schönemann’s Criterion) see Cox
[89]. We shall refer to the stronger result as the Schönemann’s Irreducibility Criterion
and the weaker one, which is in many Abstract Algebra textbooks, as the Eisenstein-
Schönemann Irreducibility Criterion. There are today many generalizations of these
results, including the 1906 work of the Swiss mathematician Gustave Dumas (1872-
1955). The Dumas Criterion has the Eisenstein-Schönemann Irreducibility Criterion
as a simple corollary. (See Prasolov [313].)
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13.2.24 Theorem. [Schönemann Irreducibility Criterion] Let
f(x) ∈ Z[x] have degree n > 0, p a prime number, and a an integer such that

f(x) = (x− a)n + pF (x) , F (x) ∈ Z[x].

If F (a) 6≡ 0 mod p, then f(x) is irreducible mod p2.

Proof. Suppose f(x) has a non-trivial factorization mod p2; that is,

f(x) = (x− a)n + pF (x) ≡ G(x)H(x) mod p2 (16)

where G(x) and H(x) are in Z[x] and each has degree less than n.

First we shall verify that

gi 6≡ 0 mod p , where G(x) = gix
i + gi−1x

i−1 + · · ·+ g0

and hj 6≡ 0 mod p , where H(x) = hjx
j + hj−1x

j−1 + · · ·+ h0

where i, j > 0 and i+ j = n.

Noting that F (x) is a polynomial of degree at most n, we can put

F (x) = fnx
n + fn−1x

n−1 + · · ·+ f0.

From (16), balancing coefficient of xn, 1 + pfn = gihj mod p2 and i+ j = n.

Suppose p|gi or p|hj. Then 1 ≡ 0 mod p, which is false. So p 6 |gi and p 6 |hj.
Now (16) implies that

(x− a)n ≡ G(x)H(x) mod p,

where the degree of each of the polynomials G(x) and H(x) is greater than or equal
to 1, as p 6 |gi and p 6 |hj. If α is a root of G(x) or H(x), then G(α) = 0 or H(α) = 0

and so (α− a)n ≡ 0 mod p. Thus p|(α− a)n and since p is prime, p|(α− a);
that is α ≡ a mod p. Hence G(x) ≡ gi(x− a)i mod p and H(x) ≡ hj(x− a)j mod p.
Putting x = a shows that p|G(a) and p|H(a).

Finally, using this and putting x = a in (16), gives pF (a) = 0 mod p2, which is
a contradiction. Therefore f(x) is irreducible mod p2. �
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13.2.25 Corollary. [Eisenstein-Schönemann Irreducibility Criterion] Let
p be a prime number and p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 be a

polynomial in Z[x] such that

(i) an 6≡ 0 mod p,

(ii) an−1 ≡ an−2 ≡ a0 ≡ 0 ( mod p), and

(iii) a0 6≡ 0 ( mod p2).

Then p(x) is irreducible over Q.

Proof. As an 6≡ 0 mod p, we can multiply by a suitable integer to obtain
f(x) = mp(x), m ∈ {1, 2, . . . , p− 1}, so that f(x) is a monic polynomial, and then
observe that f(x) is irreducible over Z if and only if p(x) is. So we can write
f(x) = xn + pF (x), with F (x) ∈ Z[x]. Note also that F (0) 6≡ 0 mod p. So by the
Schönemann Irreducibility Criterion, f(x) is irreducible modulo p2. Thus f(x) is
irreducible over Z, and so p(x) is irreducible over Z. Hence, by Gauss Lemma 2,
p(x) is irreducible over Q. �

13.2.26 Remark. In 1801 Gauss published his major work “Disquisitiones
Arithmeticae”, Gauss [146]. In §50 of this work was his result that each cyclotomic
polynomial x

p−1
x−1 = xp−1 + xp−2 + · · ·+ 1, for p a prime number, is irreducible

over Q. To see that this follows easily from the Schönemann Irreducibility Criterion
observe that

xp−1 + xp−2 + · · ·+ 1 = (x− 1)p−1 + pF (x)

and that for x = 1 we obtain p = pF (1) and so F (1) = 1 6≡ 0 mod p. So by
Schönemann Irreducibility Criterion,x

p−1
x−1 is irreducible over p2, and therefore irreducible

overQ. Eisenstein also proved this cyclotomic result but he cannot apply his Criterion
immediately, he needs a change of variable y = x+ 1. In fact it is the norm that in
applying Eisenstein’s Criterion one has to make a change of variable. �
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13.2.27 Proposition. [Abel’s Irreducibility Theorem, Abel [1]] Let
F be any subfield of C and f(x) ∈ F [x] be irreducible over F . If a ∈ C is a root
of f(x) and also a root of G(x) ∈ F [x], then all the roots of f(x) are also roots
of G(x). Further, G(x) = f(x)G1(x), where G1(x) ∈ F [x].

Proof. Let h(x) ∈ F [x] be the greatest common divisor of the two polynomials
f(x) and G(x), so that, in particular, f(x) = f∗(x)h(x) and G(x) = G∗(x)h(x). Also
h(x) 6= 1 as (x− a) divides both f(x) and G(x). As f(x) is irreducible, this implies
f∗(x) = 1 and so f(x) = h(x). Thus f(x) divides G(x) and so all roots of f(x) are
roots of G(x).

13.2.28 Corollary. Let a be a root of the irreducible polynomial
f(x) ∈ F [x] and also a root of G(x) ∈ F [x], where F is a subfield of C. If
the degree of G(x) is strictly less than that of f(x), then all the coefficients of
G(x) are zero. �

13.2.29 Corollary. If F is a subfield of C and f(x) ∈ F [x] is irreducible
over F , then there is no other irreducible polynomial over F that has a common
root with f(x). �
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13.2.30 Corollary. Let F be a subfield of C, f(x) ∈ F [x] an irreducible
polynomial over F of degree n, for some positive integer n, and let α ∈ C
be a root of f(x). Then each member β of the extension field F (α) can
be represented as a polynomial of degree (n− 1) in α with coefficients in F .
Further, this representation is unique.

Proof. As observed previously, F (α) is a vector space over F . So if β ∈ F (α),
β = amα

m + am−1α
m−1 + · · ·+ a0, where each ai ∈ F .

But as α is a root of f(x) which is a polynomial of degree n, we can reduce all
the powers of α in this representation of β to strictly less than n; that is,

β = bn−1α
n−1 + bn−2α

n−2 + · · ·+ b0, where each bi ∈ F. (17)

Further, the representation in (17) is unique, since if

bn−1α
n−1 + bn−2α

n−2 + · · ·+ b0 = cn−1α
n−1 + cn−2α

n−2 + · · ·+ c0

then for di = bi − ci, i = {1, 2, . . . , n− 1},

0 = dn−1α
n−1 + dn−2α

n−2 + · · ·+ d0

which says that the root α of f(x) is a root of a polynomial of degree n− 1 (or
less), and so by Corollary 13.2.28, every di = 0. Thus each bi = ci, and so the
represenation is unique. �
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Newton

We shall soon use a result known as the Fundamental
Theorem on Symmetric Polynomials: if f(x) is a
polynomial whose coefficients we know, then even if we do
not know the roots, this theorem tells us that symmetric
expressions in the roots of f(x) are rationally expressible in
terms of the coefficients of f(x). From this we can deduce
that if the coefficients of f(x) are rational numbers, then
every symmetric expression in the roots (for example, the
sum of their squares) has a rational value as well. (For
the history and proofs of this result, see Blum-Smith and
Coskey [46]; Edwards [115].) We shall present a standard
proof. According to the British mathematician Derek Thomas Whiteside (1932–
2008) who examined and published Newton’s Notes, the result was known to Isaac
Newton (1642–1726), but he published only part of it in 1707 in Newton [295]. It
was generally known as Newton’s Theorem, but a careful statement and proof did
not appear in print until the 19th century. It was a key step in what became Galois
Theory.
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13.2.31 Definitions. The elementary symmetric polynomials in n

variables x1, x2, . . . , xn written ek, k ∈ {0, 1, 2, . . . , n}, are defined by

e0(x1, . . . , xn) = 1

e1(x1, . . . , xn) =
∑

16j6n

xj

e2(x1, . . . , xn) =
∑

16j<k6n

xjxk

e3(x1, . . . , xn) =
∑

16j<k<l6n

xjxkxl

...

en(x1, . . . , xn) = x1x2 . . . xn.

A polynomial f(x1, x2, . . . , xn) in n variables is said to be a symmetric
polynomial if for every permutation g : {1, 2, . . . , n} → {1, 2, . . . , n},
f(x1, x2, . . . , n) = f(xg(1), xg(2), . . . , xg(n)).

13.2.32 Remark. Observe that if f(x) is a monic polynomial of degree n with
roots α1, α2, . . . , αn ∈ C, then f(x) equals

∏n
i=1(x− αi) which in turn equals

xn − e1(α1, . . . , αn)xn−1 + e2(α1, . . . , αn)xn−2 + · · ·+ (−1)nen(α1, . . . , αn).

This result is known as Vieta’s Theorem, named after the French mathematician
François Viéta (1540–1603). We shall see that any symmetric polynomial
f(x1, x2, . . . , xn) can be obtained from the elementary symmetric polynomials
e0(x1, x2, . . . , xn), e1(x1, x2, . . . , xn), . . . , en(x1, x2, . . . , xn) using only multiplication
and addition. For example

f(x1, x2) = x3
1+x3

2−5 = e1(x1, x2)3−3e2(x1, x2)e1(x1, x2)−5. �
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13.2.33 Theorem. [Fundamental Theorem on Symmetric
Polynomials] Any symmetric polynomial f in n variables x1, x2, . . . , xn
can be represented in a unique way as a polynomial in the elementary symmetric
polynomials e1(x1, x2, . . . , xn), e2(x1, x2, . . . , xn), . . . , en(x1, x2, . . . , xn).

Proof. Firstly observe that f(x) = f0(x) + f1(x) + · · ·+ fn(x), where fm(x) is
the sum of terms all of degree m, for each m 6 n. Each fm(x) is a homogeneous
(that is the degree of all terms are equal) symmetric polynomial. Now if we can
prove that each of these homogeneous symmetric polynomials fm(x) satisfies the
theorem, then so does f(x). So, without loss of generality, we may assume that
f(x) is homogeneous.

Order the terms of f(x) lexicographically; that is put the terms with the highest
power of x1 first, and if there is a tie, put the term with the highest x2 first, and if
there is still a tie, look at x3 next, etc. In other words, ax

i1
1 x

i2
2 . . . xinn > bx

j1
1 x

j2
2 . . . x

jn
n

if i1 > j1, or i1 = j1 and i2 > j2, or i1 = j1 and i2 = j2, and i3 > j3, etc. Then
order the terms of f such that the first term is greater than the second term which
is greater than the third term etc.

Because f(x) is symmetric, for every term cx
i1
1 x

i2
2 . . . xinn in it, it also contains

all similar terms with the exponents permuted. So the first term in f(x) is
c1x

i1
1 x

i2
2 . . . xinn with i1 > i2 > . . . > in. Define

g1 = c1e
(i1−i2)
1 e

(i2−i3)
2 . . . e

(in−1−in)
n−1 einn ,

where e1, e2, . . . , en are the elementary symmetric polynomials of Definitions 13.2.31.
Clearly g1 is symmetric. Noting that the first term in the lexicographic ordering
of ek11 e

k2
2 . . . eknn is xk1+k2+···+kn

1 x
k2+k3+···+kn
2 . . . xknn , we see that the first term of

g1(x) is the same as that of f(x), namely c1x
i1
1 x

i2
2 . . . xinn . So g1 − f is symmetric

with a lower (in the lexicographic ordering) leading term c2x
j1
1 x

j2
2 . . . x

jn
n , where we

know j1 > j2 > . . . > jn. Now, as before, we let g2 = c2e
(j1−j2)
1 e

(j2−j3)
2 . . . e

jn
n .

We continue in this manner and as there can be only a finite number of steps
in the lexicographic ordering, the process must end with no remainder. Thus
f − g1 − g2 − g3 − · · · − gk = 0, for some k. So f = g1 + g2 + · · · + gn is the
desired polynomial in the theorem.



13.2. APPENDIX ON SOLVING POLYNOMIAL EQUATIONS 431

To prove uniqueness, it clearly suffices to prove uniqueness for the zero
polynomial, that is for f where f(x1, x2, . . . , xn) = 0, for all x1, x2, . . . , xn. Now
we note again that the first term in the lexicographic ordering of ek11 e

k2
2 . . . eknn is

x
k1+k2+···+kn
1 x

k2+k3+···+kn
2 . . . xknn and as the map

(k1, k2, . . . , kn) 7→ (k1 + k2 + · · ·+ kn, k2 + · · ·+ kn, . . . , kn−1 + kn, kn)

is injective, no distinct products ek11 e
k2
2 . . . eknn have the same first term. So the first

terms in a sum of distinct products of elementary symmetric polynomials cannot
cancel; so such a sum equals zero only if each term is zero. We have therefore
proved uniqueness for the zero polynomial, as required.

13.2.34 Proposition. Let f(x), g(x) ∈ Q[x] be irreducible polynomials
over Q. Further, let α be a root of g(x) such that f(x) is a reducible polynomial
over the extension field Q(α). If the degree of f(x) is the prime number p and
the degree of g(x) is q, then p is a divisor of q.

Proof. As f(x) is a reducible polynomial over the extension field Q(α), we see
that f(x) = φ(x, α).ψ(x, α), where φ(x, α) and ψ(x, α) are polynomials respectively
of degree m and n in Q(α)[x]. Then

u(x) = f(r)− φ(r, x)ψ(r, x),

where r ∈ Q, vanishes for x = α. As u(x) ∈ Q[x], by Abel’s Irreducibility Theorem,
all roots of f(x) are roots of u(x), that is, u(x) vanishes at each of these roots.

Let αi be any other root of g(x).Then

f(x)− φ(x, αi)ψ(x, αi) = 0 ; that is, f(x) = φ(x, αi)ψ(x, αi)

holds for every rational number x. This says that the polynomial in x on the left
hand side equals the polynomial on the right hand side at an infinite number of
points, and therefore are equal for every value of x ∈ C. And this is true for all
roots of g(x).

f(x) = φ(x, αi)ψ(x, αi) for all roots αi of g(x).
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As there are q roots of f(x), multiply all q equations like that above, to obtain

f(x)q = Φ(x)Ψ(x) (18)

where Φ(x) is the product of all φ(x, αi) and Ψ(x) is the product of all ψ(x, αi) as
αi runs over the q roots of g(x). Since Ψ(x) and Φ(x) are symmetric polynomials
of the roots of g(x), by The Fundamental Theorem on Symmetric Polynomials,
Φ(x),Ψ(x) ∈ Q[x].

Noting that the degree of the polynomial f(x) is greater than that of φ(x, α)
and that of ψ(x, α), Theorem 13.2.8 implies that at least one root of f(x) must be a
root of φ(x, α) and at least one root of f(x) must be a root ψ(x, α). Consequently,
at least one root of f(x) is a root of Ψ(x). The same is true for Φ(x). By Abel’s
Irreducibility Theorem 13.2.27 every root of f(x) is a root of Φ(x) and of Ψ(x).
Indeed Φ(x) = f(x)G1(x), G1(x) ∈ Q[x].

By (18), every root of G1(x) is then a root of f(x)q, and hence of f(x). So
G1(x) = f(x)G2(x), where the degree of the polynomial G2(x) ∈ Q(x) is strictly
less than that of G1(x). Continuing in this way we obtain Φ(x) = f(x)µ, for some
positive integer µ. Similarly Ψ(x) = f(x)ν , for some positive integer ν. So q = µ+ν.

Noting that by assumption, the degree of the polynomial f(x) is p and the
degree of each φ(x, α) is m, we have that that mq = µp. Similarly nq = νp. As m
and n are smaller than p, it follows that p is a divisor of q, as required �

13.2.35 Corollary. Let f(x) ∈ Q(x) be an irreducible polynomial of degree
p, for p a prime number. Let α 6= 1 be a qth complex number root of unity (i.e.
αq = 1) where q is a prime number and q 6 p. Then f(x) is also an irreducible
polynomial over Q(α).

Proof. By Remark 13.2.26 α is a root of the cyclotomic polynomial

xq−1 + xq−2 + · · ·+ 1

which is irreducible. Suppose f(x) is reducible over Q(α). Then by Proposition
13.2.34, p would divide q− 1, which is false. Therefore, our supposition is false and
f(x) is also irreducible over Q(α). �
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13.2.36 Remark. Recall that our aim is to show that there exists a polynomial
f(x) ∈ Z(x) of degree 5 which has no roots which can be obtained from Q using
radicals. We need to make more explicit what we mean. Also, as we seek but
one example, there is no loss in making restrictions on f(x) as long as we find an
example with the required property. Our task will be to find an f(x) which is not
algebraically soluble, where this term algebraically soluble is defined next

13.2.37 Definition. Let f(x) ∈ Z(x) be a polynomial over Q of degree
n, where n is a positive integer. Then f(x) is said to be algebraically soluble
if there exist complex numbers α1, α2, . . . , αk and prime numbers a1, a2, . . . , ak,
such that

(i) αa11 ∈ Q, α1 /∈ Q,

(ii) αa22 ∈ Q(α1), α2 /∈ Q(α1),

(iii) αa33 ∈ Q(α1, α2), α3 /∈ Q(α1, α2),
...

(k) αakk ∈ Q(α1, α2, . . . , αk−1), αk /∈ Q(α1, α2, . . . , αk−1)

and f(x) is reducible over Q(α1, α2, . . . , αk).

We focus on when f(x) is irreducible over Z and n = 5.

13.2.38 Remarks. Note that if ω ∈ Q(α1, α2, . . . , αk) is a root of f , then x−ω
divides f(x) and so f(x) is indeed reducible over Q(α1, α2, . . . , αk). So if f(x) has a
root in radicals, such as 5

√
25 + 3

√
7 +
√

10 , then f(x) will be algebraically soluble.
Thus if we find a polynomial f(x) which is not algebraically soluble, then we will
know that f(x) has no roots in radicals.

We should also observe that if instead of prime numbers a1, a2, . . . , ak in
the above definition, we used positive integers greater than 1, the definition of
algebraically soluble would be unchanged as it can be reduced easily to the prime
number case by factoring each ai into its prime factors. �
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13.2.39 Remarks. Let z = a + i b be any complex number and z denote its
conjugate a− i b. If z1 and z2 are any complex numbers, then it is easily seen that
z1z2 = (z1)(z2). It follows that if f(x) is any polynomial, then f(x) = f(x). So if
α ∈ C is any root of a polynomial f(x) [that is, f(α) = 0], then f(α) = 0 = 0.
Thus if α is a root of f(x), then so too is its conjugate α. So roots of f(x) which
are not real numbers, in fact come in pairs! This is a very useful observation.

The first consequence is that a polynomial of degree n, where n is an odd
integer, must have at least one root which is a real number.

The second consequence is that a polynomial of degree 5 must have one,
three, or five roots which are real numbers.

In due course we shall prove Kronecker’s Theorem which says, in particular, that
if an irreducible polynomial f(x) of degree 5 has three roots which are real numbers
and two roots which are not real numbers, then f(x) is not algebraically soluble.

So before proving Kronecker’s Theorem, we shall see how to produce irreducible
polynomials of degree 5 which have precisely three roots which are real numbers.



13.2. APPENDIX ON SOLVING POLYNOMIAL EQUATIONS 435

13.2.40 Example. Let f(x) = x5 − 10x − 5. By the Eisenstein-Schönemann
Irreducibility Criterion 13.2.25, f(x) is irreducible over Q.

Firstly, let us find the stationary points of f , that is where f ′(x) = 0. As
f ′(x) = 5x4 − 10, the stationary points are x = − 4

√
2 and x = 4

√
2.

In fact, we see that f ′(x) is positive for x < − 4
√

2, negative for − 4
√

2 < x < 4
√

2,
and positive for x > 4

√
2; thus f is an increasing function for x < − 4

√
2, a decreasing

function for − 4
√

2 < x < 4
√

2, and an increasing function for x > 4
√

2.

Clearly f(x)→∞ as x→∞ and f(x)→ −∞ as x→ −∞. [Indeed f(−2) < 0,
f(−1) > 0, f(0) = −5, f(1) < 0, and f(2) > 0.]

Thus the graph of f(x) must cross the X-axis precisely 3 times and look like
that below.

This suggests that f(x) has precisely 3 roots which are real numbers. But we
must be careful to check that none of these are repeated roots, as we need to know
that there are roots which are not real numbers.

If α is a repeated root of f(x), then f(x) = (x−α)(x−α)(x−β)(x−γ)(x−δ), for
α, β, γ, δ ∈ C; that is f(x) = (x−α)[(x−α)g(x)], where g(x) = (x−β)(x−γ)(x−δ).
Then f ′(x) = 1.[(x− α)g(x)] + (x− α)[(x− α)g(x)]′. Hence f ′(α) = 0. So if α is a
repeated root of f(x), then α is also a stationary point of f .

As neither of the stationary points of f is a root of f(x), we have proved that
f(x) = x5 − 10x− 5 has 3 roots which are real numbers and 2 roots which are not
real numbers.
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Sturm

The problem of finding the number of real number roots of a
polynomial was solved in 1829 by the French-Swiss mathematician
Jacques Charles François Sturm (1803–1855). The idea is a
generalization of the technique used above. Without going into detail,
one associates with each polynomial a sequence of polynomials, called
the Sturm sequence and the number of real number roots is determined
by an examination of the sign changes of the polynomials in the Sturm
sequence. While the Fundamental Theorem of Algebra tells us the
number of complex number roots, Sturm’s sequence determines the number of
distinct real number roots and locates an interval containing each one. Indeed by
subdividing these intervals, one can approximate these roots as closely as one wishes.

Using the same technique as in Example 13.2.40 we can readily obtain the
following proposition which generalizes that example and yields an infinite number
of irreducible quintic polynomials with three real number roots and two roots which
are not real numbers. Such polynomials by Kronecker’s Theorem will therefore be
not algebraically soluble.

13.2.41 Proposition. Let f(x) ∈ Z[x] be given by f(x) = x5−ax− b where
(i) p is a prime number;

(ii) a and b are positive integers divisible by p;

(iii) b is not divisible by p2; and

(iv) a5 > 55

44
b4.

Then f(x) is an irreducible polynomial which has precisely 3 roots which are real
numbers and 2 roots which are not real numbers.
More generally, if g(x) is the polynomial given by g(x) = xn − ax− b where
(v) n is an odd positive integer > 5;

(vi) p is a prime number;

(vii) a and b are positive integers divisible by p;

(viii) b is not divisible by p2; and

(ix) an > nn

(n−1)(n−1)
bn−1.

Then g(x) is an irreducible polynomial which has precisely 3 roots which are real
numbers and n− 3 roots which are not real numbers. Indeed, for each n, there
is an infinite number of such g(x). �
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13.2.42 Remarks. Note that condition (iv) in Proposition 13.2.41 is satisfied
if a > 2b.
So the irreducible polynomial f(x) = x5−4x−2 has precisely 3 roots which are real
numbers and 2 roots which are not real numbers. �

13.2.43 Corollary. Let f(x) be the polynomial given by f(x) = x5− cpx−p
where

(i) p is a prime number;

(ii) c is a positive integer;

(iii) c > 2 if p < 13; and

(iv) c > 1 if p > 13.

Then f(x) is an irreducible polynomial which has precisely 3 roots which are real
numbers and 2 roots which are not real numbers.
Thus there are an infinity of irreducible polynomials of this form with 3 real
number roots and 2 roots which are not real numbers. �

13.2.44 Proposition. [Abel’s Lemma] Let p be a prime number, F a
subfield of C, c ∈ F but c 6= dp, for any d ∈ F . Then the polynomial xp − c is
irreducible over F .

Proof. Suppose xp − c is reducible over F ; that is

xp − c = ψ(x)φ(x)

where ψ(x), φ(x) ∈ F [x]. Let the constant terms of ψ(x) and φ(x) be a and b,
respectively, where a, b ∈ F . Since the roots of xp − c are r, rε, rε2, . . . , rεp−1,
where r is one of the roots and ε is a complex pth root of unity. Then a = rµεM

and b = rνεN , for someM and N . Since ν+µ = p, where p is a prime number, ν and
µ have no common factor.Thus there exists integers h and k such that µh+νk = 1.
Putting K = ahbk, we see that K = rεhM+kN . Thus

Kp = rp = c.

This says that the K ∈ F is a pth root of c, which is a contradiction. So our
supposition is false, and xp − c is irreducible over F .
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Kronecker

The following beautiful Theorem, which appears not to be
well-known, was proved by the German mathematician Leopold
Krocker (1823–1891) in 1858. (He is credited with the remark:
“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
ist Menschenwerk” (“God made the integers, all else is the
work of man.”) Our proof of Kronecker’s Theorem follows
that in Dörrie [110, p.127, §25].

13.2.45 Theorem. [Kronecker’s Theorem] Let f(x) ∈ Z[x] be
irreducible over Z (or equivalently over Q) and have degree p, which is an
odd prime number. If f(x) is algebraically soluble, then either it has only one
root which is a real number or all of its roots are real numbers.

Proof. Let f(x) be algebraically soluble; that is, there exist complex numbers
α1, α2, . . . , αk and prime numbers a1, a2, . . . , ak, such that

(i) αa11 ∈ Q, α1 /∈ Q,
(ii) αa22 ∈ Q(α1), α2 /∈ Q(α1),
(iii) αa33 ∈ Q(α1, α2), α3 /∈ Q(α1, α2),

...
(k) αakk ∈ Q(α1, α2, . . . , αk−1), α3 /∈ Q(α1, α2, . . . , αk−1)

such that f(x) is irreducible over Q(α1, α2, . . . , αk−1) but f(x) is reducible over
Q(α1, α2, . . . , αk).

By Corollary 13.2.35, without loss of generality we can let α1 6= 1, be a pth root
of unity (so a1 = p), and we know k > 1.

Let λ = αk = l
√
K, where l = ak and K ∈ K = Q(α1, α2, . . . , αk−1) and

L = Q(α1, α2, . . . , αk−1, αk). So

f(x) = φ1(x, λ)φ2(x, λ) . . . φm(x, λ)

where φ1, φ2, . . . , φm are are not in K[x], but are irreducible polynomials in L[x] with
coefficients which are polynomials in λ. By Proposition 13.2.34 the prime number
p must divide the prime number l. So l = p.

Put η = α1. Then the p roots of xp = K are

λ0 = λ, λ1 = λη, λ2 = λη2, . . . , λν = λην , . . . , λp−1 = ληp−1.
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Since each φi(x, λ) divides f(x), it follows from the proof of Proposition 13.2.34
that each φi(x, λν) also divides f(x).

Suppose φi(x, λν) is reducible over L; that is, φi(x, λν) = u(x, λν)v(x, λν), then
φi(x, λ) = u(x, λ)v(x, λ), which is a contradiction since φi(x, λ) is irreducible over
L. So each φi(x, λν) is irreducible over L.

Now suppose φi(x, λν) = φi(x, λµ), for some 1 6 µ < ν 6 p − 1. Putting
δ = ην−µ, we can replace λ by the root λην−µ = λδ, from which it follows that

φi(x, λ) = φi(x, λδ).

Similarly by replacing successively δ by λδ, λδ2, . . . it follows that

φi(x, λ) = φi(x, λδ) = φi(x, λδ
2) = φi(x, λδ

3) . . . .

This yields

φi(x, λ) =
φi(x, λ) + φi(x, λδ) + · · ·+ φi(x, λδ

p−1)

n
.

The right hand side of this equation is a symmetric polynomial in the roots λ, λδ,
λδ2, . . . of the polynomial xn − K ∈ K[x] and so is a polynomial in K[x]. Thus
φi(x, λ) is a polynomial in K[x], which is a contradiction to f(x) being irreducible in
K[x]. Therefore our supposition is false, and hence all φi(x, λν) are distinct.

So we see that f(x) is divisible by the product Φ(x) of p distinct factors
φi(x, λ), φi(x, λη), . . . , φi(x, ληp−1) that are irreducible in L[x]:

f(x) = Φ(x)U(x),

where Φ is a symmetric function of the roots of xn − K ∈ K[x]. Consequently Φ

and U are polynomials in K[x]. As f(x) is irreducible in K[x)], U(x) must be 1, and
so

f(x) = Φ(x) = φi(x, λ)φi(x, λη) . . . φi(x, λη
p−1).

So we see that the divisibility of f(x) over L is thus a divisibility into linear factors.
If ω, ω1, . . . , ωp−1 are the roots and x−ω, x−ω1, . . . , x−ωp−1 are the linear factors
of f(x), then

x− ω = φi(x, λ), x− ω1 = φi(x, λη), . . . , x− ωp−1 = φi(x, λη
p−1).
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Thus

ω = K0 +K1λ+K2λ
2 + · · ·+Kp−1λ

p−1

ω1 = K0 +K1λ1 +K2λ
2
1 + · · ·+Kp−1λ

p−1
1

...

ωp−1 = K0 +K1λp−1 +K2λ
2
p−1 + · · ·+Kp−1λ

p−1
p−1

where all the Kν ∈ K, since we saw ealier that φ(x, λ) has coefficients which are
polynomials of λ and λp = K ∈ K.

By Proposition 13.2.39, the polynomial f(x) of odd degree must have at least
one real root. Let this root which is a real number be

ω = K0 +K1λ+K2λ
2 + · · ·+Kp−1λ

p−1.

We distinguish two cases:

(1) K is a real number;

(2) K is a complex number which is not a real number.

Firstly we consider Case (i), where K is real. Noting that K contains the pth

roots of unity, we can assume λ is a real number. So the complex conjugate of ω is
given by

ω = K0 +K1λ+ · · ·+Kp−1λ
p−1

, where each complex conjugate Kν ∈ K.
As we said that ω is a real number it follows that ω − ω = 0; that is,

(K0 −K0) + (K1 −K1)λ+ · · ·+ (Kp−1 −Kp−1)λp−1 = 0

which by Corollary 13.2.28 implies that each Kν −Kν = 0. Thus K0, K1, . . . , Kp−1

are all real numbers. Further,

ων = K0 +K1λν + · · ·+Kp−1λ
p−1
ν

and
ωp−ν = K0 +K1λp−ν + · · ·+Kp−1λ

p−1
p−ν .

However, since λν = λην and λp−ν = ληp−ν = λη−ν are complex conjugates, it
follows that ων and ωp−ν are also complex conjugates.
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So we have shown that in Case (1), the polynomial f(x) has precisely one
root which is a real number and p -1 paired conjugate complex roots which
are not real numbers.

Now we consider Case (2), where K ∈ C \R. We know that f(x) is irreducible
over K but is reducible over K(λ), where λ = p

√
K. Put Λ = λλ =

p√
KK. If f(x)

is reducible over K(Λ), then we are in Case 1 as Λ is a real number. So we may
assume that f(x) is irreducible over K(Λ). From

ω = K0 +K1λ+K2λ
2 + · · ·+Kp−1λ

p−1

it follows that

ω = K0 +K1λ+K2 λ
2

+ · · ·+Kp−1 λ
p−1

= K0 +K1

(
Λ

λ

)
+K2

(
Λ

λ

)2

+ · · ·+Kp−1

(
Λ

λ

)p−1

.

Since ω = ω, this implies that

K0+K1λ+K2λ
2+· · ·+Kp−1λ

p−1 = K0+K1

(
Λ

λ

)
+K2

(
Λ

λ

)2

+· · ·+Kp−1

(
Λ

λ

)p−1

.

In this equation all quantities with the exception of λ are in K(Λ). By Abel’s
Lemma 13.2.44, the polynomial xp −K is irreducible over K(Λ). Therefore we can
replace λ in the above equation by any root λν of xp −K. Recalling that

Λ

λν
=

Λ

λην
=

λ

ην
= λην = λην = λν

we see that

K0 +K1λν + · · ·+Kp−1λ
p−1
ν = K0 +K1 λν + · · ·+Kp−1 λν

p−1
;

that is, ων = ων . Thus, in Case (2), all of the roots of f(x)are real numbers.

As an immediate corollary of Kronecker’s Theorem 13.2.45 and Proposition
13.2.41 we have the following powerful Theorem. It answered the question of the
solvability of quintic equations in radicals which had been investigated for over a
quarter of a century but many of the best mathematicians of the time.

13.2.46 Theorem. If p > 5 is a prime number, then there exist an
infinite number of irreducible polynomials f(x) ∈ Z[x] of degree p which are
not algebraically soluble.
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13.2.47 Remark. Recall that the term algebraically soluble was defined in
Definition 13.2.37. Theorem 13.2.46 then tells us that for each prime number p
greater than or equal to 5, there exist an infinite number of irreducible polynomials
p which do not have roots in terms of rational numbers and radicals. We have seen,
in fact, how to find quite easily an infinite number5 of such polyomials.

Galois

The modern approach to the Abel-Ruffini
Theorem uses Galois Theory, named after Évariste
Galois6 (1811–1832), and is to be found in
textbooks on Abstract Algebra such as Fraleigh
[133] and MacLane and Birkhoff [255]. The idea
is that a polynomial f ∈ Z[x] is algebraically soluble
if and only of its Galois group is soluble, Stewart
[360, Theorem 18.19]. The Galois group of any
polynomial f(x) ∈ Z[x] is shown to be isomorphic
to a group of permutations of the distinct roots of
the polynomial. So the Galois group of a polynomial
of degree n is isomorphic to a subgroup of the
Symmetric Group Sn of all permutations of a set with n elements. If p is a prime
number, then the Galois group of an irreducible polynomial f(x) of degree p is Sp
itself. (SeeStewart [360, Lemma 15.10].) As every subgroup of a soluble group is
soluble and Sn has the Alternating Group An of all even permutations as a subgroup,
An is known to be a simple group for all n > 5, and simple implies not soluble, the
group Sn is not soluble for any n > 5. For a thorough presentation of Galois Theory,
see Stewart [360].

13.2.48 Theorem. [Abel-Ruffini Theorem] If n ∈ Z satisfies n > 5,
then there exist an irreducible polynomial f(x) ∈ Z[x] of degree n which is not
algebraically soluble.

You should note that we have not proved that all irreducible quintic polynomials
are not solvable by radicals. Of course some quintic polynomials are solvable by
radicals, for example x5− 1. So it is reasonable to ask which ones are and what are
their solutions. Spearman and Williams [348] have given a characterization of the

5Many textbooks show only that there is one such polynomial and only for p = 5.
6For an analysis of the work of Galois, see Neumann [293]
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quintic equations which are solvable by radicals. Further, Dummit [111] shows how
to solve those quintic equations which are solvable.
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A1.0 Introduction

Once upon a time in a far-off land there were two hotels, the Hotel Finite (an
ordinary hotel with a finite number of rooms) and Hilbert’s Hotel Infinite (an extra-
ordinary hotel with an infinite number of rooms numbered 1, 2, . . . n, . . . ). One day
a visitor arrived in town seeking a room. She went first to the Hotel Finite and was
informed that all rooms were occupied and so she could not be accommodated, but
she was told that the other hotel, Hilbert’s Hotel Infinite, can always find an extra
room. So she went to Hilbert’s Hotel Infinite and was told that there too all rooms
were occupied. However, the desk clerk said at this hotel an extra guest can always
be accommodated without evicting anyone. He moved the guest from room 1 to
room 2, the guest from room 2 to room 3, and so on. Room 1 then became vacant!

From this cute example we see that there is an intrinsic difference between
infinite sets and finite sets. The aim of this Appendix is to provide a gentle but very
brief introduction to the theory of Infinite Sets7. This is a fascinating topic which,
if you have not studied it before, will contain several surprises. We shall learn that
“infinite sets were not created equal" - some are bigger than others. At first pass it
is not at all clear what this statement could possibly mean. We will need to define
the term “bigger". Indeed we will need to define what we mean by “two sets are
the same size".

7There is available for free download a rather nice and gentle book on set theory. It is by Raymond
L. Wilder and is called Introduction to the Foundations of Mathematics. It is available from
http://archive.org/details/IntroductionToTheFoundationsOfMathematics

http://archive.org/details/IntroductionToTheFoundationsOfMathematics
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There are three videos which you should watch as they
provide supplementary material to this Appendix. These
videos are called “Topology Without Tears – Video 2a,
2b, and 2c – Infinite Set Theory”.
Part (a) is on YouTube at http://youtu.be/9h83ZJeiecg

and on the Chinese Youku site at http://tinyurl.com/

m4dlzhh.
Part (b) is on YouTube at http://youtu.be/QPSRB4Fhzko

and on the Chinese Youku site at http://tinyurl.com/

kf9lp8e.
Part (c) is on YouTube at http://youtu.be/YvqUnjjQ3TQ

and on the Chinese Youku site at http://tinyurl.com/

mhlqe93.
These videos include a discussion of the Zermelo-Fraenkel
(ZF) axioms of Set Theory and a short proof showing
that the Russell Paradox does not occur within ZF set
theory.

http://youtu.be/9h83ZJeiecg
http://tinyurl.com/m4dlzhh
http://tinyurl.com/m4dlzhh
http://youtu.be/QPSRB4Fhzko
http://tinyurl.com/kf9lp8e
http://tinyurl.com/kf9lp8e
http://youtu.be/YvqUnjjQ3TQ
http://tinyurl.com/mhlqe93
http://tinyurl.com/mhlqe93
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A1.1 Countable Sets

A1.1.1 Definitions. Let A and B be sets. Then A is said to be equipotent
to B, denoted by A ∼ B, if there exists a function f : A→ B which is both one-
to-one and onto (that is, f is a bijection or a one-to-one correspondence).

A1.1.2 Proposition. Let A, B, and C be sets.

(i) Then A ∼ A.
(ii) If A ∼ B then B ∼ A.
(iii) If A ∼ B and B ∼ C then A ∼ C.

Outline Proof.

(i) The identity function f on A, given by f(x) = x, for all x ∈ A, is a one-to-one
correspondence between A and itself.

(ii) If f is a bijection of A onto B then it has an inverse function g from B to A
and g is also a one-to-one correspondence.

(iii) If f : A → B is a one-to-one correspondence and g : B → C is a one-to-
one correspondence, then their composition gf : A → C is also a one-to-one
correspondence.

Proposition A1.1.2 says that the relation “∼” is reflexive (i), symmetric (ii), and
transitive (iii); that is, “∼” is an equivalence relation.

A1.1.3 Proposition. Let n,m ∈ N. Then the sets {1, 2, . . . , n} and
{1, 2, . . . ,m} are equipotent if and only if n = m.

Proof. Exercise. �

Now we explicitly define the terms “finite set” and “infinite set”.
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A1.1.4 Definitions. Let S be a set.

(i) Then S is said to be finite if it is the empty set, Ø, or it is equipotent to
{1, 2, . . . , n}, for some n ∈ N.

(ii) If S is not finite, then it is said to be infinite.

(iii) If S ∼ {1, 2, . . . , n} then S is said to have cardinality n, which is denoted
by card S = n.

(iv) If S = Ø then the cardinality is said to be 0, which is denoted by card Ø = 0.

The next step is to define the “smallest” kind of infinite set. Such sets will be
called countably infinite. At this stage we do not know that there is any “bigger”
kind of infinite set – indeed we do not even know what “bigger” would mean in this
context.

A1.1.5 Definitions. Let S be a set.

(i) The set S is said to be countably infinite (or denumerable) if it is
equipotent to N.

(ii) The set S is said to be countable if it is finite or countably infinite.

(iii) If S is countably infinite then it is said to have cardinality ℵ0, denoted by
card S = ℵ0.

(iv) A set S is said to be uncountable if it is not countable.

A1.1.6 Remark. If the set S is countably infinite, then S = {s1, s2, . . . , sn, . . . }
where f : N → S is a one-to-one correspondence and sn = f(n), for all n ∈ N. So
we can list the elements of S. Of course if S is finite and non-empty, we can also list
its elements by S = {s1, s2, . . . , sn}. So we can list the elements of any countable
set. Conversely, if the elements of S can be listed, then S is countable as the
listing defines a one-to-one correspondence with N or {1, 2, . . . , n}.
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A1.1.7 Example. The set S of all even positive integers is countably infinite.

Proof. The function f : N→ S given by f(n) = 2n, for all n ∈ N, is a one-to-one
correspondence.

Example A1.1.7 is worthy of a little contemplation. We think of two sets being
in one-to-one correspondence if they are “the same size”. But here we have the
set N in one-to-one correspondence with one of its proper subsets. This does not
happen with finite sets. Indeed finite sets can be characterized as those sets which
are not equipotent to any of their proper subsets.

A1.1.8 Example. The set Z of all integers is countably infinite.

Proof. The function f : N→ Z given by

f(n) =

 m, if n = 2m, m > 1
−m, if n = 2m+ 1, m > 1

0, if n = 1.

is a one-to-one correspondence.

A1.1.9 Example. The set S of all positive integers which are perfect squares
is countably infinite.

Proof. The function f : N → S given by f(n) = n2 is a one-to-one
correspondence.

Galileo

Example A1.1.9 was proved about 1600 by the Italian
astronomer, engineer, and physicist Galileo Galilei (1564–1642).
It troubled him and suggested to him that the infinite is not
man’s domain. Gailieo has been desctribed as the "father of
modern physics", the "father of the scientific method", and the
"father of modern science”.

A1.1.10 Proposition. If a set S is equipotent to a countable set then it
is countable.

Proof. Exercise.
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A1.1.11 Proposition. If S is a countable set and T ⊂ S then T is
countable.

Proof. Since S is countable we can write it as a list S = {s1, s2, . . .} (a finite list
if S is finite, an infinite one if S is countably infinite).

Let t1 be the first si in T (if T 6= Ø). Let t2 be the second si in T (if T 6= {t1}).
Let t3 be the third si in T (if T 6= {t1, t2}), . . . .

This process comes to an end only if T = {t1, t2, . . . , tn} for some n, in
which case T is finite. If the process does not come to an end we obtain a list
{t1, t2, . . . , tn, . . .} of members of T . This list contains every member of T , because
if si ∈ T then we reach si no later than the ith step in the process; so si occurs in
the list. Hence T is countably infinite. So T is either finite or countably infinite.

As an immediate consequence of Proposition A1.1.11 and Example A1.1.8 we
have the following result.

A1.1.12 Corollary. Every subset of Z is countable.

A1.1.13 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of

countably infinite sets such that Si∩Sj = Ø for i 6= j, then
∞⋃
i=1

Si is a countably

infinite set.

Proof. As each Si is a countably infinite set, Si = {si1, si2, . . . , sin, . . .}. Now
put the sij in a square array and list them by zigzagging up and down the short
diagonals.

s11 → s12 s13 → s14 · · ·
↙ ↗ ↙

s21 s22 s23 · · ·
↓ ↗ ↙ ↗
s31 s32 s33 · · ·
... ↙ ... ↗ ... . . .

This shows that all members of
⋃∞
i=1 Si are listed, and the list is infinite because

each Si is infinite. So
⋃∞
i=1 Si is countably infinite.
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In Lemma A1.1.13 we assumed that the sets Si were pairwise disjoint. If they
are not pairwise disjoint the proof is easily modified by deleting repeated elements
to obtain:

A1.1.14 Lemma. If S1, S2, . . . , Sn, . . . is a countably infinite family of

countably infinite sets, then
∞⋃
i=1

Si is a countably infinite set.

A1.1.15 Proposition. The union of any countable family of countable sets
is countable.

Proof. Exercise.

A1.1.16 Proposition. If S and T are countably infinite sets then the
product set S × T = {〈s, t〉 : s ∈ S, t ∈ T} is a countably infinite set.

Proof. Let S = {s1, s2, . . . , sn, . . . } and T = {t1, t2, . . . , tn, . . . }. Then

S × T =
∞⋃
i=1

{〈si, t1〉, 〈si, t2〉, . . . , 〈si, tn〉, . . . }.

So S × T is a countably infinite union of countably infinite sets and is therefore
countably infinite.

A1.1.17 Corollary. Every finite product of countable sets is countable.

We are now ready for a significant application of our observations on countable
sets.

A1.1.18 Lemma. The set, Q>0, of all positive rational numbers is
countably infinite.

Proof. Let Si be the set of all positive rational numbers (see Niven [298]) with

denominator i, for i ∈ N. Then Si =
{

1
i ,

2
i , . . . ,

n
i , . . .

}
and Q>0 =

∞⋃
i=1

Si. As each

Si is countably infinite, Proposition A1.1.15 yields that Q>0 is countably infinite.
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We are now ready to prove that the set, Q, of all rational numbers is countably
infinite; that is, there exists a one-to-one correspondence between the set Q and
the (seemingly) very much smaller set, N, of all positive integers.

A1.1.19 Theorem. The set Q of all rational numbers is countably infinite.

Proof. Clearly the set Q<0 of all negative rational numbers is equipotent to the
set, Q>0, of all positive rational numbers and so using Proposition A1.1.10 and
Lemma A1.1.18 we obtain that Q<0 is countably infinite.

Finally observe that Q is the union of the three sets Q>0, Q<0 and {0} and so
it too is countably infinite by Proposition A1.1.15.

A1.1.20 Corollary. Every set of rational numbers is countable.

Proof. This is a consequence of Theorem A1.1.19 and Proposition A1.1.11.

A1.1.21 Definitions. A real number x is said to be an algebraic number
if there is a natural number n and integers a0, a1, . . . , an with a0 6= 0 such that

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

A real number which is not an algebraic number is said to be a transcendental
number.

A1.1.22 Example. Every rational number is an algebraic number.

Proof. If x = p
q , for p, q ∈ Z and q 6= 0, then qx− p = 0; that is, x is an algebraic

number with n = 1, a0 = q, and an = −p.

A1.1.23 Example. The number
√

2 is an algebraic number which is not a
rational number.

Proof. While x =
√

2 is irrational, it satisfies x2 − 2 = 0 and so is algebraic.
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A1.1.24 Remark. It is also easily verified that 4
√

5−
√

3 is an algebraic number
since it satisfies x8 − 12x6 + 44x4 − 288x2 + 16 = 0. Indeed any real number
which can be constructed from the set of integers using only a finite number of
the operations of addition, subtraction, multiplication, division and the extraction of
square roots, cube roots, . . . , is algebraic.

A1.1.25 Remark. Remark A1.1.24 shows that “most” numbers we think of
are algebraic numbers. To show that a given number is transcendental can be
extremely difficult. The first such demonstration was in 1844 when Liouville proved
the transcendence of the number

∞∑
n=1

1

10n!
= 0.11000100000000000000000100 . . .

It was Charles Hermite who, in 1873, showed that e is transcendental. In 1882
Lindemann proved that the number π is transcendental thereby answering in the
negative the 2,000 year old question about squaring the circle. (The question is:
given a circle of radius 1, is it possible, using only a straight edge and compass, to
construct a square with the same area? A full exposition of this problem and proofs
that e and π are transcendental are to be found in the book, Jones, Morris, and
Pearson [210].)

We now proceed to prove that the setA of all algebraic numbers is also countably
infinite. This is a more powerful result than Theorem A1.1.19 which is in fact a
corollary of this result.
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A1.1.26 Theorem. The set A of all algebraic numbers is countably
infinite.

Proof. Consider the polynomial f(x) = a0x
n+a1x

n−1 + · · ·+an−1x+an , where
a0 6= 0 and each ai ∈ Z and define its height to be k = n+ |a0|+ |a1|+ · · ·+ |an|.

For each positive integer k, let Ak be the set of all roots of all such polynomials

of height k. Clearly A =
∞⋃
k=1

Ak.

Therefore, to show that A is countably infinite, it suffices by Proposition A1.1.15
to show that each Ak is finite.

If f is a polynomial of degree n, then clearly n 6 k and |ai| 6 k, for
i = 0, 1, 2, . . . , n. So the set of all polynomials of height k is certainly finite.

Further, a polynomial of degree n has at most n roots. Consequently each
polynomial of height k has no more than k roots. Hence the set Ak is finite, as
required.

A1.1.27 Corollary. Every set of algebraic numbers is countable.

Note that Corollary A1.1.27 has as a special case, Corollary A1.1.20.

So far we have not produced any example of an uncountable set. Before doing so
we observe that certain mappings will not take us out of the collection of countable
sets.

A1.1.28 Proposition. Let X and Y be sets and f a map of X into Y .

(i) If X is countable and f is surjective (that is, an onto mapping), then Y is
countable.

(ii) If Y is countable and f is injective (that is, a one-to-one mapping), then X
is countable.

Proof. Exercise.
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A1.1.29 Proposition. Let S be a countable set. Then the set of all finite
subsets of S is also countable.

Proof. Exercise.

A1.1.30 Definition. Let S be any set. The set of all subsets of S is said
to be the power set of S and is denoted by P(S).

A1.1.31 Theorem. (Georg Cantor) For every set S, the power set, P(S),
is not equipotent to S; that is, P(S) 6∼ S.

Proof. We have to prove that there is no one-to-one correspondence between
S and P(S). We shall prove more: that there is not even any surjective function
mapping S onto P(S).

Suppose that there exists a function f : S → P(S) which is onto. For each
x ∈ S, f(x) ∈ P(S), which is the same as saying that f(x) ⊆ S.

Let T = {x : x ∈ S and x 6∈ f(x)}. Then T ⊆ S; that is, T ∈ P(S). So
T = f(y) for some y ∈ S, since f maps S onto P(S). Now y ∈ T or y 6∈ T .
Case 1.

y ∈ T ⇒ y 6∈ f(y) (by the definition of T )

⇒ y 6∈ T (since f(y) = T ).

So Case 1 is impossible.

Case 2.
y 6∈ T ⇒ y ∈ f(y) (by the definition of T)

⇒ y ∈ T (since f(y) = T ).

So Case 2 is impossible.

As both cases are impossible, we have a contradiction. So our supposition is
false and there does not exist any function mapping S onto P(S). Thus P(S) is
not equipotent to S.
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A1.1.32 Lemma. If S is any set, then S is equipotent to a subset of its
power set, P(S).

Proof. Define the mapping f : S → P(S) by f(x) = {x}, for each x ∈ S. Clearly
f is a one-to-one correspondence between the sets S and f(S). So S is equipotent
to the subset f(S) of P(S).

A1.1.33 Proposition. If S is any infinite set, then P(S) is an uncountable
set.

Proof. As S is infinite, the set P(S) is infinite. By Theorem A1.1.31, P(S) is
not equipotent to S.

Suppose P(S) is countably infinite. Then by Proposition A1.1.11, Lemma
A1.1.32 and Proposition A1.1.10, S is countably infinite. So S and P(S) are
equipotent, which is a contradiction. Hence P(S) is uncountable.

Proposition A1.1.33 demonstrates the existence of uncountable sets. However
the sceptic may feel that the example is contrived. So we conclude this section by
observing that important and familiar sets are uncountable.
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A1.1.34 Lemma. The set of all real numbers in the half open interval
[1, 2) is not countable.

Proof. (Cantor’s diagonal argument) We shall show that the set of all real
numbers in [1, 2) cannot be listed.

Let L = {r1, r2, . . . rn . . . } be any list of real numbers each of which lies in the
set [1, 2). Write down their decimal expansions:

r1 =1.r11r12 . . . r1n . . .

r2 =1.r21r22 . . . r2n . . .
...

rm =1.rm1rm2 . . . rmn . . .
...

Consider the real number a defined to be 1.a1a2 . . . an . . . where, for each n ∈ N,

an =

{
1 if rnn 6= 1
2 if rnn = 1.

Clearly an 6= rnn and so a 6= rn, for all n ∈ N. Thus a does not appear anywhere
in the list L. Thus there does not exist a listing of the set of all real numbers in
[1, 2); that is, this set is uncountable.

A1.1.35 Theorem. The set, R, of all real numbers is uncountable.

Proof. Suppose R is countable. Then by Proposition A1.1.11 the set of all real
numbers in [1, 2) is countable, which contradicts Lemma A1.1.34. Therefore R is
uncountable.
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A1.1.36 Corollary. The set, I, of all irrational numbers is uncountable.

Proof. Suppose I is countable. Then R is the union of two countable sets: I
and Q. By Proposition A1.1.15, R is countable which is a contradiction. Hence I is
uncountable.

Using a similar proof to that in Corollary A1.1.36 we obtain the following result.

A1.1.37 Corollary. The set of all transcendental numbers is uncountable.

A1.2 Cardinal Numbers

In the previous section we defined countably infinite and uncountable and suggested,
without explaining what it might mean, that uncountable sets are “bigger” than
countably infinite sets. To explain what we mean by “bigger” we will need the next
theorem.

Our exposition is based on that in the book, Halmos [162]
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A1.2.1 Theorem. (Cantor-Schröder-Bernstein) Let S and T be sets. If
S is equipotent to a subset of T and T is equipotent to a subset of S, then S
is equipotent to T .

Proof. Without loss of generality we can assume S and T are disjoint. Let
f : S → T and g : T → S be one-to-one maps. We are required to find a bijection
of S onto T .

We say that an element s is a parent of an element f(s) and f(s) is a
descendant of s. Also t is a parent of g(t) and g(t) is a descendant of t. Each
s ∈ S has an infinite sequence of descendants: f(s), g(f(s)), f(g(f(s))), and so
on. We say that each term in such a sequence is an ancestor of all the terms that
follow it in the sequence.

Now let s ∈ S. If we trace its ancestry back as far as possible one of three
things must happen:

(i) the list of ancestors is finite, and stops at an element of S which has no ancestor;
(ii) the list of ancestors is finite, and stops at an element of T which has no ancestor;
(iii) the list of ancestors is infinite.

Let SS be the set of those elements in S which originate in S; that is, SS is the
set S \ g(T ) plus all of its descendants in S. Let ST be the set of those elements
which originate in T ; that is, ST is the set of descendants in S of T \ f(S). Let S∞
be the set of all elements in S with no parentless ancestors. Then S is the union of
the three disjoint sets SS, ST and S∞. Similarly T is the disjoint union of the three
similarly defined sets: TT , TS, and T∞.

Clearly the restriction of f to SS is a bijection of SS onto TS.

Now let g−1 be the inverse function of the bijection g of T onto g(T ). Clearly
the restriction of g−1 to ST is a bijection of ST onto TT .

Finally, the restriction of f to S∞ is a bijection of S∞ onto T∞.

Define h : S → T by

h(s) =


f(s) if s ∈ SS

g−1(s) if s ∈ ST
f(s) if s ∈ S∞.

Then h is a bijection of S onto T . So S is equipotent to T .
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Our next task is to define what we mean by “cardinal number”.

A1.2.2 Definitions. A collection, ℵ, of sets is said to be a cardinal
number if it satisfies the conditions:
(i) Let S and T be sets. If S and T are in ℵ, then S ∼ T ;

(ii) Let A and B be sets. If A is in ℵ and B ∼ A, then B is in ℵ.

If ℵ is a cardinal number and A is a set in ℵ, then we write card A = ℵ.

Definitions A1.2.2 may, at first sight, seem strange. A cardinal number is defined
as a collection of sets. So let us look at a couple of special cases:

If a set A has two elements we write card A = 2; the cardinal number 2 is the
collection of all sets equipotent to the set {1, 2}, that is the collection of all sets
with 2 elements.

If a set S is countable infinite, then we write card S = ℵ0; in this case the
cardinal number ℵ0 is the collection of all sets equipotent to N.

Let S and T be sets. Then S is equipotent to T if and only if card S = card T .

A1.2.3 Definitions. The cardinality of R is denoted by c; that is, card R =

c. The cardinality of N is denoted by ℵ0.

The symbol c is used in Definitions A1.2.3 as we think of R as the “continuum”.

We now define an ordering of the cardinal numbers.

A1.2.4 Definitions. Let m and n be cardinal numbers. Then the cardinal
m is said to be less than or equal to n, that is m 6 n, if there are sets S and
T such that card S = m, card T = n, and S is equipotent to a subset of T .
Further, the cardinal m is said to be strictly less than n, that is m < n, if
m 6 n and m 6= n.

As R has N as a subset, card R = c and card N = ℵ0, and R is not equipotent
to N, we immediately deduce the following result.
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A1.2.5 Proposition. ℵ0 < c.

We also know that for any set S, S is equipotent to a subset of P(S), and S is
not equipotent to P(S), from which we deduce the next result.

A1.2.6 Theorem. For any set S, card S < card P(S).

The following is a restatement of the Cantor-Schröder-Bernstein Theorem 1.2.1.

A1.2.7 Theorem. Let m and n be cardinal numbers. If m 6 n and n 6 m,
then m = n.

A1.2.8 Remark. We observe that there are an infinite number of infinite
cardinal numbers. This is clear from the fact that:

(∗) ℵ0 = card N < card P(N) < card P(P(N)) < . . .

The next result is an immediate consequence of Theorem A1.2.6.

A1.2.9 Corollary. There is no largest cardinal number.

Noting that if a finite set S has n elements, then its power set P(S) has 2n

elements, it is natural to introduce the following notation.

A1.2.10 Definition. If a set S has cardinality ℵ, then the cardinality of
P(S) is denoted by 2ℵ.

Thus we can rewrite (∗) above as:

(∗∗) ℵ0 < 2ℵ0 < 22ℵ0 < 222
ℵ0
< . . . .

When we look at this sequence of cardinal numbers there are a number of
questions which should come to mind including:
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(1) Is c equal to one of the cardinal numbers on this list?

(2) Are there any cardinal numbers strictly between ℵ0 and 2ℵ0?

These questions, especially (2), are not easily answered. Indeed they require
a careful look at the axioms of set theory. It is not possible in this Appendix to
discuss seriously the axioms of set theory. Nevertheless we will touch upon the
above questions later in the appendix.

We conclude this section by identifying the cardinalities of a few more familiar
sets.

A1.2.11 Lemma. Let a and b be real numbers with a < b. Then
(i) [0, 1] ∼ [a, b];

(ii) (0, 1) ∼ (a, b);

(iii) (0, 1) ∼ (1,∞);

(iv) (−∞,−1) ∼ (−2,−1);

(v) (1,∞) ∼ (1, 2);

(vi) R ∼ (−2, 2);

(vii) R ∼ (a, b).

Outline Proof. (i) is proved by observing that f(x) = a + (b − a)x defines a
one-to-one function of [0, 1] onto [a, b]. (ii) and (iii) are similarly proved by finding
suitable functions. (iv) is proved using (iii) and (ii). (v) follows from (iv). (vi)
follows from (iv) and (v) by observing that R is the union of the pairwise disjoint
sets (−∞,−1), [−1, 1] and (1,∞). (vii) follows from (vi) and (ii). .
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A1.2.12 Proposition. Let a and b be real numbers with a < b. If S
is any subset of R such that (a, b) ⊆ S, then card S = c. In particular,
card (a, b) = card [a, b] = c.

Proof. Using Lemma A1.2.11 observe that

card R = card (a, b) 6 card [a, b] 6 card R.

So card (a, b) = card [a, b] = card R = c. .

A1.2.13 Proposition. If R2 is the set of points in the Euclidean plane,
then card (R2) = c.

Outline Proof. By Proposition A1.2.12, R is equipotent to the half-open interval
[0, 1) and it is easily shown that it suffices to prove that [0, 1)× [0, 1) ∼ [0, 1).

Define f : [0, 1)→ [0, 1)× [0, 1) by f(x) is the point 〈x, 0〉. Then f is a one-to-
one mapping of [0, 1) into [0, 1)× [0, 1) and so c = card [0, 1) 6 card [0, 1)× [0, 1).

By the Cantor-Schröder-Bernstein Theorem A.2.1, it suffices then to find a
one-to-one function g of [0, 1)× [0, 1) into [0, 1). Define

g(〈0.a1a2 . . . an . . . , 0.b1b2 . . . bn . . . , 〉) = 0.a1b1a2b2 . . . anbn . . . .

Clearly g is well-defined (as each real number in [0, 1) has a unique decimal
representation that does not end in 99. . . 9. . . ) and is one-to-one, which completes
the proof.

A1.3 Cardinal Arithmetic

We begin with a definition of addition of cardinal numbers. Of course, when the
cardinal numbers are finite, this definition must agree with addition of finite numbers.

A1.3.1 Definition. Let α and β be any cardinal numbers and select disjoint
sets A and B such that card A = α and card B = β. Then the sum of the
cardinal numbers α and β is denoted by α+ β and is equal to card (A∪B).
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A1.3.2 Remark. Before knowing that the above definition makes sense and
in particular does not depend on the choice of the sets A and B, it is necessary
to verify that if A1 and B1 are disjoint sets and A and B are disjoint sets such
that card A = card A1 and card B = card B1, then A ∪ B ∼ A1 ∪ B1; that is,
card (A ∪ B) = card (A1 ∪ B1). This is a straightforward task and so is left as an
exercise.

A1.3.3 Proposition. For any cardinal numbers α, β and γ :

(i) α + β = β + α ;

(ii) α + (β + γ) = (α + β) + γ ;

(iii) α + 0 = α ;

(iv) If α 6 β then α + γ 6 β + γ .

Proof. Exercise

A1.3.4 Proposition.
(i) ℵ0 + ℵ0 = ℵ0;

(ii) c + ℵ0 = c;
(iii) c + c = c;

(iv) For any finite cardinal n, n+ ℵ0 = ℵ0 and n+ c = c.

Proof.
(i) The listing 1,−1, 2,−2, . . . , n,−n, . . . shows that the union of the two countably

infinite sets N and the set of negative integers is a countably infinite set.

(ii) Noting that [−2,−1]∪N ⊂ R, we see that card [−2,−1] + card N 6 card R = c.
So c = card [−2,−1] 6 card ([−2,−1]∪N) = card [−2,−1]+card N = c+ℵ0 6 c.

(iii) Note that c 6 c+ c = card ((0, 1)∪ (1, 2)) 6 card R = c from which the required
result is immediate.

(iv) Observe that ℵ0 6 n+ℵ0 6 ℵ0 +ℵ0 = ℵ0 and c 6 n+ c 6 c+ c = c, from which
the results follow.

Next we define multiplication of cardinal numbers.
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A1.3.5 Definition. Let α and β be any cardinal numbers and select disjoint
sets A and B such that card A = α and card B = β. Then the product of the
cardinal numbers α and β is denoted by αβ and is equal to card (A×B).

As in the case of addition of cardinal numbers, it is necessary, but routine, to
check in Definition A1.3.5 that αβ does not depend on the specific choice of the
sets A and B.

A1.3.6 Proposition. For any cardinal numbers α, β and γ

(i) αβ = βα ;

(ii) α(βγ) = (αβ)γ ;

(iii) 1.α = α ;
(iv) 0.α = 0;

(v) α(β + γ) = αβ + αγ;

(vi) For any finite cardinal n, nα = α + α + . . . α (n-terms);

(vii) If α 6 β then αγ 6 βγ .

Proof. Exercise

A1.3.7 Proposition.
(i) ℵ0 ℵ0 = ℵ0;
(ii) c c = c;

(iii) cℵ0 = c;

(iv) For any finite cardinal n, nℵ0 = ℵ0 and n c = c.

Outline Proof. (i) follows from Proposition A1.1.16, while (ii) follows from
Proposition A1.2.13. To see (iii), observe that c = c.1 6 cℵ0 6 c c = c. The
proof of (iv) is also straightforward.
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The next step in the arithmetic of cardinal numbers is to define exponentiation
of cardinal numbers; that is, if α and β are cardinal numbers then we wish to define
α β.

A1.3.8 Definitions. Let α and β be cardinal numbers and A and B sets
such that card A = α and card B = β. The set of all functions f of B into A
is denoted by AB. Further, α β is defined to be card AB.

Once again we need to check that the definition makes sense, that is that αβ

does not depend on the choice of the sets A and B. We also check that if n and
m are finite cardinal numbers, A is a set with n elements and B is a set with m

elements, then there are precisely nm distinct functions from B into A.

We also need to address one more concern: If α is a cardinal number and A is a
set such that card A = α, then we have two different definitions of 2α. The above
definition has 2α as the cardinality of the set of all functions of A into the two point
set {0, 1}. On the other hand, Definition A1.2.10 defines 2α to be card (P(A)).
It suffices to find a bijection θ of {0, 1}A onto P(A). Let f ∈ {0, 1}A. Then
f : A→ {0, 1}. Define θ(f) = f−1(1). The task of verifying that θ is a bijection is
left as an exercise.

A1.3.9 Proposition. For any cardinal numbers α, β and γ :

(i) α β+γ = αβαγ ;

(ii) (αβ)γ = αγ βγ ;

(iii) (αβ)
γ

= α(βγ) ;

(iv) α 6 β implies αγ 6 βγ ;

(v) α 6 β implies γα 6 γ β .

Proof. Exercise

After Definition A1.2.10 we asked three questions. We are now in a position to
answer the second of these questions.
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A1.3.10 Lemma. ℵ0
ℵ0 = c.

Proof. Observe that card NN = ℵ0
ℵ0 and card (0, 1) = c. As the function

f : (0, 1)→ NN given by f(0.a1a2 . . . an . . . ) = 〈a1, a2, . . . , an, . . . 〉 is an injection, it
follows that c 6 ℵ0

ℵ0.

By the Cantor-Schröder-Bernstein Theorem A1.2.1, to conclude the proof it
suffices to find an injective map g of NN into (0, 1). If 〈a1, a2, . . . , an, . . . 〉 is any
element of NN, then each ai ∈ N and so we can write

ai = . . . ain ai(n−1) . . . ai2 ai1, where for some Mi ∈ N, ain = 0, for all n > Mi

[For example 187 = . . . 0 0 . . . 0 1 8 7 and so if ai = 187 then ai1 = 7, ai2 = 8, ai3=1
and ain = 0, for n > Mi = 3.] Then define the map g by

g(〈a1, a2, . . . , an, . . . 〉) = 0.a11a12a21a13a22a31a14a23a32a41a15a24a33a42a51a16 . . . .

(Compare this with the proof of Lemma A1.1.13.)

Clearly g is an injection, which completes the proof.
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We now state a beautiful result, first proved by Georg Cantor.

A1.3.11 Theorem. 2ℵ0 = c.

Proof. Firstly observe that 2ℵ0 6 ℵ0
ℵ0 = c, by Lemma A1.3.10. So we

have to verify that c 6 2ℵ0. To do this it suffices to find an injective map f of
the set [0, 1) into {0, 1}N. Each element x of [0, 1) has a binary representation
x = 0.x1x2 . . . xn . . . , with each xi equal to 0 or 1. The binary representation is
unique except for representations ending in a string of 1s; for example,

1/4 = 0.0100 . . . 0 · · · = 0.0011 . . . 1 . . . .

Providing that in all such cases we choose the representation with a string of zeros
rather than a string of 1s, the representation of numbers in [0, 1) is unique. We
define the function f : [0, 1) → {0, 1}N which maps x ∈ [0, 1) to the function
f(x) : N → {0, 1} given by f(x)(n) = xn, n ∈ N. To see that f is injective,
consider any x and y in [0, 1) with x 6= y. Then xm 6= ym, for some m ∈ N. So
f(x)(m) = xm 6= ym = f(y)(m). Hence the two functions f(x) : N → {0, 1} and
f(y) : N → {0, 1} are not equal. As x and y were arbitrary (unequal) elements of
[0, 1), it follows that f is indeed injective, as required.



470 APPENDIX 1: INFINITE SETS

A1.3.12 Corollary. If α is a cardinal number such that 2 6 α 6 c, then
αℵ0 = c.

Proof. Observe that c = 2ℵ0 6 αℵ0 6 cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c.

A1.4 Ordinal Numbers8

A1.4.1 Definitions. A partially ordered set (X,6) is said to be linearly
ordered (or totally ordered) if every two elements are comparable. The order
6 is then said to be a linear order (or a total order.) The linear ordering is
said to be a strict linear ordering (or a strict total ordering) if

a 6 b and b 6 a =⇒ a = b, for a, b ∈ X.

A1.4.2 Definitions. A strict totally ordered set (S,6) is said to be a
well-ordered set if every non-empty subset of S has a least element. The total
ordering is then said to be a well-ordering.

8For more detailed expositions of ordinal numbers see Abian [2], Ciesielski [82], Kamke [213],
Roitman [325].
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A1.4.3 Remark. Our next theorem says that every set can be well-ordered.
While we call this a Theorem, it is equivalent to the Axiom of Choice A6.1.26 and
to Zorn’s Lemma 10.2.16. Usually we start set theory with the Zermelo-Fraenkel
(ZF) Axioms. (See Remark A6.1.26 and view my 3 videos on the Zermelo-Fraenkel
Axioms:
Video 2a – http://youtu.be/9h83ZJeiecg,
Video 2b – http://youtu.be/QPSRB4Fhzko, &
Video 2c – http://youtu.be/YvqUnjjQ3TQ.)
In ZF, the Axiom of Choice cannot be proved. So the Well-Ordering Theorem
A1.2.4 cannot be proved in ZF. If we assume any one of the Axiom of Choice,
Zorn’s Lemma, or the Well-Ordering Theorem is true, then the other two can be
proved. (For many equivalents of the Axiom of Choice, see Rubin and Rubin [328]
and Rubin and Rubin [329].) If we add the Axiom of Choice to the Zermelo-Fraenkel
Axioms, we get what is called ZFC. Many (but certainly not all) mathematicians
work entirely within ZFC.

A1.4.4 Theorem. [Well-Ordering Theorem] Let S be any non-empty
set. Then there exists a well-ordering 6 on S.

A1.4.5 Definitions. The partially ordered sets (X,6) and (Y,�) are said
to be order isomorphic (or have the same order type) if there is a bijection
f : X → Y such that for a, b ∈ X, a 6 b if and only if f(a) � f(b). The
function f is said to be an order isomorphism.

http://youtu.be/9h83ZJeiecg
http://youtu.be/QPSRB4Fhzko
http://youtu.be/YvqUnjjQ3TQ
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A1.4.6 Proposition. Let (X,6), (Y,�), and (Z,�) be partially ordered
sets.

(i) If f : X → Y is an order isomorphism, then the inverse function f← : Y →
X is also an order isomorphism.

(ii) If f : X → Y and g : Y → Z are order isomorphisms, then g ◦ f : X → Z is
also an order isomorphism.

(iii) Let f : X → Y be an order isomorphism. If (X,6) is totally ordered, then
(Y,�) is totally ordered.

(iv) Let f : X → Y be an order isomorphism. If (X,6) is well-ordered, then
(Y,�) is well-ordered.

Proof. Exercise. �

A1.4.7 Remark. We have indicated that we start with the ZF axioms of set
theory. Next we need to define the natural numbers. We shall use induction. We
begin by defining the number 0 as the empty set Ø. Then the number 1 = {0} =

{Ø}; the number 2 = {0, 1} = {Ø, {Ø}}. Now using mathematical induction, we
can define the number n to be {0, 1, 2, . . . , n − 1}. Further, N = {1, 2, . . . , n, . . . }.
Thinking of the natural numbers as sets allows us to recognize that

(i) n is well-ordered by ⊂;
(ii) n /∈ n;
(iii) if m ∈ n, then m /∈ m;

(iv) if m ∈ n, then m ⊂ n.

(v) if m ∈ n and p ∈ m, then p ∈ n.
So with this in mind we see that each natural number n as well as N is a set with a
natural well-ordering.

This sets the stage for the definition of ordinal numbers first given by John
von Neumann (1903-1957) in his 1923 paper, von Neumann [387]. See also von
Neumann [388].
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A1.4.8 Definition. A set α is said to be an ordinal number (or an ordinal)
if it is the set of all ordinal numbers β < α well-ordered by ⊂.

A1.4.9 Proposition. A set α is an ordinal number (or an ordinal) if and
only it has the following properties:

(i) α is well-ordered by ⊂;
(ii) α /∈ α;
(iii) if β ∈ α, then β /∈ β;
(iv) if β ∈ α, then β ⊂ α;

(v) if β ∈ α and γ ∈ β, then γ ∈ α.

Proof. Exercise �

A1.4.10 Remark. We see that each of the natural numbers n ∈ N, regarded
as a well-ordered set, is an ordinal number. Further, the definition of the set N of
all natural numbers satisfies Definition A1.4.8 and so is an ordinal number, which
will be denoted by ω.

A1.4.11 Remark. The relation ⊂ on an ordinal number is usually denoted by
6. The relation < is then clearly the same as ∈.

We gather together in the next proposition several important results the proofs
of which are straightforward.
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A1.4.12 Proposition.

(i) If α is an ordinal number and β ∈ α, then β is also an ordinal number;

(ii) for ordinal numbers α, β, if α is order isomorphic to β then α = β;

(iii) for ordinal numbers α, β, (a) α = β or (b) α < β or (c) β < α;

(iv) if S is any non-empty set of ordinal numbers, then
⋃

Si∈S
Si is an ordinal

number;(v) For every well-ordered set (S,6), there exists exactly one ordinal number α
that is order isomorphic to (S,6).

Proof. Exercise. �

Now we shall define the sum and product of two ordinals α and β. In case α
and β are not disjoint, for the sum we replace them by the equivalent sets ({0}×α)

and ({1}×β), then we define the ordering on the union of these two sets by keeping
the original ordering on α and on β and making every element of α less than every
element of β.

A1.4.13 Definitions. if α and β are ordinal numbers, then their sum,
denoted by α+ β is the order type of the well-ordered set S = ({0}×α)

⋃
({1}×

β) ordered by (i, δ) 6 (j, γ) if and only if i < j or δ 6 γ.
The product, denoted by αβ is the order type of the well-ordered set α × β
where the ordering is lexicographic; that is,

(a, b) 6 (c, d) if and only if (i) a < b or (ii) a = b and c 6 d.

A1.4.14 Remark. It is readily verified that addition and multiplication of
ordinal numbers is associative; that is, for ordinal numbers α, β, γ, we have
α + (β + γ) = (α + β) + γ and α(βγ) = (αβ)γ. However, neither addition nor
multiplication of ordinal numbers is commutative. For example it is readily
proved that

3 + ω = ω 6= ω + 3 and ω2 = ω + ω 6= ω = 2ω.

The following table should prove helpful.
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Sets Ordinals
Ø 0
{0} 1
{0, 1} 2
{0, 1, 2} 3
. . . . . .

{0, 1, 2, . . . , n, . . . } ω
{0′, 0, 1, 2, . . . , n, . . . } 1 + ω = ω

{0′, 1′, 2′, . . . , (n′ − 1), 0, 1, 2, . . . , n, . . . } n+ ω = ω
{0, 1, 0′, 1′, 0′′, 1′′, 0′′′, 1′′′, 0iv, . . . } 2ω = ω

{0, 1, . . . , n, 0′, 1′, . . . , n′, 0′′, 1′′, . . . , n′′, 0′′′, 1′′′, . . . , n′′′, . . . } nω = ω
{0, 1, 2, . . . , n, . . . , 0′} ω + 1 > ω

{0, 1, 2, . . . , n, . . . , 0′, 1′, . . . , . . . , (n′ − 1)} ω + n > ω + 1 > ω
{0, 1, 2, . . . , n, . . . , 0′, 1′, 2′, . . . , n′, . . . } ω + ω > ω + n

{0, 1, . . . , n, . . . , 0′, 1′, . . . , n′, . . . , 0′′′, 1′′′, . . . , n′′′, . . . , 0iv, 1iv, . . . , niv, . . . , . . . } ω2 > ω + ω > ω

A1.4.15 Remark. Every set of ordinal numbers is well-ordered by ⊂.

A1.4.16 Definition. Let (S,6) be a partially ordered set. If a ∈ S, then
the set of all elements x ∈ S such that x < a is said to be the initial segment
of (S,6) determined by a.

A1.4.17 Remark. Every initial segment of an ordinal number is an ordinal
number.

A1.4.18 Proposition. For any ordinal numbers α and β, precisely one of
the following is true:

(i) α = β;

(ii) α is an initial segment of β;

(iii) β is an initial segment of α.

Proof. Exercise. �
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A1.4.19 Definitions. The successor of an ordinal number α, denoted by
α+, is the smallest ordinal number β such that β > α; that is α+ = α ∪ {α}.
The ordinal γ is said to be the predecessor of α, denoted by α−, if α is the
successor of γ. If α 6= 0 and α has no predecessor, then it is said to be a limit
ordinal.

A1.4.20 Remark. Clearly no finite ordinal is a limit ordinal. However ω is a
limit ordinal. Of course the ordinal number ω + 1 = ω+ and so ω + 1 is not a limit
ordinal. Indeed for each finite ordinal n, ω + n is not a limit ordinal, but ω + ω is a
limit ordinal.

A1.4.21 Proposition. If Γ is a set of ordinal numbers, then
⋃
γi∈Γ

γi is

an ordinal number and is the least upper bound of Γ that is, it is equal to
sup Γ = sup

γi∈Γ
γi.

If α is an ordinal number, then

(i)
⋃
γi∈α

γi = α, if α = 0 or α is a limit ordinal;

(ii)
⋃
γi∈α

γi = α−, if α 6= 0 and α is not a limit ordinal.

Proof. Exercise. �

A1.4.22 Proposition. For every set Γ of ordinal numbers, there exists an
ordinal number greater than every ordinal number in Γ.

Proof. Exercise. �

A1.4.23 Remark. The class of all ordinals is not a set, it is a proper class. �
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A1.4.24 Remark. Now we turn to the notion of exponentiation of ordinal
numbers; that is, for ordinal numbers α and β we wish to define the ordinal number
αβ. This has to be done with considerable care in the case of infinite ordinals or
the resulting set will not be well-ordered and so will not be an ordinal number.

A1.4.25 Definition. Let α and β be ordinal numbers. Let αβ be the set
of all functions from the set β to the set α such that only a finite number
of elements of the set β map to a non-zero member of the set α. Order the
functions lexicographically as follows:
if f, g ∈ αβ then there exists a finite set {c1 < c2 < · · · < cn} ⊆ β such
that for b ∈ β, f(b) = 0 and g(b) = 0 for b /∈ {c1, c2, . . . , cn}, Let ci be the
smallest member of {c1, c2, . . . , cn} such that f(ci) 6= g(ci). Then define f < g

if f(ci) < g(ci), otherwise define g < f .

A1.4.26 Remark. It needs to be checked that αβ as defined in Definition
A1.4.25 is indeed an ordinal number, and in particular is a well-ordered set. Without
the finiteness restriction in the definition, this would not be the case.

A1.4.27 Theorem. [Transfinite Induction] Let P (γ) be a proposition
which is defined for all ordinals γ. If P (0) is true and for each ordinal number
α, P (β) true for all β < α imples P (α) is true, then P is true for all ordinals.

A1.4.28 Proposition. If α and β are ordinal numbers, then

(i) αβ = (αβ
−

)α if β > 0 is not a limit ordinal;

(ii) αβ = sup
γ<β

αγ if β is a limit ordinal and α > 0.

Proof. Exercise.
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A1.4.29 Remark. It is readily checked that

(i) ω2 = ω ω;
(ii) ω < ω2 < · · · < ωn, for any natural number n > 2;
(iii) ωω = sup

n∈ω
ωn;

(iv) ω < ωn < ωω, for any natural number n > 1.

A1.4.30 Remark. Each of the ordinals ω, ωω. ωω
ω
, . . . is a countable ordinal;

that is, each of the sets ω, ωω. ωω
ω
, . . . is a countable set. Further, the ordinal

number ε0 is defined to be sup{ω, ωω, ωωω , . . . } and it too is a countable ordinal.
Clearly ωε0 = ε0. An ordinal number α which satisfies the equation ωα = α are said
to be an ε-number. The ordinal ε0 is the smallest epsilon number. The next ordinal
satisfying this equation is denoted by ε1 and equals sup{ε0 + 1, ωε0+1, ωω

ε0+1
. . . }.

All the ε-numbers is also a countable ordinal.
Now we must of necessity be vague, because otherwise we would have to include
quite a lot of deep material. (See Pohlers [308].) We can continue defining ordinals
in a recursive way. The smallest ordinal which cannot be defined recursively in terms
of smaller ordinals is called the Church-Kleene ordinal denoted by ω1

CK. It too is
a countable ordinal. The first uncountable ordinal is denoted ω1.

A1.4.31 Remark. How are cardinal numbers related to ordinal numbers? Every
cardinal number is indeed an ordinal number.If we define Z(α) to consist of all the
ordinal numbers Z(α) which are equipotent to the ordinal number α, we note that
Z(α) is indeed a subset of the power set of the set α and so is a set. Further it has
a smallest (or first) element, often called an initial ordinal. Each cardinal number
is the initial ordinal of some ordinal α. We see that each cardinal number is a limit
ordinal ordinal.
Having pointed out that ever cardinal number is an ordinal number, it is essential that
we observe that cardinal arithmetic is very different from ordinal arithmetic.
One need go no further than observing that the cardinal number ℵ0 is the ordinal
number ω. However, ℵℵ00 is uncountable, while ωω is countable. Ordinal addition and
multiplication are not commutative while cardinal addition and cardinal multiplication
are commutative.

We conclude this section by stating Cantor’s Normal Form for ordinals.
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A1.4.32 Proposition. [Cantor’s Normal Form] Every ordinal number
can be uniquely expressed in the form ωβ1c1 + ωβ2c2 + · · · + ωβncn, where n is
a natural number, c1, c2, . . . , cn are positive integers, and β1 > β2 > . . . βn > 0

are ordinal numbers.

A1.5 Credits for Images

1. Galileo Galilei: Public Domain.
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The source for material extracted in this appendix is primarily The MacTutor
History of Mathematics Archive [369], Bourbaki [50] and http://en.wikipedia.org. In
fairness all of the material in this section should be treated as being essentially direct
quotes from these sources, though I have occasionally changed the words slightly,
and included here only the material that I consider pertinent to this book.

However, you might care to begin by reading the entertaining presentation by
Barry Simon of California Institute of Technology entitled “Tales of our Forefathers”
at http://tinyurl.com/hr4cq3c .

If you want to learn more about the History of Mathematics, you may care to
watch some or all of the YouTube videos “Math History: A course in the history
of mathematics” of Associate Professor Norman J. Wildberger of The University of
New South Wales, Australia at http://tinyurl.com/joelwmy .

René-Louis Baire

Baire

René-Louis Baire was born in Paris, France in
1874. In 1905 he was appointed to the Faculty
of Science at Dijon and in 1907 was promoted to
Professor of Analysis. He retired in 1925 after
many years of illness, and died in 1932. Reports
on his teaching vary, perhaps according to his health:
“Some described his lectures as very clear, but others
claimed that what he taught was so difficult that it
was beyond human ability to understand.”

http://en.wikipedia.org
http://tinyurl.com/hr4cq3c
http://tinyurl.com/joelwmy


482 APPENDIX 2: TOPOLOGY PERSONALITIES

Stefan Banach

Banach

Stefan Banach was born in Ostrowsko, Austria-
Hungary – now Poland – in 1892.

He lectured in mathematics at Lvov Technical
University from 1920 where he completed his
doctorate which is said to mark the birth of functional
analysis. In his dissertation, written in 1920, he
defined axiomatically what today is called a Banach
space. The name ’Banach space’ was coined by
Fréchet. In 1924 Banach was promoted to full
Professor. As well as continuing to produce a stream
of important papers, he wrote textbooks in arithmetic,
geometry and algebra for high school. Banach’s Open
Mapping Theorem of 1929 uses set-theoretic concepts which were introduced by
Baire in his 1899 dissertation. The Banach-Tarski paradox appeared in a joint paper
of the two mathematicians (Banach and Alfred Tarski) in 1926 in Fundamenta
Mathematicae entitled Sur la décomposition des ensembles de points en partiens
respectivement congruent. The puzzling paradox shows that a ball can be divided
into subsets which can be fitted together to make two balls each identical to the
first. The Axiom of Choice is needed to define the decomposition and the fact that
it is able to give such a non-intuitive result has made some mathematicians question
the use of the Axiom. The Banach-Tarski paradox was a major contribution to the
work being done on axiomatic set theory around this period. In 1929, together with
Hugo Dyonizy Steinhaus, he started a new journal Studia Mathematica and Banach
and Steinhaus became the first editors. The editorial policy was . . . to focus on
research in functional analysis and related topics. The way that Banach worked was
unconventional. He liked to do mathematical research with his colleagues in the
cafés of Lvov. Stanislaw Ulam recalls frequent sessions in the Scottish Café (cf.
Mauldin [262]): “It was difficult to outlast or outdrink Banach during these sessions.
We discussed problems proposed right there, often with no solution evident even
after several hours of thinking. The next day Banach was likely to appear with
several small sheets of paper containing outlines of proofs he had completed.” In
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1939, just before the start of World War II, Banach was elected President of the
Polish Mathematical Society. The Nazi occupation of Lvov in June 1941 meant
that Banach lived under very difficult conditions. Towards the end of 1941 Banach
worked feeding lice in a German institute dealing with infectious diseases. Feeding
lice was to be his life during the remainder of the Nazi occupation of Lvov up to
July 1944. Banach died in 1945.

Luitzen Egbertus Jan Brouwer

Brouwer

Luitzen Egbertus Jan Brouwer was born in 1881 in
Rotterdam, The Netherlands. While an undergraduate
at the University of Amsterdam he proved original
results on continuous motions in four dimensional
space. He obtained his Master’s degree in 1904.
Brouwer’s doctoral dissertation, published in 1907, made
a major contribution to the ongoing debate between
Bertrand Russell and Jules Henri Poincaré on the logical
foundations of mathematics. Brouwer quickly found that
his philosophical ideas sparked controversy. Brouwer put
a very large effort into studying various problems which
he attacked because they appeared on David Hilbert’s
list of problems proposed at the Paris International Congress of Mathematicians in
1900. In particular Brouwer attacked Hilbert’s fifth problem concerning the theory
of Lie groups. He addressed the International Congress of Mathematicians in Rome
in 1908 on the topological foundations of Lie groups. Brouwer was elected to
the Royal Academy of Sciences in 1912 and, in the same year, was appointed
extraordinary Professor of set theory, function theory and axiomatics at the University
of Amsterdam; he would hold the post until he retired in 1951. Bartel Leendert van
der Waerden, who studied at Amsterdam from 1919 to 1923, wrote about Brouwer
as a lecturer: Brouwer came [to the university] to give his courses but lived in Laren.
He came only once a week. In general that would have not been permitted - he
should have lived in Amsterdam - but for him an exception was made. ... I once
interrupted him during a lecture to ask a question. Before the next week’s lesson,
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his assistant came to me to say that Brouwer did not want questions put to him in
class. He just did not want them, he was always looking at the blackboard, never
towards the students. Even though his most important research contributions were
in topology, Brouwer never gave courses on topology, but always on – and only
on – the foundations of intuitionism. It seemed that he was no longer convinced
of his results in topology because they were not correct from the point of view
of intuitionism, and he judged everything he had done before, his greatest output,
false according to his philosophy. As is mentioned in this quotation, Brouwer was
a major contributor to the theory of topology and he is considered by many to be
its founder. He did almost all his work in topology early in his career between 1909
and 1913. He discovered characterisations of topological mappings of the Cartesian
plane and a number of fixed point theorems. His first fixed point theorem, which
showed that an orientation preserving continuous one-one mapping of the sphere
to itself always fixes at least one point, came out of his research on Hilbert’s fifth
problem. Originally proved for a 2-dimensional sphere, Brouwer later generalised
the result to spheres in n dimensions. Another result of exceptional importance was
proving the invariance of topological dimension. As well as proving theorems of
major importance in topology, Brouwer also developed methods which have become
standard tools in the subject. In particular he used simplicial approximation, which
approximated continuous mappings by piecewise linear ones. He also introduced
the idea of the degree of a mapping, generalised the Jordan curve theorem to
n-dimensional space, and defined topological spaces in 1913. Van der Waerden,
in the above quote, said that Brouwer would not lecture on his own topological
results since they did not fit with mathematical intuitionism. In fact Brouwer is best
known to many mathematicians as the founder of the doctrine of mathematical
intuitionism, which views mathematics as the formulation of mental constructions
that are governed by self-evident laws. His doctrine differed substantially from the
formalism of Hilbert and the logicism of Russell. His doctoral thesis in 1907 attacked
the logical foundations of mathematics and marks the beginning of the Intuitionist
School. In his 1908 paper The Unreliability of the Logical Principles Brouwer rejected
in mathematical proofs the Principle of the Excluded Middle, which states that any
mathematical statement is either true or false. In 1918 he published a set theory
developed without using the Principle of the Excluded Middle. He was made Knight
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in the Order of the Dutch Lion in 1932. He was active setting up a new journal and
he became a founding editor of Compositio Mathematica which began publication
in 1934. During World War II Brouwer was active in helping the Dutch resistance,
and in particular he supported Jewish students during this difficult period. After
retiring in 1951, Brouwer lectured in South Africa in 1952, and the United States
and Canada in 1953. In 1962, despite being well into his 80s, he was offered a post
in Montana. He died in 1966 in Blaricum, The Netherlands as the result of a traffic
accident.

Maurice Fréchet

Fréchet

Maurice Fréchet was born in France
in 1878 and introduced the notions
of metric space and compactness (see
Chapter 7) in his dissertation in 1906.
He held positions at a number of
universities including the University of
Paris from 1928–1948. His research
includes important contributions to
topology, probability, and statistics.
He died in 1973.
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Felix Hausdorff

Hausdorff

One of the outstanding mathematicians of
the first half of the twentieth century
was Felix Hausdorff. He did ground-
breaking work in topology, metric spaces,
functional analysis, Lie algebras and set
theory. He was born in Breslau, Germany
– now Wrocław, Poland – in 1868. He
graduated from, and worked at, University
of Leipzig until 1910 when he accepted
a Chair at the University of Bonn. In
1935, as a Jew, he was forced to leave
his academic position there by the Nazi
Nuremberg Laws. He continued to do
research in mathematics for several years,
but could publish his results only outside
Germany. In 1942 he was scheduled to go
to an internment camp, but instead he and
his wife and sister committed suicide.
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Wacław Sierpiński

Sierpinski

Wacław Sierpiński was born in 1882 in Warsaw,
Russian Empire – now Poland. Fifty years after he
graduated from the University of Warsaw, Sierpiński
looked back at the problems that he had as a Pole taking
his degree at the time of the Russian occupation: . . . we
had to attend a yearly lecture on the Russian language.
. . . Each of the students made it a point of honour to
have the worst results in that subject. . . . I did not
answer a single question . . . and I got an unsatisfactory
mark. ... I passed all my examinations, then the lector
suggested I should take a repeat examination, otherwise
I would not be able to obtain the degree of a candidate
for mathematical science. . . . I refused him saying that this would be the first case
at our University that someone having excellent marks in all subjects, having the
dissertation accepted and a gold medal, would not obtain the degree of a candidate
for mathematical science, but a lower degree, the degree of a ‘real student’ (strangely
that was what the lower degree was called) because of one lower mark in the Russian
language. Sierpiński was lucky for the lector changed the mark on his Russian
language course to ‘good’ so that he could take his degree. Sierpiński graduated
in 1904 and worked as a school teacher of mathematics and physics in a girls’
school. However when the school closed because of a strike, Sierpiński went to
Krakóv to study for his doctorate. At the Jagiellonian University in Krakóv he
received his doctorate and was appointed to the University of Lvov in 1908. In 1907
Sierpiński for the first time became interested in set theory. He happened across
a theorem which stated that points in the plane could be specified with a single
coordinate. He wrote to Tadeusz Banachiewicz asking him how such a result was
possible. He received a one word reply (Georg) ‘Cantor’. Sierpiński began to study
set theory and in 1909 he gave the first ever lecture course devoted entirely to set
theory. During the years 1908 to 1914, when he taught at the University of Lvov,
he published three books in addition to many research papers. These books were
The theory of Irrational numbers (1910), Outline of Set Theory (1912) and The
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Theory of Numbers (1912). When World War I began in 1914, Sierpiński and his
family happened to be in Russia. Sierpiński was interned in Viatka. However Dimitri
Feddrovich Egorov and Nikolai Nikolaevich Luzin heard that he had been interned
and arranged for him to be allowed to go to Moscow. Sierpiński spent the rest of the
war years in Moscow working with Luzin. Together they began the study of analytic
sets. When World War I ended in 1918, Sierpiński returned to Lvov. However shortly
after he was accepted a post at the University of Warsaw. In 1919 he was promoted
to Professor spent the rest of his life there. In 1920 Sierpiński, together with his
former student Stefan Mazurkiewicz, founded the important mathematics journal
Fundamenta Mathematica. Sierpiński edited the journal which specialised in papers
on set theory. From this period Sierpiński worked mostly in set theory but also on
point set topology and functions of a real variable. In set theory he made important
contributions to the axiom of choice and to the continuum hypothesis. He studied
the Sierpiński curve which describes a closed path which contains every interior point
of a square – a “space-filling curve”. The length of the curve is infinity, while the
area enclosed by it is 5/12 that of the square. Two fractals – Sierpiński triangle and
Sierpiński carpet – are named after him. Sierpiński continued to collaborate with
Luzin on investigations of analytic and projective sets. Sierpiński was also highly
involved with the development of mathematics in Poland. In 1921 He had been
honoured with election to the Polish Academy was made Dean of the faculty at the
University of Warsaw. In 1928 he became Vice-Chairman of the Warsaw Scientific
Society and, was elected Chairman of the Polish Mathematical Society. In 1939
life in Warsaw changed dramatically with the advent of World War II. Sierpiński
continued working in the ‘Underground Warsaw University’ while his official job was
a clerk in the council offices in Warsaw. His publications continued since he managed
to send papers to Italy. Each of these papers ended with the words: The proofs
of these theorems will appear in the publication of Fundamenta Mathematica which
everyone understood meant ‘Poland will survive’. After the uprising of 1944 the
Nazis burned his house destroying his library and personal letters. Sierpiński spoke
of the tragic events of the war during a lecture he gave in 1945. He spoke of
his students who had died in the war: In July 1941 one of my oldest students
Stanislaw Ruziewicz was murdered. He was a retired professor of Jan Kazimierz
University in Lvov . . . an outstanding mathematician and an excellent teacher. In
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1943 one of my most distinguished students Stanislaw Saks was murdered. He
was an Assistant Professor at Warsaw University, one of the leading experts in the
world in the theory of the integral. . . In 1942 another student of mine was Adolf
Lindenbaum was murdered. He was an Assistant Professor at Warsaw University
and a distinguished author of works on set theory. After listing colleagues who
were murdered in the war such as Juliusz Pawel Schauder and others who died
as a result of the war such as Samuel Dickstein and Stanislaw Zaremba, Sierpiński
continued: Thus more than half of the mathematicians who lectured in our academic
schools were killed. It was a great loss for Polish mathematics which was developing
favourably in some fields such as set theory and topology . . . In addition to the
lamented personal losses Polish mathematics suffered because of German barbarity
during the war, it also suffered material losses. They burned down Warsaw University
Library which contained several thousand volumes, magazines, mathematical books
and thousands of reprints of mathematical works by different authors. Nearly all the
editions of Fundamenta Mathematica (32 volumes) and ten volumes of Mathematical
Monograph were completely burned. Private libraries of all the four Professors of
mathematics from Warsaw University and also quite a number of manuscripts of
their works and handbooks written during the war were burnt too. Sierpiński was
the author of the incredible number of 724 papers and 50 books. He retired in 1960
as Professor at the University of Warsaw but he continued to give a seminar on the
theory of numbers at the Polish Academy of Sciences up to 1967. He also continued
his editorial work, as Editor-in-Chief of Acta Arithmetica which he began in 1958,
and as an editorial board member of Rendiconti dei Circolo Matimatico di Palermo,
Compositio Mathematica and Zentralblatt für Mathematik. Andrzej Rotkiewicz,
who was a student of Sierpiński’s wrote: Sierpiński had exceptionally good health
and a cheerful nature. . . . He could work under any conditions. Sierpiński died in
1969.
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§A3.0 Introduction

In this Appendix we give but a taste of dynamical systems and chaos theory. Most
of the material is covered by way of exercises. Some parts of this Appendix require
some knowledge of calculus. If you have not studied calculus9 you can skip this
Appendix altogether or merely skim through it to get a flavour.

A3.1 Iterates and Orbits

A3.1.1 Definition. Let S be a set and f a function mapping the set S into
itself; that is, f : S → S. The functions f1, f2, f3, . . . , fn, . . . are inductively
defined as follows:
f1 : S → S is given by f1(x) = f(x); that is f1 = f ;
f2 : S → S is given by f1(x) = f(f(x)); that is f2 = f ◦ f ;
f3 : S → S is given by f3(x) = f(f(f(x))); that is, f3 = f ◦ f ◦ f = f ◦ f2;
and if fn−1 is known then
fn : S → S is defined by fn(x) = f(fn−1(x)); that is, fn = f ◦ fn−1.
Each of the the functions f1, f2, f3, . . . , fn, . . . is said to be an iterate of the
function f .

Note that fn+m = fn ◦ fm, for n,m ∈ N.

A3.1.2 Definitions. Let f be a function mapping the set S into itself. If
x0 ∈ S, then the sequence x0, f

1(x0), f2(x0), . . . , fn(x0), . . . is called the orbit
of the point x0. The point x0 is called the seed of the orbit.

There are several possibilities for orbits, but the most important kind is a fixed
point.

9If you would like to refresh your knowledge in this area, you might like to look at the classic
book “A course of pure mathematics” by G.H. Hardy, which is available to download at no cost from
Project Gutenberg at http://www.gutenberg.org/ebooks/38769.

http://www.gutenberg.org/ebooks/38769
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A3.1.3 Definition. Let f be a mapping of a set S into itself. A point
a ∈ S is said to be a fixed point of f if f(a) = a.

A3.1.4 Example. Graphically, we can find all fixed points of a function
f : R → R, simply by sketching the curve y = f(x) and seeing where it intersects
the line y = x. At points of interesection, and only for these points, do we have
f(x) = x.

�
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A3.1.5 Example.

�

Exercises A3.1

1. Let the functions f : R → R, g : R → R and h : R → R be given by
f(x) = x(1− x), g(x) = x sinx, and h(x) = x2 − 2, for all x ∈ R.

(a) Evaluate f1(x) and f2(x).

(b) Evaluate g2(x) and g2(1).

(c) Evaluate h2(x) and h3(x).

2. (a) If C(x) = cos(x), use your calculator [in radians to 4 decimal places]
to compute C10(123), C20(123), C30(123), C40(123), C50(123), C60(123),
C70(123), C80(123), C90(123), C100(123), C100(500) and C100(1). What do
you notice?

(b) If S(x) = sin(x), use your calculator to compute S10(123), S20(123),
S30(123), S40(123), S50(123), S60(123), S70(123), S80(123), S90(123),
S100(123). What do you notice?
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3. Let the function h : R→ R be given by h(x) = x2, for all x ∈ R. Calculate the
orbits for the function h of each of the following seeds: 0, 1, −1, 0.5, 0.25.

4. Find all the fixed points of the function f in Exercise 1 above.

5. Let f : R → R be given by f(x) = x3 − 3x. Find all the fixed points of the
function f .

A3.2 Fixed Points and Periodic Points

A3.2.1 Definition. Let f be a mapping of a set S into itself. A point
a ∈ S is said to be eventually fixed if a is not a fixed point, but some point on
the orbit of a is a fixed point.

A3.2.2 Definitions. Let f be a function mapping the set S into itself. If
x ∈ S, then the point x ∈ S is said to be periodic if there exists a positive
integer p such that fp(x) = x. If m is the least n ∈ N such that fn(x) = x,
then m is called the prime period of x.

A3.2.3 Definition. Let f be a function mapping the set S into itself. Then
the point x0 ∈ S is said to be eventually periodic if x0 is not periodic itself,
but some point in the orbit of x0 is periodic.

A3.2.4 Remark. We have seen that points may be fixed, eventually fixed,
periodic, or eventually periodic. However, it is important to realize that most points
are not in any of these classes. �

Exercises A3.2

1. Verify that the point −1 is an eventually fixed point of f(x) = x2.

2. Find the eventually fixed points of the function f : R→ R given by f(x) = |x|.
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3. If f : R→ R is given by f(x) = −3
2x

2 + 5
2x + 1, verify that f(0) = 1, f(1) = 2,

and f(2) = 0, so that the orbit of 0 is 0, 1, 2, 0, 1, 2, . . . . Hence 0 is a periodic
point of prime period 3.

4. Prove that if x is a periodic point of prime period m of the function f : S → S,
then the orbit of x has precisely m points.

[Hint: Firstly write down the orbit of the point x and then deduce that it has at
most m points in it. Next suppose that there are fewer than m distinct points
in the orbit of x and show that this leads to a contradiction to x having period
m.]

5. Let f : R→ R be given by f(x) = x2 − 1. Verify that the points
√

2 and 1 are
eventually periodic.

6. Consider the function f : R→ R given by f(x) = |1− x|.
(i) Find all of the fixed points of f .

(ii) If m is an odd integer, what can you say about the orbit of m?

(iii) If m is an even integer, what can you say about the orbit of m?

A3.3 Phase Portraits, Attracting and Repelling Fixed Points

We wish to study dynamical systems, that is processes in motion. Such processes
include for example the motion of planets, but other systems to which this theory
is applied include the weather and population growth. Some even feel the study of
dynamical systems will help us to understand stock market movements.

A very good method for depicting all orbits of a dynamical system is the phase
portrait of the system. This is a picture on the real line of the orbits.

In the phase portrait we represent fixed points by solid dots and the dynamics
along orbits by arrows.
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A3.3.1 Example. if f(x) = x3, then the fixed points are 0, 1, and −1. If
|x0| < 1 then the orbit of x0 is a sequence which tends to 0; we write this fn(x0)→ 0.
If |x0| > 1, then the orbit is a sequence which diverges to∞; that is, fn(x0)→ ±∞.
The phase portrait is given below:

�

A3.3.2 Definition. Let a be a fixed point of the function f : R→ R. The
point a is said to be an attracting fixed point of f if there is an open interval
I containing a such that if x ∈ I, then fn(x)→ a as n→∞.

A3.3.3 Definition. Let a be a fixed point of the function f : R→ R. The
point a is said to be a repelling fixed point of f if there is is an open interval
I containing a such that if x ∈ I with x 6= a then there is an integer n such
that fn(x) /∈ I.

A3.3.4 Example. Observe that 0 is an attracting fixed point of f(x) = x3,
while −1 and 1 are repelling fixed points of this function. �

A3.3.5 Definition. A fixed point which is neither repelling nor attracting
is called a neutral fixed point.
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Exercises A3.3

1. Verify that the picture below is a correct phase portrait of f(x) = x2 and identify
whether the fixed points are repelling, attracting or neutral.

2. Do phase portraits for each of the following functions f : R → R. Determine
whether any fixed points are attracting, repelling or neutral.

(i) f(x) = −x3.

(ii) f(x) = 4x.

(iii) f(x) = x− x2.

(iv) f(x) = sinx.
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3. Let D : [0, 1)→ R be the doubling function defined by

D(x) =

{
2x, 0 6 x < 1

2
2x− 1, 1

2 6 x < 1.

[We could define D more succinctly by D(x) = 2x (mod 1).]

(i) Verify that the point 1
99 is a periodic point and find its prime period.

(ii) Explain why 1
n is either a periodic point or an eventually periodic point for

each positive integer n.

(iii) Explain why 1
2n is eventually fixed, for every positive integer n.

(iv) Write an explicit formula for D2(x) and D3(x), for 0 6 x < 1.

(v) Find all fixed points of D2 and D3.

4. Do a phase portrait of the function f(x) = 2x(1 − x). [This is an example of
a so-called logistic function which arises naturally in the study of population
growth and ecology.]

A3.4 Graphical Analysis

A3.4.1 Remark. We have used phase portraits to determine whether a point
x0 is fixed, periodic, eventually periodic etc. This method is particularly useful when
we are dealing with more than one dimension. But for functions f : R→ R, we can
use graphical analysis. This is done as follows.

Given a function f : R→ R, we are asked to determine the nature of the point
x0 ∈ R. What we do is find the orbits of points a near to x0. We begin by sketching
the function f and superimposing on its graph the graph of the line y = x.

To find the orbit of the point a, plot the point (a, a). Next draw a vertical line
to meet the graph of f at the point (a, f(a)). Then draw a horizontal line to meet
the line y = x at the point f(a), f(a). Now draw a vertical line to meet the graph
of f at the point (f(a), f2(a)). Once again draw a horizontal line to meet the line
y = x at the point (f2(a), f2(a)). We continue this process and the points a, f(a),
f2(a), f3(a), . . . form the orbit of a. �
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A3.4.2 Example. We will now consider the function f : R → R, given by
f(x) = x4. We sketch the curve y = x4 and superimpose the line y = x. To find
the fixed points we can solve f(x) = x; that is, solve x4 = x.

It is readily seen that the fixed points are 0 and 1. We will consider points near
each of these and do a graphical analysis, as described above, to find the orbits of
points near 0 and near 1. The analysis in the diagram below shows what happens
to points near to 1.

�

The next examples show graphical analyses of two more functions to indicate
how different these can be for different functions. You will then get experience doing
graphical analysis yourself.
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A3.4.3 Example.

In the above figure f(x) = sinx+ x+ 2.

�
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A3.4.4 Example.

In the above figure f(x) = x2 − 1.5.

�
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Exercises A3.4

1. Determine by graphical analysis whether each fixed point of f(x) = x4 is an
attracting fixed point, a repelling fixed point, or a neutral fixed point.

2. Use graphical analysis to describe the orbits of the function f(x) = 2x and to
determine the type of fixed point it has.

3. Find the fixed points of the function f(x) =
√
x and use graphical analysis to

determine their nature (that is, whether they are attracting, repelling, or neutral
fixed points).

4. Use graphical analysis to describe the fate of all orbits of the function f(x) =

x− x2.

5. Use graphical analysis to describe the fate of all orbits of the function f(x) = ex.

6. Let f(x) = |x− 2|. Use graphical analysis to display a variety of orbits of f . It
may help to use different colours; for example, one colour for periodic orbits,
another colour for eventually periodic orbits and yet another for eventually fixed
orbits.

7. Let D : [0, 1)→ [0, 1) be the doubling function given by D(x) = 2x mod(1).

(i) Prove that x ∈ [0, 1) is a rational number if and only if x is either a periodic
point or an eventually periodic point of D.

(ii) Verify that the set of all periodic points of D is

P =
∞⋃
n=1

{
0,

1

2n − 1
,

2

2n − 1
,

3

2n − 1
, . . . ,

2n − 2

2n − 1

}
.

[Hint. It may be helpful to write down a formula for Dn and to calculate the
points of intersection of the graph of Dn with the line y = x.]

(iii) Verify that the set of periodic points of D is dense in [0, 1). [We shall see
that this is one of the two conditions required to show that the dynamical
system ([0, 1), D) is chaotic.]
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A3.5 Bifurcation

A3.5.1 Remark. It is natural to ask if every continuous function f : S → R
has a fixed point, where S ⊆ R? The answer is easily seen to be no . For example,
if f : R → R is given by f(x) = x + 1, then obviously there are no fixed points.
Therefore it is remarkable that we can guarantee the existence of fixed points of
all continuous functions of [0, 1] into itself. More precisely, we have already seen
and proved the following corollary:

5.2.11 Corollary. (Fixed Point Theorem) Let f be a continuous
mapping of [0, 1] into [0, 1]. Then there exists a z ∈ [0, 1] such that f(z) = z.

Of course the above corollary does not help us to find the fixed point, rather it
tells us only that at least one fixed point exists.

It would also be nice to have a simple way of establishing whether a particular
fixed point is attracting, repelling, or neutral. For well-behaved functions Theorems
A3.5.2 and A3.5.3 will be very useful in this regard. �
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A3.5.2 Theorem. Let S be an interval in R and a be a point in the interior
of S. Further, let a be a fixed point of a function f : S → R. If f is differentiable
at the point a and |f ′(a)| < 1, then a is an attracting fixed point of f .

Proof. As |f ′(a)| < 1, we have |f ′(a)| < k < 1, where k is the postive real

number given by k =
|f ′(a)|+1

2 .

By definition, f ′(a) = lim
x→a

f(x)−f(a)
x−a . So for x “close enough” to a, we have

|f(x)−f(a)
x−a | 6 k; more precisely, there exists an interval I = [a − δ, a + δ], for some

δ > 0, such that |f(x)−f(a)
x−a | 6 k, for all x ∈ I with x 6= a.

Since a is a fixed point, f(a) = a. So

|f(x)− a| 6 k|x− a| , for all x ∈ I. (1)

This implies that f(x) is closer to a than x is, and so f(x) is in I too. So we can
repeat the same argument with f(x) replacing x and obtain

|f2(x)− a| 6 k|f(x)− a| , for all x ∈ I. (2)

From (1) and (2), we obtain

|f2(x)− a| 6 k2|x− a| , for all x ∈ I. (3)

Noting that |k| < 1 implies that k2 < 1, we can repeat the argument again. By
mathematical induction we obtain,

|fn(x)− a| 6 kn|x− a| , for all x ∈ I and n ∈ N. (4)

As |k| < 1, lim
n→∞

kn = 0. By (4) this implies that fn(x) → a as n → ∞. And we
have proved that a is an attracting fixed point. �

The proof of Theorem A3.5.3 is analogous to that of Theorem A3.5.2 and so
is left as an exercise.

A3.5.3 Theorem. Let S be an interval in R and a an interior point of S.
Further, let a be a fixed point of a function f : S → R. If f is differentiable at
the point a and |f ′(a)| > 1, then a is a repelling fixed point of f .
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A3.5.4 Remark. It is important to note that Theorem A3.5.2 and Theorem
A3.5.3 do not give necessary and sufficient conditions. Rather they say that if
f ′ exists and |f ′(x)| < 1 in an interval containing the fixed point a, then a is
an attracting fixed point; and if |f ′(x)| > 1 in an interval containing the fixed
point a, then a is a repelling fixed point. If neither of these conditions is true
we can say nothing! For example, it is possible that f is not differentiable at a
but f still has an attracting fixed point at a. (This is the case, for example for

f(x) =

{
x2 for x ∈ Q
−x2 for x ∈ R \Q, which has 0 as an attracting fixed point.)

Even if f is differentiable at a, Theorems A3.1.17 and A3.1.18 tell us absolutely
nothing if f ′(a) = 1. Consider f(x) = sin x. This function is differentiable at 0 with
f ′(0) = cos(0) = 1. So Theorems A3.1.17 and A3.1.18 tell us nothing. However, 0

is an attracting fixed point of f . �

A3.5.5 Remark. One of the most important family of functions in this theory
is the family of quadratic maps Qc : R→ R, where c ∈ R, and Qc(x) = x2 + c.
For each different value of c we get a different quadratic function. But the surprising
feature is that the dynamics of Qc changes as c changes. The following theorem
indicates this. We leave the proof of the theorem as an exercise.
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A3.5.6 Theorem. (The First Bifurcation Theorem) Let Qc be the
quadratic function for c ∈ R.

(i) If c > 1
4, then all orbits tend to infinity; that is, for all x ∈ R, (Qc)

n(x)→∞
as n→∞.

(ii) If c = 1
4, then Qc has precisely one fixed point at x = 1

2 and this is a neutral
fixed point.

(iii) If c < 1
4, then Qc has two fixed points a+ = 1

2(1 +
√

1− 4c) and
a− = 1

2(1−
√

1− 4c).

(a) The point a+ is always repelling.

(b) If −3
4 < c < 1

4, then a− is attracting.

(c) If c < −3
4, then a− is repelling.

A3.5.7 Remark. The term bifurcation means a division into two. We see
in the above theorem that for c > 1

4 there are no fixed points; for c = 1
4 there is

precisely one fixed point; but for c < 1
4 this fixed point splits into two — one at a+

and one at a−. We will say more about bifurcation presently.

A3.5.8 Definition. Let f be a function mapping the set S into itself. If the
point x ∈ S has prime period m, then the orbit of x is {x, f(x), . . . , fm−1(x)}
and the orbit is called an m-cycle.

A3.5.9 Definitions. Let a be a periodic point of a function f : S → S of
prime period m, for some m ∈ N. [So a is clearly a fixed point of fm : S → S.]
Then a is said to be an attracting periodic point of f if it is an attracting
fixed point of fm. Similarly a is said to be a repelling periodic point of f if it
is a repelling fixed point of fnm.
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The following theorem is left as an exercise.

A3.5.10 Theorem. (The Second Bifurcation Theorem) Let Qc be
the quadratic function for c ∈ R.

(a) If −3
4 6 c <

1
4, then Qc has no 2-cycles.

(b) If −5
4 < c < −3

4, then Qc has an attracting 2-cycle, {q−, q+}, where
q+ = 1

2(−1 +
√
−4c− 3) and q− = 1

2(−1−
√
−4c− 3).

(c) If c < −5
4, then Qc has a repelling 2-cycle {q−, q+}.

A3.5.11 Remark. In The Second Bifurcation Theorem we saw a new kind of
bifurcation called a period doubling bifurcation. As c decreases below −3

4, two
things happen: the fixed point a− changes from attracting to repelling and a new
2-cycle, {q−, q+} appears. Note that when c = −3

4, we have q− = q+ = −1
2 = a−.

So these two new periodic points originated at a− when c = −3
4.

We will have more to say about period doubling bifurcations when we consider
one-parameter families of functions (such as Qc : R → R, which depends on the
parameter c, and the logistic functions fλ(x) = λx(1 − x), which depend on the
parameter λ). �

Exercises A3.5

1. Prove Theorem A3.5.3.

2. Using Theorems A3.5.2 and A3.5.3 determine the nature of the fixed points of
each of the following functions:

(i) f1(x) = 3x.

(ii) f2(x) = 1
4x.

(iii) f3(x) = x3.

3. Prove The First Bifurcation Theorem A3.5.6.
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4. Let x be a periodic point of period 2 of the quadratic map Qc. Prove that

(i) Prove that x4 + 2cx2 − x+ c2 + c = 0.

(ii) Why do the points a+ = 1
2(1 +

√
1− 4c) and a− = 1

2(1 −
√

1− 4c) satisfy
the equation in (i)?

[Hint. Use The First Bifurcation Theorem A3.5.6.]

(iii) Using (ii), show that if x is a periodic point of prime period 2 of Qc, then
x2 + x+ c+ 1 = 0.

(iv) Deduce that if x is a periodic point of prime period 2, then x is one of the
points

q+ = 1
2(−1 +

√
−4c− 3) and q− = 1

2(−1−
√
−4c− 3).

(v) Deduce that Qc has a 2-cycle if and only if c < −3
4. [Be careful to eliminate

the case c = −3
4.]

(vi) Using Theorem A3.1.17 show that the quadratic function Qc has q− and q+
as attracting periodic points if |dQ

2
c(x)
dx | = |4x3 + 4cx| < 1 at x = q− and

x = q+.

(vii) Noting that q− and q+ both satisfy the equation x2 + x + c + 1 = 0 (from
(iii) and (iv) above), show that

4x3 + 4cx = 4x(x2 + c) = 4x(−1− x) = 4(c+ 1).

(viii) Using (vi), (vii), and (v) show that for −5
4 < c < −3

4, q+ and q− are
attracting periodic points of Qc.

(ix) Similarly show that for c < −5
4, q+ and q− are repelling periodic points.

(x) Deduce the Second Bifurcation Theorem A3.5.10 from what has been proved
above in this exercise.



510 APPENDIX 3: CHAOS THEORY AND DYNAMICAL SYSTEMS

A3.6 The Magic of Period 3: Period 3 Implies Chaos

A3.6.1 Remark. In 1964, the Soviet mathematician A.N. Sarkovskii published
the paper (Sarkovskii [336]) in Russian in a Ukranian journal. There he proved
a remarkable theorem which went unnoticed. In 1975 James Yorke and T-Y. Li
published the paper (Yorke and Li [404]) in the American Mathematical Monthly.
Even though the term “chaos” had previously been used in scientific literature, it
was this paper that initiated the popularisation of the term. The main result of
the paper, The Period Three Theorem, is astonishing, but is a very special case of
Sarkovskii’s Theorem, proved a decade earlier. The discussion here of The Period
Three Theorem is based on the presentation by Robert L. Devaney in his book
(Devaney [97]).

A3.6.2 Theorem. (The Period Three Theorem) Let f : R→ R be a
continuous function. If f has a periodic point of prime period 3, then for each
n ∈ N it has a periodic point of prime period n.

Proof. Exercises A3.6 #1–4. �
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A3.6.3 Remark. The Period Three Theorem is remarkable. But as stated
earlier, a much more general result is true. It is known as Sarkovskii’s Theorem. We
shall not give a proof, but simply point out that the proof is of a similar nature to
that above.

To state Sarkovskii’s Theorem we need to order the natural numbers is the
following curious way known as Sarkovskii’s ordering of the natural numbers:

3, 5, 7, 9, . . .

2 · 3, 2 · 5, 2 · 7, . . .
22 · 3, 22 · 5, 22 · 7 . . .
23 · 3, 23 · 5, 23 · 7 . . .

...

. . . , 2n, 2n−1, . . . , 23, 22, 21, 1.

A3.6.4 Theorem. (Sarkovskii’s Theorem) Let f : R → R be a
continuous function. If f has a periodic point of prime period n and n precedes
k in Sarkovskii’s ordering of the natural numbers, then f has a periodic point
of prime period k.
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A3.6.5 Remarks. (i) Firstly observe that as 3 appears first in Sarkovskii’s
ordering of the natural numbers, Sarkovskii’s Theorem implies The Period Three
Theorem.

(ii) Secondly note that as the numbers of the form 2n constitute the tail of
Sarkovskii’s ordering of the natural numbers, it follows that if f has only a
finite number of periodic points, then they must all be of the form 2n.

(iii) Thirdly note that Sarkovskii’s Theorem applies to continuous functions from R
into itself. If R is replaced by other spaces the theorem may become false.
However, R can be replaced by any closed interval [a, b]. To see this let
f : [a, b] → [a, b] be a continuous function. Then extend f to a continuous
function f ′ : R → R by defining f ′(x) = f(x), for x ∈ [a, b]; f ′(x) = f(a) if
x < a; and f ′(x) = f(b), if x > b. Then the Theorem for f can be deduced
from the Theorem for f ′.

It is remarkable that the converse of Sarkovskii’s Theorem is also true but we
shall not prove it here. See (Dunn [112])

A3.6.6 Theorem. (Converse of Sarkovskii’s Theorem) Let n ∈ N
and l precede n in Sarkovskii’s ordering of the natural numbers. Then there
exists a continuous function f : R → R which has a periodic point of prime
period n, but no periodic point of prime period l.

A3.6.7 Remark. From the Converse of Sarkovskii’s Theorem it follows, for
example, that there exists a continuous function of R into itself which has a periodic
point of prime period 6, and hence a periodic point of prime period of each even
number, but no periodic point of odd prime period except 1.

Exercises A3.6

1. Let f be a continuous mapping of an interval I into R. Using Propositions 4.3.5
and 5.2.1, prove that f(I) is an interval.
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2. Use the Weierstrass Intermediate Value Theorem 5.2.9 to prove the following
result:

Proposition A. Let a, b ∈ R with a < b and f : I = [a, b] → R a continuous
function. If f(I) ⊇ I, prove that f has a fixed point in I.

[Hints. (i) Show that there exists points s, t ∈ [a, b] such that f(s) = c 6 a 6 s

and f(t) = d > b > t.

(ii) Put g(x) = f(x) − x and observe that g is continuous and g(s) 6 0 and
g(t) > 0.

(iii) Apply the Weierstrass Intermediate Value Theorem to g.]

3. Use the Weierstrass Intermediate Value Theorem 5.2.9 to prove the following
result:

Propostion B. Let a, b ∈ R with a < b. Further, let f : [a, b] → R be a
continuous function and f([a, b]) ⊇ J = [c, d], for c, d ∈ R with c < d. Prove
that there is a subinterval I ′ = [s, t] of I = [a, b] such that f(I ′) = J .

[Hints. (i) Verify that f−1({c}) and f−1({d}) are non-empty closed sets.

(ii) Using (i) and Lemma 3.3.2 verify that there is a largest number s such that
f(s) = c.

(ii) Consider the case that there is some x > s such that f(x) = d. Verify that
there is a smallest number such that t > s and f(t) = d.

(iii) Suppose that there is a y ∈ [s, t] such that f(y) < c. Use the Weierstrass
Intermediate Value Theorem to obtain a contradiction.

(iv) Show also in a similar fashion that there is no z ∈ [s, t]. such that f(z) > d.

(v) Deduce that, under the condition in (ii), f([s, t]) = [c, d] = J , as required.

(vi) Now consider the case that there is no x > s such that f(x) = d. Let s′ be
the largest number such that f(s′) = d. Clearly s′ < s. Let t′ be the smallest
number such that t′ > s′ and f(t′) = c. Verify that f([s′, t′]) = [c, d] = J ,
as required.]
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4. Let f be as in The Period Three Theorem A3.6.2. So there exists a point a in
R of prime period 3. So f(a) = b, f(b) = c, and f(c) = a, where a 6= b, a 6= c,
and b 6= c. We shall consider the case a < b < c. The other cases are similarly
handled. Put I0 = [a, b] and I1 = [b, c].

(i) Using Exercise 1 above, verify that f(I0) ⊇ I1.

(ii) Using Exercise 1 above again, verify that f(I1) ⊇ I0 ∪ I1.
(iii) Deduce from (ii) and Proposition B above that there is a closed interval

A1 ⊆ I1, such that f(A1) = I1.

(iv) Noting that f(A1) = I1 ⊇ A1, use Proposition B above again to show there
exists a closed interval A2 ⊆ A1 such that f(A2) = A1.

(v) Observe that A2 ⊆ A1 ⊆ I1 and f2(A2) = I1.

(vi) Use mathematical induction to show that for n > 3 there are closed intervals
A1, A2, . . . , An−2 such that

An−2 ⊆ An−3 ⊆ · · · ⊆ A2 ⊆ A1 ⊆ I1

such that f(Ai) = Ai−1, i = 2, . . . , n− 2, and f(A1) = I1.

(vii) Deduce from (vi) that fn−2(An−2) = I1 and An−2 ⊆ I1.

(viii) Noting that f(I0) ⊇ I1 ⊇ An−2, show that there is a closed interval
An−1 ⊆ I0 such that f(An−1) = An−2.

(ix) Finally, using the fact that f(I1) ⊃ I0 ⊇ An−1, show that there is a closed
interval An ⊂ I1 such that f(An) = An−1.

(x) Putting the above parts together we see

An
f−→An−1

f−→ . . .
f−→A1 −→ I1

with f(Ai) = Ai−1 and fn(An) = I1. Use the fact that An ⊂ I1 and
Proposition A to show that there is a point x0 ∈ An such that fn(x0) = x0.

(xi) Observe from (x) that the point x0 is a periodic point of f of period n. [We
have yet to show that x0 is of prime period n.]

(xii) Using the fact that f(x0) ∈ An−1 ⊆ I0 and f i(x0) ∈ I1, for i = 2, . . . , n,
and I0 ∩ I1 = {b}, show that x0 is of prime period n. [Note the possibility
that f(x0) = b needs to be eliminated. This can be done by observing that
f3(x0) ∈ I1, but f2(b) = a /∈ I1.]

(xiii) From (xi) and (xii) and (vi), deduce that f has a periodic point of prime
period n for every n > 3. [We deal with the cases n = 1 and n = 2 below.]
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(xiv) Use Proposition A and the fact that f(I1) ⊇ I1 to show there is a fixed point
of f in I1; that is there exists a periodic point of prime period 1.

(xv) Note that f(I0) ⊇ I1 and f(I1) ⊇ I0. Using Proposition B show that
there is a closed interval B ⊆ I0 such that f(B) = I1. Then, observe
that f2(B) ⊇ I0, and from Proposition A, deduce that there exists a point
x1 ∈ B such that f2(x1) = x1. Verify that x1 ∈ B ⊆ I0 = [a, b] while
f(x1) ∈ f(B) = I1 = [b, c] and x1 6= b. Deduce that x1 is a periodic point of
prime period 2 of f . This completes the proof of The Period Three Theorem
A3.6.2.

5. (i) Show that The Period Three Theorem 3.6.2 would be false if R were
replaced by R2.
[Hint. Consider a rotation about the origin.]

(ii) Show that The Period Three Theorem A3.6.2 would be false if R were
replaced by Rn, n > 2.

(iii) Show that The Period Three Theorem A3.6.2 would be false if R were
replaced by S1, where S1 is the circle centred at the origin of radius 1 in R2.

6. Why is the Sarkovskii Theorem A3.6.4 true when R is replaced by the open
interval (a, b), for a, b ∈ R with a < b? [Hint. It’s easy to deduce from
Sarkovskii’s Theorem for R.]

A3.7 Chaotic Dynamical Systems

A3.7.1 Remarks. Today there are literally thousands of published research
papers and hundreds of books dealing with chaotic dynamical systems. These are
related to a variety of disciplines including art, biology, economics, ecology and
finance. It would be folly to try to give a definitive history of chaos, a term used
in the book of Genesis in the Bible and Hun-Tun (translated as chaos) in Taoism
(Girardot [155]), a philospohical tradition dating back 2,200 years in China to the
Han Dynasty. Here we focus on the twentieth century.

It would also be folly to try here to give the “correct” definition of the
mathematical concept of chaos. Rather, we shall give one reasonable definition,
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noting there are others which are inequivalent. Indeed some mathematicians assert
that no existing definition captures precisely what we want chaos to be.

As stated earlier, the 1975 paper of Yorke and Li [404] triggered widespread
interest in chaotic dynamical systems. However the previous year the Australian
scientist Robert M. May, later Lord Robert May and President of the prestigious
Royal Society of London published the paper [263] in which he stated “Some of
the simplest nonlinear difference equations describing the growth of biological
populations with nonoverlapping generations can exhibit a remarkable spectrum
of dynamical behavior, from stable equilibrium points, to stable cyclic
oscillations between 2 population points, to stable cycles with 4, 8, 16, .
. . points, through to a chaotic regime in which (depending on the initial
population value) cycles of any period, or even totally aperiodic but bounded
population fluctuations, can occur.”

Jules Henri Poincaré (1854–1912), one of France’s greatest mathematicians,
is acknowledged as one of the founders of a number of fields of mathematics
including modern nonlinear dynamics, ergodic theory, and topology. His work laid
the foundations for chaos theory. He stated in his 1903 book, a translated version
of which was republished in 2003 (Poincarè [309]): “If we knew exactly the laws
of nature and the situation of the universe at its initial moment, we could
predict exactly the situation of that same universe at a succeeding moment.
But even if it were the case that the natural laws had no longer any secret
for us, we could still only know the initial situation approximately. If that
enabled us to predict the succeeding situation with the same approximation,
that is all we require, and we should say that the phenomenon had been
predicted, that it is governed by laws. But it is not always so; it may happen
that small differences in the initial conditions produce very great ones in
the final phenomena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible”. What Poincaré described
quite precisely has subsequently become known colloquially as the butterfly effect,
an essential feature of chaos.
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In 1952 Collier’s magazine published a short story called “A Sound of Thunder”
by the renowned author, Ray Bradbury (1920–2012). In the story, http://www.

lasalle.edu/~didio/courses/hon462/hon462_assets/sound_of_thunder.htm a party of rich
businessmen use time travel to journey back to a prehistoric era and go on a safari to
hunt dinosaurs. However, one of the hunters accidentally kills a prehistoric butterfly,
and this innocuous event dramatically changes the future world that they left. This
was perhaps the incentive for a meteorologist’s presentation in 1973 to the American
Association for the Advancement of Science in Washington , D.C. being given
the name “Predictability: Does the flap of a butterfly’s wings in Brazil set off a
tornado in Texas?” The meteorologist was Edward Norton Lorenz (1917–2008) and
the flapping wing represented a tiny change in initial conditions causing enormous
changes later. Lorenz discovered sensitivity to initial conditions by accident. He
was running on a computer a mathematical model to predict the weather. Having
run a particular sequence, he decided to replicate it. He re-entered the number
from his printout, taken part-way through the sequence, and let it run. What
he found was that the new results were radically different from his first results.
Because his printout rounded to three decimal places, he had entered the number
.506 than the six digit number .506127. Even so, he would have expected that the
resulting sequence would differ only slightly from the original run. Since repeated
experimentation proved otherwise, Lorenz concluded that the slightest difference
in initial conditions made a dramatic difference to the outcome. So prediction
was in fact impossible. Sensitivity to initial conditions, or the butterfly effect, had
been demonstrated to be not just of theoretical importance but in fact of practical
importance in meteorology. It was a serious limitation to predicting the weather –
at least with that model. Perhaps this effect was evident also in a variety of other
practical applications.

The American mathematicians George David Birkoff (1884-1944) and Harold
Calvin Marston Morse (1892–1977) continued Poincaré’s work on dynamical systems.
While Poincaré had made use of topology in the theory of dynamical systems,
Birkhoff, in particular, supplemented this by the use of Lebesgue measure theory. In
1931 Birkhoff and P.A. Smith in their paper [42] introduced the concept of metric
transitivity which is central in ergodic theory and was used by Robert L. Devaney in
1986 in his widely published definition of, and approach to, chaos.

http://www.lasalle.edu/~didio/courses/hon462/hon462_assets/sound_of_thunder.htm
http://www.lasalle.edu/~didio/courses/hon462/hon462_assets/sound_of_thunder.htm
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The three conditions: transitivity, sensitivity to initial conditions, and density of
of periodic points as appeared in The Period Three Theorem, were precisely what
Devaney used in his definition of chaos. �

A3.7.2 Definition. Let (X, d) be a metric space and f : X → X a mapping
of the set X into itself. Then (X, f) is said to be a dynamical system.

A3.7.3 Remark. It would be much more appropriate to denote the dynamical
system as (X, d, f), however in the literature the convention is not do this.

A3.7.4 Definition. Let (X, d) be a metric space and f : X → X a mapping
of X into itself. Then the dynamical system (X, f) is said to be transitive if
given x, y ∈ X, and any ε > 0, there exists a z ∈ X and an n ∈ N, such that
d(z, y) < ε and d(fn(z), x) < ε.

A3.7.5 Remark. Roughly speaking, transitivity says that there is a point z
“close” to y such that some point in the orbit of z is “close” to x.

A3.7.6 Remark. At long last we shall define chaos. However, care needs to
be taken as there is a number of inequivalent definitions of chaos in the literature as
well as many writers who are vague about what they mean by chaos. Our definition
is that used by Robert L. Devaney, with a modification resulting from the work of a
group of Australian mathematicians, Banks et al. [30], in 1992.

A3.7.7 Definition. The dynamical system (X, f) is said to be chaotic if

(i) the set of all periodic points of f is dense in the set X, and

(ii) (X, f) is transitive.
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A3.7.8 Remark. Until 1992 it was natural to add a third condition in the
definition of chaotic dynamical systems. This condition is that in the dynamical
system (X, f), f depends sensitively on initial conditions. However in 1992 a group
of mathematicians from La Trobe University in Melbourne, Australia proved that this
condition is automatically true if the two conditions in Definition A3.7.7 hold. Their
work appeared in the paper “On Devaney’s definition of chaos" by the authors John
Banks, Gary Davis, Peter Stacey, Jeff Brooks and Grant Cairns in the American
Mathematical Monthly (Banks et al. [30]). See also (Banks et al. [31]).

A3.7.9 Definition. The dynamical system (X, f) is said to depend
sensitively on initial conditions if there exists a β > 0 such that for any
x ∈ X and any ε > 0 there exists n ∈ N and y ∈ X with d(x, y) < ε such that
d(fn(x), fn(y)) > β.

A3.7.10 Remark. This definition says that no matter which x we begin
with and how small a neighbourhood of x we choose, there is always a y in this
neighbourhood whose orbit separates from that of x by at least β. [And β is
independent of x.]

A3.7.11 Remark. What we said in Remark A3.7.8 is that every chaotic
dynamical system depends sensitively on initial conditions. We shall not prove
this here. But we will show in Exercises A3.7 #2 that the doubling map does indeed
depend sensitively on initial conditions.

A3.7.12 Remark. In 1994, Michel Vellekoop and Raoul Berglund [381] proved
that in the special case that (X, d) is a finite or infinite interval with the Euclidean
metric, then transitivity implies condition (ii) in Definition A3.7.7, namely that the
set of all periodic points is dense. However, David Asaf and Steve Gadbois [203]
showed this is not true for general metric spaces.
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Exercises A3.7

1. Let D : [0, 1)→ [0, 1) given by D(x) = 2x (mod 1) be the doubling map. Prove
that the dynamical system ([0, 1), D) is chaotic.

[Hints. Recall that in Exercises A3.4 #7 it was proved that the set of all
periodic points of D is

P =
∞⋃
n=1

{
0,

1

2n − 1
,

2

2n − 1
,

3

2n − 1
, . . . ,

2n − 2

2n − 1

}
.

and that the set P is dense in [0, 1). So condition (i) of Definition A3.7.7 is
satisfied. To verify condition (ii) use the following steps:

(a) Let x, y ∈ [0, 1) and ε > 0 be given. Let n ∈ N be such that 2−n < ε. For
k ∈ {1, 2, . . . , n}, let

Jk,n =

[
k − 1

2n
,
k

2n

)
.

Show that there exists a k ∈ {1, 2, . . . , n}, such that x ∈ Jk,n.
(b) Verify that fn(Jk,n) = [0, 1).

(c) Deduce from (b) that there exists a z ∈ Jk,n such that fn(z) = y.

(d) Deduce that z has the required properties of Definition A3.7.4 and so
([0, 1), D) is a transitive dynamical system.

(e) Deduce that ([0, 1), D) is a chaotic dynamical system.]

2. Prove that the doubling map of Exercise 1 above depends sensitively on initial
conditions.

[Hints. Let β = 1
4. Given any ε > 0, let n ∈ N be such that 2−n < ε. Put

s = fn(x) + 0.251 (mod 1). Firstly, verify that d(fn(x), s) > β. As observed
in Exercise 1(a), x ∈ Jk,n, for some k ∈ {1, 2, . . . , n}. But by Exercise 1(b),
fn(Jk,n) = [0, 1). Let y ∈ Jk,n be such that fn(y) = s. Now verify that y has
the required properties (i) d(x, y) < ε and (ii) d(fn(x), fn(y) > β.]

3. Letm be a (fixed) positive integer and consider the dynamical system ([0, 1), fm)

where fm(x) = mx (mod 1). Prove that ([0, 1), fm) is chaotic.

[Hint. See Exercise 1 above.]
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4. Let (X,τ ) be a topological space and f a continuous mapping of X into itself.
Then f is said to be topologically transitive if for any pair of non-empty open
sets U and V in (X,τ ) there exists an n ∈ N such that fk(U) ∩ V 6= Ø. For
X, d) a metric space and τ the topology induced by the metric d, prove that f
is transitive if and only if it is topologically transitive.

A3.8 Conjugate Dynamical Systems

A3.8.1 Definition. Let (X1, d1) and (X2, d2) be metric spaces and (X1, f1)

and (X2, f2) dynamical systems. Then (X1, f1) and (X2, f2) are said to be
conjugate dynamical systems if there is a homeomorphism h : (X1, d1) →
(X, d2) such that f2 ◦ h = h ◦ f1; that is, f2(h(x)) = h(f1(x)), for all x ∈ X1.
The map h is called a conjugate map.

3A.8.2 Remark. In Exercises A3.8 #2 it is verfied that if (X1, f1) and (X2, f2)

are conjugate dynamical systems, then (X2, f2) and (X1, f1) are conjugate dynamical
systems. So we see that the order in which the dynamical systems are considered is
of no importance. �

A3.8.3 Remark. Conjugate dynamical systems are equivalent in the same
sense that homeomorphic topological spaces are equivalent. The next theorem
demonstrates this fact. Very often it will be possible to analyze a complex dynamical
system by showing it is conjugate to one we already understand. �
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A3.8.4 Theorem. Let (X1, f1) and (X2, f2) be conjuagate dynamical
systems, where h is the conjugate map.

(i) A point x ∈ X1 is a fixed point of f1 in X1 if and only if h(x) is a fixed
point of f2 in X2.

(ii) A point x ∈ X1 is a periodic point of period n ∈ N of f1 in X1 if and only
if h(x) is a periodic point of period n of f2 in X2.

(iii) The dynamical system (X, f1) is chaotic if and only if the dynamical system
(X, f2) is chaotic.

Proof. (i) and (ii) are straightforward and left as exercises for you.
To see (iii), assume that (X1, f1) is chaotic. Let P be the set of periodic points

of f1. As (X1, f1) is chaotic, P is dense in X1. As h is a continuous, it is easily seen
that h(P ) is dense in the set h(X1) = X2. As h(P ) is the set of periodic points of
(X2, f2), it follows (X2, f2) satisfies condition (i) of Definition A3.7.7.

To complete the proof, we need to show that (X2, f2) is transitive. To this end,
let ε > 0 and u, v ∈ X2. Then there are x, y ∈ X1 such that h(x) = u and h(y) = v.
Since h is continuous, it is continuous at the points x, y ∈ X1. Thus, there exists a
δ > 0 such that

z ∈ X1 and d1(x, z) < δ ⇒ d2(h(x), h(z)) < ε, (13.1)

and
z′ ∈ X1 and d1(y, z′) < δ ⇒ d2(h(y), h(z′)) < ε. (13.2)

As (X1, f1) is transitive, there is a z ∈ X1 and n ∈ N, such that

d1(x, z) < δ ⇒ d1(fn1 (z), y) < δ. (13.3)

Let z be chosen so that (13.3) holds, and put w = h(z). Using this value for z in
(13.1), and taking fn1 (z) as z′ in (13.2), we obtain

d2(u,w) = d2(h(x), h(z)) < ε, from (13.1) and (13.3) (13.4)

and
d2(fn2 (w), v) = d2(fn2 (h(z)), h(y)),

= d2(h(fn1 (z), h(y)), as h ◦ f1 = f2 ◦ h,
< ε, (13.5)

from (2) and (3). Now from (13.4) and (13.5) it follows that (X2, f2) is transitive.�
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Exercises A3.8

1. Let T : [0, 1]→ [0, 1] be the tent function given by

T (x) =

{
2x, for 0 6 x 6 1

2 ,

2− 2x, for 1
2 6 x 6 1.

(i) Sketch the graph of T .

(ii) Calculate the formula for T 2 and sketch the graph of T 2.

(iii) Calculate the formula for T 3 and sketch the graph of T 3.

(iv) Let Ik,n = [k−1
2n ,

k
2n ], for k ∈ {1, 2, . . . , 2n − 1}, n ∈ N. Verify that

Tn(Ik,n) = [0, 1].

(v) Using Proposition A of Exercises 3.6 #2, show that Tn has a fixed point in
each Ik,n.

(vi) Deduce from (v) that there is a periodic point of T in each Ik,n.

(vii) Using the above results show that (T, [0, 1]) is a chaotic dynamical system.

2. Verify that if (X1, f1) and (X2, f2) are conjugate dynamical systems then (X2, f2)

and (X1, f1) are conjugate dynamical systems. (So the order in which the
dynamical systems are considered is of no importance.)

3. Let L : [0, 1]→ [0, 1] be the logistic function given by L(x) = 4x(1− x).

(i) Show that the map h : [0, 1] → [0, 1] given by h(x) = sin2(π2x), is a
homeomorphism of [0, 1] onto itself such that h ◦ T = L ◦ h, where T is
the tent function.

(ii) Deduce that ([0, 1], T ) and ([0, 1], L) are conjugate dynamical systems.

(iii) Deduce from (ii), Theorem A3.8.4 and Exercise 1 above that ([0, 1], L) is a
chaotic dynamical system.

4. Consider the quadratic map Q−2 : [−2, 2]→ [−2, 2], where Q−2(x) = x2 − 2.

(i) Prove that the dynamical systems ([−2, 2], Q−2) and ([0, 1], L) of Exercise 3
above are conjugate.

(ii) Deduce that ([−2, 2], Q−2) is a chaotic dynamical system.
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§A4.0 Introduction

In this section we introduce the notion of Hausdorff Dimension which plays an
important role in the study of fractals.

A4.1 Hausdorff Dimension

We begin by warning the reader that this section is significantly more complicated
than much of the material in the early chapters of this book. Further, an
understanding of this section is not essential to the understanding of the rest of
the book.

We think of points as 0-dimensional, lines as 1-dimensional, squares as 2-
dimensional, cubes as 3-dimensional etc. So intuitively we think we know what the
notion of dimension is. For arbitrary topological spaces there are competing notions
of topological dimension. In “nice” spaces, the different notions of topological
dimension tend to coincide. However, even the well-behaved euclidean spaces, Rn,
n > 1, have surprises in store for us.

In 1919 Felix Hausdorff [166] introduced the notion of Hausdorff dimension of
a metric space. A surprising feature of Hausdorff dimension is that it can have
values which are not integers. This topic was developed by Abram Samoilovitch
Besicovitch [39] a decade or so later, but came into prominence in the 1970s with
the work of Benoit Mandelbrot on what he called fractal geometry and which spurred
the development of chaos theory. Fractals and chaos theory have been used in a
very wide range of disciplines including economics, finance, meteorology, physics,
and physiology.

We begin with a discussion of Hausdorff measure (or what some call Hausdorff-
Besicovitch measure). Some readers will be familiar with the related notion of
Lebesgue measure, however such an understanding is not essential here.

A4.1.1 Definition. Let Y be a subset of a metric space (X, d). Then the
number sup{d(x, y) : x, y ∈ Y } is said to be the diameter of the set Y and is
denoted diamY .
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A4.1.2 Definition. Let Y be a subset of a metric space (X, d), I an index
set, ε a positive real number, and {Ui : i ∈ I} a family of subsets of X such
that Y ⊆

⋃
i∈I

Ui and, for each i ∈ I, diamUi < ε. Then {Ui : i ∈ I} is said to

be an ε-covering of the set Y .

We are particularly interested in ε-coverings which are countable. So we are led
to ask: which subsets of a metric space have countable ε-coverings for all ε > 0?
The next Proposition provides the answer.

A4.1.3 Proposition. Let Y be a subset of a metric space (X, d) and d1

the induced metric on Y . Then Y has a countable ε-covering for all ε > 0 if
and only if (Y, d1) is separable.

Proof. Assume that Y has a countable ε-covering for all ε > 0. In particular Y
has a countable (1/n)-covering, {Un,i : i ∈ N}, for each n ∈ N. Let yn,i be any
point in Y ∩Un,i. We shall see that the countable set {yn,i : i ∈ N, n ∈ N} is dense
in Y. Clearly for each y ∈ Y , there exists an i ∈ N, such that d(y, yn,i) < 1/n. So
let O be any open set intersecting Y non-trivially. Let y ∈ O ∩ Y . Then O contains
an open ball B centre y of radius 1/n, for some n ∈ N. So yn,i ∈ O, for some i ∈ N.
Thus {yn,i : i ∈ N, n ∈ N} is dense in Y and so Y is separable.

Conversely, assume that Y is separable. Then it has a countable dense subset
{yi : i ∈ N}. Indeed, given any y ∈ Y and any ε > 0, there exists a yi, i ∈ N, such
that d(y, yi) < ε/2. So the family of all {Ui : i ∈ N}, where Ui is the open ball
centre yi and radius ε/2 is an ε-covering of Y , as required. �

We are now able to define the Hausdorff s-dimensional measure of a subset of
a metric space. More precisely, we shall define this measure for separable subsets of
a metric space. Of course, if (X, d) is a separable metric space, such as Rn, for any
n ∈ N, then all of its subsets are separable. (See Exercises 6.3 #15.)
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A4.1.4 Definition. Let Y be a separable subset of a metric space (X, d)

and s a positive real number. For each positive real number ε < 1, put

Hsε(Y ) = inf

{∑
i∈N

(diamUi)
s : {Ui : i ∈ N} is an ε-covering of Y

}
, and

Hs(Y ) =

 lim
ε→0
ε>0

Hsε(Y ), if the limit exists;

∞, otherwise.

Then Hs(Y ) is said to be the s-dimensional Hausdorff outer measure of the
set Y .

A4.1.5 Remark. Note that in Definition A4.1.4, if ε1 < ε2, then Hsε1(Y ) >

Hsε2(Y ). So as ε tends to 0, either the limit of Hsε(Y ) exists or it tends to ∞. This
helps us to understand the definition of Hs(Y ). �

A4.1.6 Remark. It is important to note that if d1 is the metric induced on Y
by the metric d on X, then Hs(Y ) depends only on the metric d1 on Y . In other
words if Y is also a subset of the metric space (Z, d2) and d2 induces the same
metric d1 on Y , then Hs(Y ) is the same when considered as a subset of (X, d) or
(Y, d2). So, for example, the s-dimensional Hausdorff outer measure is the same for
the closed interval [0,1] whether considered as a subset of R or of R2 or indeed of
Rn, for any positive integer n. �
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A4.1.7 Lemma. Let Y be a separable subset of a metric space (X, d), s
and t positive real numbers with s < t, and ε a positive real number < 1. Then

(i) Ht
ε(Y ) 6 Hs

ε (Y ), and

(ii) Ht
ε(Y ) 6 εt−sHs

ε (Y ).

Proof. Part (i) is an immediate consequence of the fact that ε < 1 and so each
diamUi < 1, which implies (diamUi)

t < (diamUi)
s. Part (ii) follows from the fact

that diamUi < ε < 1 and so (diamUi)
t < εt−s(diamUi)

s. �

A4.1.8 Proposition. Let Y be a separable subset of a metric space (X, d)

and s and t positive real numbers with s < t.

(i) If Hs(Y ) <∞, then Ht(Y ) = 0.

(ii) If 0 6= Ht(Y ) <∞, then Hs(Y ) =∞.

Proof. These follow immediately from Definition A4.1.3 and Lemma A4.1.7ii).�

A4.1.9 Remark. From Proposition A4.1.8 we see that if Hs(Y ) is finite and
non-zero for some value of s, then for all larger values of s, Hs(Y ) equals 0 and for
all smaller values of s, Hs(Y ) equals ∞. �

Proposition A4.1.8 allows us to define Hausdorff dimension.

A4.1.10 Definition. Let Y be a separable subset of a metric space (X, d).
Then

dimH(Y ) =

{
inf{s ∈ [0,∞) : Hs(Y ) = 0}, if Hs(Y ) = 0 for some s > 0;
∞, otherwise

is called the Hausdorff dimension of the set Y .
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We immediately obtain the following Proposition.

A4.1.11 Proposition. Let Y be a separable subset of a metric space
(X, d). Then

(i) dimH(Y ) =

0, if Hs(Y ) = 0 for all s;
sup{s ∈ [0,∞) : Hs(Y ) =∞}, if the supremum exists;
∞, otherwise.

(ii) Hs(Y ) =

{
0, if s > dimH(Y );
∞, if s < dimH(Y ).

�

The calculation of the Hausdorff dimension of a metric space is not an easy
exercise. But here is an instructive example.

A4.1.12 Example. Let Y be any finite subset of a metric space (X, d). Then
dimH(Y ) = 0.

Proof. Put Y = {y1, y2, . . . , yN}, N ∈ N. Let Oε(i) be the open ball centre yi
and radius ε/2. Then {Oi : i = 1, . . . , N} is an ε-covering of Y . So

Hsε(Y ) = inf

{∑
i∈N

(diamUi)
s : {Ui} an open covering of Y }

}

6
N∑
i=1

(diamOi)
s = εs.Ns+1/2s.

Thus Hs(Y ) 6 lim
ε→0
ε>0

εs.Ns+1/2s = 0. So Hs(Y ) = 0, for all s > 0. Hence

dimH(Y ) = 0. �

The next Proposition is immediate.

A4.1.13 Proposition. If (Y1, d1) and (Y2, d2) are isometric metric spaces,
then

dimH(Y1) = dimH(Y2). �



530 APPENDIX 4: HAUSDORFF DIMENSION

A4.1.14 Proposition. Let Z and Y be separable subsets of a metric space
(X, d). If Z ⊂ Y , then dimH(Z) 6 dimH(Y ).

Proof. Exercise. �

A4.1.15 Lemma. Let Y =
⋃
i∈N

Yi be a separable subset of a metric space

(X, d). Then

Hs(Y ) 6
∞∑
i=1

Hs(Yi).

Proof. Exercise. �

A4.1.16 Proposition. Let Y =
⋃
i∈N

Yi be a separable subset of a metric

space (X, d). Then

dimH(Y ) = sup{dimH(Yi) : i ∈ N}.

Proof. It follows immediately from Lemma A4.1.15 that

dimH(Y ) 6 sup{dimH(Yi) : i ∈ N}.

However, by Proposition A4.1.14, dimH(Y ) > dimH(Yi), for each i ∈ N. Putting
these two observations together completes the proof of the Proposition. �
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A4.1.17 Proposition. If Y is a countable subset of a metric space (X, d),
then dimH(Y ) = 0.

Proof. This follows immediately from Proposition A4.1.16 and Example A4.1.12
�

In particular, Proposition A4.1.17 tells us that dimH(Q) = 0.

A4.1.18 Example. Let [a, a+ 1], a ∈ R be a closed interval in R, where R has
the euclidean metric. Then dimH [a, a+ 1] = dimH [0, 1] = dimH(R).

Proof. Let da be the metric induced on [a, a + 1] by the euclidean metric on
R. Then ([a, a + 1], da) is isometric to ([0, 1], d0), and so by Proposition A4.1.13,
dimH [a, a+ 1] = dimH [0, 1].

Now observe that R =
∞⋃

a=−∞
[a, a+ 1]. So

dimH(R) = sup{dimH [a, a+1] : a = . . . ,−n, . . . ,−2,−1, 0, 1, 2, . . . , n, . . . } = dimH [0, 1],

as each dimH [a, a+ 1] = dimH [0, 1]. �

A4.1.19 Proposition. Let (X, d1) and (Y, d2) be separable metric spaces
and f : X → Y a surjective function. If there exist positive real numbers a and
b, such that for all x1, x2 ∈ X,

a.d1(x1, x2) 6 d2(f(x1), f(x2)) 6 b.d1(x1, x2),

then dimH(X, d1) = dimH(Y, d2).

Proof. Exercise �
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A4.1.20 Remark. In some cases Proposition A4.1.19 is useful in calculating
the Hausdorff dimension of a space. See Exercises 6.6 #7 and #8.

Another useful device in calculating Hausdorff dimension is to refine the definition
of the s-dimensional Hausdorff outer measure as in the following Proposition, where
all members of the ε-covering are open sets.

A4.1.21 Proposition. Let Y be a separable subset of a metric space (X, d)

and s a positive real number. If for each positive real number ε < 1,

Osε(Y ) = inf

{∑
i∈N

(diamOi)
s : {Oi : i ∈ N} is an ε-covering of Y by open sets Oi

}
,

then Osε(Y ) = Hsε(Y ).

Further Hs(Y ) =

 lim
ε→0
ε>0

Osε(Y ), if the limit exists;

∞, otherwise.

Proof. Exercise.

A4.1.22 Lemma. Let Y be a connected separable subset of a metric space
(X, d). If {Oi : i ∈ N} is a covering of Y by open sets Oi, then∑

i∈N
diamOi > diamY

Proof. Exercise. �

A4.1.23 Example. Show H1[0, 1] > 1.

Proof. If we put Y = [0, 1] in Lemma A4.1.22 and s = 1 in Proposition A4.1.21,
noting diam[0, 1] = 1 yields H1

ε[0, 1] > 1, for all ε > 0. This implies the required
result. �



533

A4.1.24 Proposition. Let [0, 1] denote the closed unit interval with the
euclidean metric. Then dimH [0, 1] = 1.

Proof. From Proposition A4.1.11, it suffices to show that 0 6= H1[0, 1] < ∞.
This is the case if we show H1[0, 1] = 1.

For any 1 > ε > 0, it is clear that the interval [0, 1] can be covered by nε
intervals each of diameter less than ε, where nε 6 2 + 1/ε. So H1

ε[0, 1] 6 ε(2 + 1/ε);
that is, H1

ε[0, 1] 6 1 + 2ε. Thus H1[0, 1] 6 1. From Example A4.1.23, we now have
H1[0, 1] = 1, from which the Proposition follows. �

A similar argument to that above shows that if a, b ∈ R with a < b, where R has
the euclidean metric, then dimH [a, b] = 1. The next Corollary includes this result
and is an easy consequence of combining Proposition A4.1.24, Example A4.1.18,
Proposition A4.1.14, Proposition 4.3.5, and the definition of totally disconnected in
Exercises 5.2 #10.

A4.1.25 Corollary. Let R denote the set of all real numbers with the
euclidean metric.

(i) dimH R = 1.

(ii) If S ⊂ R, then dimH S 6 1.

(iii) If S contains a non-trivial interval (that is, is not totally disconnected), then
dimH S = 1.

(iv) If S is a non-trivial interval in R, then dimH S = 1.

Proof. Exercise �

A4.1.26 Remark. In fact if Rn has the euclidean metric, with n ∈ N, then it is
true that dimH Rn = n. This is proved in Exercises A4.1 #15. However, the proof
there depends on the Generalized Heine-Borel Theorem 8.3.3 which is not proved
until Chapter 8. �
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This appendix on Hausdorff dimension is not yet complete. From time to time
please check for updates. �

Exercises A4.1

1. Let Y be a subset of a metric space (X, d) and Y its closure. Prove that
diamY = diamY .

2. Prove Proposition A4.1.14.
[Hint. Use Definitions A4.1.4 and A4.1.10.]

3. Prove Lemma A4.1.15.

4. If Y =
n⋃
i=1

Yi, for some n ∈ N, is a separable subset of a metric space (X, d),

show that dimH(Y ) = sup{dimH(Yi) : i = 1, 2 . . . , n}.

5. (i) Let n ∈ N, and a, b ∈ Rn. Show that if r and s are any positive real
numbers, then the

open balls Br(a) and Bs(b) in Rn with the euclidean metric satisfy

dimH Br(a) = dimH Bs(b).

(ii) Using the method of Example A4.1.18, show that dimH Br(a) = dimRn.

(ii) If S1 is the open cube {〈x1, x2, . . . , xn〉 ∈ Rn : 0 < xi < 1, i = 1, . . . , n},
prove that dimH S1 = dimH Rn.

(iii)* Using the method of Proposition A4.1.24, show that if n = 2 then H2(S1) 6

2 and so dimH(S1) 6 2.

(iv) Prove that dimH R2 6 2.

(v)* Using an analogous argument, prove that dimH Rn 6 n, for all n > 2.

6. Prove Proposition A4.1.19.
[Hint. Prove that as.Hs(X) 6 Hs(Y ) 6 bs.Hs(X).]
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7. Let f : R → R2 be the function given by f(x) = 〈x, x2〉. Using Proposition
A4.1.19, show that dimH f [0, 1] = dimH [0, 1]. Deduce from this and Proposition
A4.1.16 that if Y is the graph in R2 of the function θ : R→ R given by θ(x) = x2,
then dimH(Y ) = dimH [0, 1].

8. Using an analogous argument to that in Exercise 7 above, show that if Z is the
graph in R2 of any polynomial φ(x) = anx

n + an−1x
n−1 + . . . a2x

2 + a1x + a0,
where an 6= 0, then dimH Z = dimH [0, 1].

9.* Let g : R → R be a function such that the nth-derivative g(n) exists, for each
n ∈ N. Further assume that there exists a K ∈ N, |g(n)(x)| < K, for all
n ∈ N and all x ∈ [0, 1]. (Examples of such functions include g = exp, g = sin,
g = cos, and g is a polynomial.) Using the Taylor series expansion of g, extend
the method of Exercises 7 and 8 above to show that if f : R → R2 is given by
f(x) = 〈x, g(x)〉, then dimH f [0, 1] = dimH [0, 1].

10. Prove Proposition A4.1.21.
[Hint. Firstly prove that if z is any positive real number greater than 1, and Ui
is any set in (X, d) of diameter less than ε, then there exists an open set Oi
such that (i) Ui ⊆ Oi, (ii) diamOi < ε, and (iii) diamOi 6 z. diamUi. Use this
to show that Osε(Y ) 6 zs.Hsε(Y ), for all z > 1.]

11. Prove Lemma A4.1.22.
[Hint. First assume that Y is covered by 2 open sets and prove the analogous
result. Then consider the case that Y is covered by a finite number of open
sets. Finally consider the case of an infinite covering remembering a sum of an
infinite number of terms exists (and is finite) if and only if the limit of the finite
sums exist.]

12. Show that if P denotes the set of all irrational numbers with the euclidean metric,
then dimH P = 1

13. Fill in the details of the proof of Corollary A4.1.25.
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14. The Generalized Heine-Borel Theorem 8.3.3 proved in Chapter 8, implies that
if {Oi : i ∈ N} is an ε-covering of the open cube S1 of Example 5 above, then
there exists an N ∈ N, such that {O1, O2, . . . , ON} is also an ε-covering of
S1. Using this, extend Proposition A4.1.21 to say that: For every positive real
number ε,

Hsε(S1) = inf


N∑
i=1

(diamOi)
s


where N ∈ N and O1, . . . , ON is an open ε covering of S1.

Warning: Note that this Exercise depends on a result not proved until Chapter
8.

15. (i) Show that if O is a subset of R2 with the euclidean metric, and A is its
area,

then A 6 π
4 .(diamO)2.

(ii) Deduce from (i) that if O1, O2, . . . , ON is an ε-covering of S1 in R2 of
Example 5 above, then

N∑
i=1

(diamOi)
2 >

4

π
.

(iii) Deduce from (ii) and Exercise 14 above that H2(S1) > 4
π .

(iv) Using (iii) and Exercise 5, prove that dimH(S1) = dimH R2 = 2.

(v) Using an analogous method to that above, prove that dimH Rn = n, where
Rn has the euclidean metric.

(vi) Prove that if S is any subset of Rn with the euclidean metric, such that S
contains a non-empty open ball in Rn, the dimH S = n.

Warning: Note that (iii), (iv), (v), and (vi) of this Exercise depend on a result
proved in Chapter 8.



Appendix 5: Topological Groups

Contents of Appendix 5: Topological Groups

§A5.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
§A5.1 Topological Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
§A5.2 Subgroups and Quotient Groups of Topological Groups . . . . . . . . . . . . . . . 574
§A5.3 Embedding in Divisible Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
§A5.4 Baire Category and Open Mapping Theorems . . . . . . . . . . . . . . . . . . . . . . . . 589
§A5.5 Subgroups and Quotient Groups of Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
§A5.6 Uniform Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
§A5.7 Dual Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
§A5.8 Pontryagin–van Kampen Duality Theorem: Introduction . . . . . . . . . . . . . . 616
§A5.9 Dual Groups of Subgroups, Quotients, and Finite Products . . . . . . . . . . . 619
§A5.10 Peter-Weyl Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
§A5.11 The Duality Theorem for Compact Groups and Discrete Groups . . . . . . 628
§A5.12 Monothetic LCA-groups and Compactly Generated LCA-groups . . . . . . . 634
§A5.13 The Duality Theorem and the Principal Structure Theorem. . . . . . . . . . . 644
§A5.99 Credit for Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

537



538 APPENDIX 5: TOPOLOGICAL GROUPS



539

A5.0 Introduction

In this Appendix we give an introduction to the theory of topological groups, the
Pontryagin-van Kampen duality and structure theory of locally compact abelian
groups10 It assumes that the reader is familiar with the notion of group as is
included in an introductory course on group theory or usually in an introductory
course on abstract algebra11.

We shall begin by Meandering Through a Century of Topological Groups.

This sets the stage for the study of topological groups, however the impatient
reader can move onto §A5.1.

10Most of the material is this Appendix is taken from Morris [277].
11A beautiful book on group theory is available as a free download. It is Macdonald [253].
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Klein

Plücker

Clebsch

In 1872 (Christian) Felix Klein, aged 23, was
appointed to a full Professorship at Erlangen in
Germany. In his first year as Professor he published
the ‘Erlangen Program12’.

In his 1925 obituary of Klein, Richard Courant13

wrote, this is “perhaps the most influential and
widely read paper in the second half of the
nineteenth century”.

In 1940 Julian Lowell Coolidge14 wrote that it
“probably influenced geometrical thinking more than
any other work since the time of Euclid, with the
exception of Gauss and Riemann”.

Klein was influenced by Julius Plücker (1801–
1868) and Rudolf Friedrich Alfred Clebsch(1833–
1872), both of whom had made significant
contributions to geometry.

Klein completed his PhD in 1868 at the age
of 19, shortly after his (first) PhD adviser, Julius
Plücker15, died.

After Plücker’s death, Klein came under the
influence of Rudolf Clebsch16, who assisted Klein
obtain the Professorship at Erlangen. [Clebsch
died in 1872 before the publication of the Erlangen
Program.] When Clebsch died, most of his PhD
students moved to Erlangen and became students17

of Klein.

12‘Erlanger Programm’ in German,
13“Felix Klein”, Jahresbericht der Deutschen Math. Vereiningung 34 (1925), 197–213.
14“A History of Geometrical Methods”, Oxford: Clarendon Press, 1940.
15Plücker was a mathematical descendant of Carl Friedrich Gauss. Klein was also a mathematical

descendant of Leonhard Euler via his second PhD adviser Rudolf Otto Sigismund Lipschitz
16Clebsch and Carl Neumann founded ‘Mathematische Annalen’ and Klein made it one of the best

mathematics journals.
17Klein had a total of 57 PhD students and now has over 30,000 mathematical descendants

[including Karl Hofmann with whom I have coauthored books on compact groups and pro-Lie groups].
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The Mathematical Geneaology Project
www.genealogy.math.ndsu.nodak.edu

has the following information, where we see for example that Kein supervised the
PhD research of Lindemann who in turn supervised the PhD research of Hilbert.

d’Alembert Euler

Laplace Lagrange

Gauss Poisson Fourier

Gerling Dirichlet

Plücker Lipschitz

Klein

Lindemann

Hilbert
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Amongst these students who transferred to Klein was Ferdinand Lindemann,
who in 1882 proved that π is a transcendental number; that is, π is not a root of
any polynomial with rational number coefficients.

It was known that if π were transcendental, then the 2,000 year old problem of
squaring the circle by compass and straightedge would be solved in the negative.

Three ancient problems,

(i) Delian problem – doubling the cube, i.e. constructing a cube of volume double
that of a given cube,

(ii) trisecting any given angle,
(iii) squaring the circle (or quadrature of the circle), that is constructing a square

whose area equals that of a given circle,

in each case using only a straight edge and compass , fascinated professional &
amateur mathematicians alike. (See Jones et al. [210].)

www.genealogy.math.ndsu.nodak.edu
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Wantzel

Lindemann

In 1775 the Paris Academy found it necessary to
pass a resolution that no more solutions of any of these
problems or of machines exhibiting perpetual motion
were to be examined.

Why did it take so long for these problems to be
solved?

It was because an understanding came not from
geometry but from abstract algebra (actually field
theory) a subject not born until the 19th century.
The first two problems were solved by Pierre Laurent
Wantzel (1814–1848) in 1837 and the third by Carl
Louis Ferdinand von Lindemann.

The field theory used in solving these ancient problems was also used by Robert
Henry Rischin the Risch Algorithm, https://en.wikipedia.org/wiki/Risch_algorithm,
in 1968 which transforms the problem of indefinite integration into a problem in
algebra. The algorithm is partly implemented in the popular computer algebra
package Maple18.

So we see abstract algebra played a vital role in solving geometry problems
dating back 2,000 years and played a key role in the progress of computer algebra.

Now we set the stage for the Erlangen Program of Felix Klein.

We have all met Euclidean geometry which has points, lines, angles, and a metric
(distance) and of course the famous Pythagoras theorem for right angled triangles
which says that the square of the length of the hypotenuse equals the sum of the
squares of the lengths of the other two sides.

In Euclidean geometry every two points determine a line However two lines do
not necessarily determine a point: if they are not parallel, they do determine a point
(of intersection) but if they are parallel, they don’t determine a point. This is a little
disappointing.

18See www.maplesoft.com.

https://en.wikipedia.org/wiki/Risch_algorithm
www.maplesoft.com
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Brunelleschi

Alberti

But a greater disappointment comes from
art (or rather perspective : if we have a two
dimensional picture/sketch/representation of a 3-
dimensional object, then distances, angles, &
parallel lines are not preserved. This can be easily
seen in the next two pictures.

In 1413 the Renaissance architect Filippo
Brunelleschi introduced the geometrical method
of perspective. In 1435, italian author, artist,
architect, poet, priest, linguist, philosopher and
cryptographer Leon Battista Alberti wrote Della
pittura, a treatise on how to represent distance
in painting. He used classical optics to explain
perspective in art.
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The branch of geometry dealing with the properties of geometric figures that
remain invariant under projection is called projective geometry, and in earlier
literature – descriptive geometry.

A5.0.1 Definitions. Let V be a vector space. The projective space,
P (V ), is the set of one-dimensional vector subspaces of V .
If the vector space V has dimension n+ 1, then P (V ) is said to be a projective
space of dimension n.
A one-dimensional projective space is called a projective line, and a two-
dimensional projective space is called a projective plane.
(See Examples 11.3.4 for a further discussion of the real projective plane and
real projective space.)

If V is the 3-dimensional vector space over the field R of real numbers, the
projective space P 2(R) has as its “points” the 1-dimensional vector subspaces and
its “lines” are the 2-dimensional vector subspaces.

A “point” S is said to lie on a “line” L if the space S is contained in the space
L. Note that

(i) any two distinct “points” determine a unique “line”;

(ii) any two distinct “lines” determine a unique “point”.

• There are no parallel “lines".

• There is a duality between “points” & “lines”; theorems
remain true with “point” and “line” interchanged.
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Using so-called homogeneous co-ordinates, we can represent points in the
projective plane as the set of all triples (u, v, w), except (0, 0, 0), where u, v, w ∈ R,
and for any c ∈ R \ {0}, the points (u, v, w) and (cu, cv, cw) are identified.

Of these points (u, v, w), those with w 6= 0 can be regarded as points
(
u

w
,
v

w

)
in the Euclidean plane, whereas the points (u, v, 0), can be thought of as points at
infinity.

So the projective plane can be thought of as consisting of the euclidean plane
plus points at infinity.
Formally this says, P 2(R) = R2 ∪ P 1(R).

Erlangen Program

We are now in a position to say a few words
about the Erlangen Program19 of Felix Klein.

In 1869, Klein went to Berlin and in his own
words “The most important event of my stay in
Berlin was certainly that, toward the end of October,
at a meeting of the Berlin Mathematical Society, I
made the acquaintance of the Norwegian, Sophus
Lie. Our work had led us from different points of
view finally to the same questions, or at least to
kindred ones. Thus it came about that we met every
day and kept up an animated exchange of ideas.”

“The E.P. itself.. was composed in October,
1872. . . Lie visited me for two months beginning
September 1. Lie, who on October 1 accompanied
me to Erlangen. . . had daily discussions with me
. . . entered eagerly into my idea of classifying
the different approaches to geometry on a group-
theoretic basis.”20

19See http://tinyurl.com/jxbctma for the original Erlangen Program and http://tinyurl.com/hb8pmtn

for an English translation, and Klein [226]
20See Garrett Birkhoff and M. K. Bennett, Felix Klein and his “Erlanger Programm", in History and

Philosophy of Modern Mathematics, eds. W. Aspray and P. Kitcher, Minnesota Stud. Philos. Sci.
XI, University of Minnesota Press, Minneapolis (1988), 145-176. http://tinyurl.com/8mjstzd

http://tinyurl.com/jxbctma
http://tinyurl.com/hb8pmtn
http://tinyurl.com/8mjstzd
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Klein suggested that not only euclidean geometry, but also the “new” non-
Euclidean geometries, can be regarded as “sub-geometries” of projective geometry21

He also suggested each geometry can be characterized by the invariants of its
associated transformation group.

In euclidean geometry, figures F1 &F2 are “equal” if they are congruent; i.e.,
F2 is obtained from F1 by a rigid motion (translation, rotation, & reflection) of
euclidean space. So the transformation group associated with euclidean geometry
is the group consisting of the transformations corresponding to rigid motions.

Each geometry is similarly characterized by its symmetries using the group of
geometric transformations of a space each of which take any figure onto an “equal”
figure in that geometry.

The set of geometric transformations should have certain natural properties,
such as

(1) every figure F is ‘equal’ to itself;

(2) if a figure F1 is ‘equal’ to F2, then F2 is ‘equal’ to F1; and

(3) if F1 is ‘equal’ to F2 and F2 is ‘equal’ to F3, then F1 is ‘equal’ to F3.

So we are led to insist that the set of transformations is in fact a group.

21Klein proposed to mathematical physicists that even a moderate cultivation of the projective
purview might bring substantial benefits. A major success was when Klein’s colleague, Hermann
Minkowski (1864–1909), showed that the essence of Einstein’s Special Theory of Relativity is captured
by the (spacetime) geometry of the Lorentz group. (See https://en.wikipedia.org/wiki/Lorentz_group

for a discussion of the Lorentz group.)
Nobel Laureate Eugene Paul Wigner (1902–1995) advocated extending the Erlangen Program to
physics and demonstrated that symmetries expose the deepest secrets of physics. Quark
theory, (See https://en.wikipedia.org/wiki/Quark for a description of quarks.) and even the Higgs
boson particle (See https://en.wikipedia.org/wiki/Higgs_boson.) theory, are consequences of this
approach. See Amir D. Aczel, “It’s a Boson! The Higgs as the Latest Offspring of Math & Physics”,
http://tinyurl.com/bqaonns.

https://en.wikipedia.org/wiki/Lorentz_group
https://en.wikipedia.org/wiki/Quark
https://en.wikipedia.org/wiki/Higgs_boson
http://tinyurl.com/bqaonns
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A5.0.2 Definitions. A set, G, together with an operation · , such that for
all a, b ∈ G, a · b ∈ G, is said to be a group if

(i) (a · b) · c = a · (b · c), ∀a, b, c ∈ G; [associativity]

(ii) there exists an element 1 in G, such that 1 · a = a · 1 = a, for every element
a ∈ G; The (unique) element 1 ∈ G with this property is said to be the
identity of the group.

(iii) for each a in G, there exists an element b in G such that a · b = b · a = 1.

The (unique) element b is called the inverse of a in G and is written a−1.

A group G is said to be an abelian group if a · b = b · a, for all a, b ∈ G.

A5.0.3 Examples. We list some important examples:

(i) the group, R, of all real numbers with the operation of addition;
[Note that the set of real numbers with the operation of multiplication is not a
group as the element 0 has no inverse.]

(ii) the group, Q, of all rational numbers with the operation of addition;
We call Q a subgroup of R as Q ⊂ R and the group operation on Q is the
restriction of the group operation on R.
A subgroup N of a group G is called a normal subgroup if for all n ∈ N and
g ∈ G, gng−1 ∈ N .

(iii) the subgroup, Z, of R consisting of all integers;

(iv) the group, T, consisting of all complex numbers of modulus 1 (i.e. the set of
numbers e2πix, 0 6 x < 1) with the group operation being multiplication of
complex numbers. Then T is called the circle group.

All of the above groups are abelian groups. �

For a plethora of examples of nonabelian groups, we turn to groups of matrices.

Recall that an n×n matrix M in said to be nonsingular (or invertible) if there
is an n × n matrix M−1 such that MM−1 = M−1M = I, where I is the n × n

identity matrix (with 1s on the diagonal and 0 elsewhere).
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A5.0.4 Definition. The multiplicative group of all nonsingular n × n

matrices with complex number entries is called the general linear group over
C and is denoted by GL(n,C).
GL(n,C) and its subgroups are called matrix groups.

As matrix multiplication is not commutative (i.e., M1.M2 does not necessarily
equal M2.M1), each GL(n,C) is a nonabelian group.

A5.0.5 Definition. The subgroup of GL(n,C) consisting of all matricesM
such that M.M t = M t.M = I (i.e., M−1 = M t), where t denotes transpose, is
called the orthogonal group and is denoted by O(n,C).

A5.0.6 Definition. If G and H are groups, then G × H is a group with
the group operation being coordinatewise multiplication; i.e., if g1, g2 ∈ G and
h1, h2 ∈ H, then (g1, h1) · (g2, h2) = (g1 · g2, h1 · h2), where · denotes the group
operation on G, H and G×H. The set G×H with this operation is called the
product group.

If I is any index set, the infinite product of groups Gi : i ∈ I,
∏
i∈I

Gi, is defined

analogously.

A5.0.7 Definitions. Let G and H be groups and f : G→ H a map

(i) f is called a homomorphism if f(g1 · g2) = f(g1) · f(g2), for all g1, g2 ∈ G.

(ii) If f is also surjective (i.e., f(G) = H), then H is said to be a quotient
group of G, written H = G/N , where the kernel N = {g ∈ G : f(g) = 1}.

(iii) If f is bijective (i.e. injective [f(x) = f(y)⇒ x = y] and surjective), then f
is called an isomorphism.
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Let G be a group with identity element 1, N a normal subgroup of G and H a
subgroup of G. The following statements are equivalent:

(i) G = NH and N ∩H = {1}.

(ii) Every element of G can be written uniquely as a product of an element of N
and an element of H.

If one (= both) of these is true, then G is called a semidirect product of N and
H, written G = NoH.

Semidirect product is more general than product; if H is also a normal subgroup,
then N oH = N ×H.

Pertinent to our earlier discussion are

(i) the projective group, PGL(n,R) which is defined as the quotient group
GL(n,R)/K, where the kernel, K, is {λIn : λ ∈ R} and In denotes the n × n
identity matrix; and

(ii) the euclidean group, E(2), of all rigid motions of the plane, R2, is a
semidirect product of the abelian group R2 (which describes translations) and
the orthogonal group O(2,R) (which describes rotations and reflections which
fix the origin (0,0)).

Felix Klein focussed on “discontinuous” groups and Sophus Lie focussed on
“continuous” groups.

A5.0.8 Definition. Let G be a group with a topology τ . Then G is said to
be a topological group if the maps G→ G given by g 7→ g−1 and G×G→ G

given by (g1, g2) 7→ g1 · g2 are continuous.
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A5.0.9 Examples. (i) Let G be any group with the discrete topology. Then
G is a topological group. In particular, if G is any finite group with the discrete
topology then G is a compact topological group.

(ii) R, T, Z, Q, Ra×Tb×Zc, for any non-negative integers a, b and c with the usual
topologies and the usual group operations are topological groups.

(iii) For each n ∈ N, the group GL(n,C) and all of its subgroups can be regarded as
subsets of Cn2 and so have subspace topologies and with these topologies they
are topological groups.

(iv) With the above topology, each O(n,C) is a compact group, which is Hausdorff22.

A5.0.10 Definition. Topological groups G and H are said to be
topologically isomorphic if there exists a mapping f : G → H such that f
is a homeomorphism and an isomorphism. This is written G ∼= H.

A5.0.11 Definition. A topological group is said to be a compact Lie
group if it is topologically isomorphic to a closed subgroup of an orthogonal
group, O(n), for some n ∈ N.

(Marius) Sophus Lie

More generally, a Lie group is a group which
is also a differentiable manifold, with the property
that the group operations are compatible with the
smooth structure. [See http://tinyurl.com/jeo75r7

for a description of differentiable manifolds.]

22All topological groups from here on in this introductory section are assumed to be Hausdorff.

http://tinyurl.com/jeo75r7
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The Lorentz group, already mentioned in the context of Einstein’s Special
Relativity, and the Heisenberg group23 which plays a key role in Quantum Mechanics24

are Lie groups25

Lorentz26 Einstein27 Heisenberg28

Recall that a topological group G is called locally euclidean if it has an open
set containing 1 which is homeomorphic to an open set containing 0 in Rn, n ∈ N.

Note that for topological groups

(i) compact ⇒ locally compact;

(ii) locally euclidean ⇒ locally compact;

(iii) Rn, n ∈ N, are not compact;

(iv) Ra×Tb×Zc, a,b,c nonnegative integers, and all Lie groups are locally euclidean.

Dieudonné

In 1976 Jean Alexandre Eugène Dieudonné29(1906–1992)
quipped “Les groupes de Lie sont devenus le centre de
mathématique. On ne peut rien faire de sèrieux sans eux.”
(Lie groups have moved to the centre of mathematics. One
cannot seriously undertake anything without them.) Here “Lie
theory” meant the structure theory of Lie algebras and Lie
groups, and in particular how the latter is based on the former.

23See https://en.wikipedia.org/wiki/Heisenberg_group for a description of the Heisenberg group
24See http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.4136&rep=rep1&type=pdf for a

discussion of the Heisenberg group and Quantum Mechanics.
25For a fascinating article on the Higgs Boson, and unifying General Relativity & Quantum

Mechanics and their relation to the Exceptional Simple Lie Group E8, see A.G. Lisi and J.O.
Weatherall, “A Geometric Theory of Everysthing”, Scientific American 303(2010) 54–61.

26Hendrik Antoon Lorentz (1853–1928)
27Albert Einstein (1879–1955)
28Werner Heisenberg (1901–1976)
29Dieudonné was a member of the Bourbaki group. See http://tinyurl.com/nl9k58s.

https://en.wikipedia.org/wiki/Heisenberg_group
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.4136&rep=rep1&type=pdf
http://tinyurl.com/nl9k58s
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Hilbert

At the International Congress of Mathematicians
in 1900, David Hilbert (862–1943) presented 23
problems that set the course for much of the
mathematical creativity of the 20th century.

Hilbert’s fifth problem asked whether (in later
terminology) a locally euclidean topological group is
in fact a Lie group. It required half a century
of effort on the part of several generations of
eminent mathematicians until it was settled in
the affirmative.

The most influential book on the solution of Hilbert’s fifth problem and the
structure of locally compact groups was Montgomery and Zippin [272].

Tao

A recent presentation of this work, and winner of
the 2015 Prose Award for Best Mathematics Book,
is by the UCLA30 academic, Australian born Flinders
University31 graduate and 2006 Fields Medalist,
Terence Chi-Shen Tao [368]32.

Tao points out striking applications: Gromov’s
celebrated theorem on groups of polynomial growth,
and to the classification of finite approximate groups
and to the geometry of manifolds.

30http://www.ucla.edu/
31http://www.flinders.edu.au/
32Terry Tao is a mathematical descendant of Leonhard Euler

http://www.ucla.edu/
http://www.flinders.edu.au/
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Per Enflo and
Mazur, goose, and Enflo

For 5 years Per Enflo looked at extending
Hilbert’s Fifth Prolem to nonlocally compact groups
and he said this “turned out be be useful for
solving famous problems in Functional Analysis” – he
solved “the approximation problem’ and the “basis
problem” in Enflo [125] and the “invariant space
problem” in Enflo [124].

For problem 153 in the Scottish Problem Book,
https://en.wikipedia.org/wiki/Scottish_Book, which
was later recognized as being closely related to
Stefan Banach’s “basis problem", Stanisław Mazur
offered the prize of a live goose. This problem was
solved only in 1972 by Per Enflo, who was presented
with the live goose in a ceremony that was broadcast
throughout Poland.

https://en.wikipedia.org/wiki/Scottish_Book
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Banach

Mazur

Ulam

At the beginning of the translation of the
Scottish Problem Book, http://tinyurl.com/jmrmuuh,
Stanisław Marcin Ulam writes: “The enclosed
collection of mathematical problems has its origin in
a notebook which was started in Lwów, in Poland in
1935. If I remember correctly, it was S. Banach who
suggested keeping track of some of the problems
occupying the group of mathematicians there. The
mathematical life was very intense in Lwów. Some
of us met practically every day, informally in small
groups, at all times of the day to discuss .problems
of common interest, communicating to each other
the latest work and results. Apart from the
more official meetings of the local sections of the
Mathematical Society (which took place Saturday
evenings, almost every week!), there were frequent
informal discussions mostly held in one of the coffee
houses located near the University building - one
of them a coffee house named “Roma”, and the
other “The Scottish Coffee House". This explains
the name of the collection. A large notebook
was purchased by Banach and deposited with the
headwaiter of the Scottish Coffee House, who, upon
demand, would bring it out of some secure hiding
place, leave it at the table, and after the guests
departed, return it to its secret location.

Many of the problems date from years before
1935, They were discussed a great deal among the
persons whose names are included in the text, and
then gradually inscribed into the book in ink.” . . .

http://tinyurl.com/jmrmuuh
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Steinhaus

Weyl

Neumann.jpg

von Neumann

“As most readers will realize, the city of Lwów,
and with it the Scottish Book, was fated to have a
very stormy history within a few years of the book’s
inception. A few weeks after the outbreak of World
War II, the city was occupied by the Russians. From
items at the end of this collection, it will be seen that
some Russian mathematicians must have visited the
town; they left several problems (and prizes for their
solutions). The last date figuring in the book is May
31, 1941. Item Number 193 contains a rather cryptic
set of numerical results, signed by (Władysław Hugo
Dionizy) Steinhaus, dealing with the distribution of
the number of matches in a box! After the start
of war between Germany and Russia, the city was
occupied by German troops that same summer and
the inscriptions ceased.”

Partial solutions to Hilbert’s Fifth Problem
came as the structure of topological groups
was understood better: in 1923 Hermann Weyl
(1885–1955) and his student Fritz Peter laid the
foundations of the representation and structure
theory of compact groups, and a positive answer to
Hilbert’s Fifth Problem for compact groups was a
consequence, drawn by John von Neumann (1903–
1957) in 1932.

A5.0.12 Theorem. [Peter-Weyl Theorem] Let G be any compact group.
Then G is topologically isomorphic to a (closed) subgroup of a product of
orthogonal groups.
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Pontryagin

van Kampen

Lev Semyonovich Pontryagin (1908–1988) and
Egbert Rudolf van Kampen (1908–1942) developed
in 1932, resp., 1936, the duality theory of locally
compact abelian groups laying the foundations
for abstract harmonic analysis which flourished
throughout the second half of the 20th century.

Pontryagin-van Kampen Duality33 provided the
central method for attacking the structure theory of
locally compact abelian groups. A positive response to
Hilbert’s question for locally euclidean abelian groups
followed in the wash.

A5.0.13 Definition. If A is any abelian group, then the group Hom(A,T)

of all group homomorphisms of A into the circle group T (no continuity involved!)
given the subspace topology from the product space TA (of all maps of A into
T) is called the dual group of A and is written Â.

As the dual group is clearly a closed subset of TA, we obtain:

A5.0.14 Proposition. The dual group of any abelian group is an abelian
compact group.

A5.0.15 Definition. If G is any abelian compact group, then the abelian
group (without topology) Hom(G,T) of all continuous homomorphisms of G
into T is called the dual group of the abelian compact group G and is written
Ĝ.

So if G is an abelian compact group, then its dual group, Ĝ, is an abelian group
and the dual group of that dual group, ̂̂G, is again an abelian compact group.

33See Morris [277].
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Further there is a natural evaluation map from G into its second dual, namely

η : G → ̂̂
G, where for each g ∈ G, η(g) = ηg : Ĝ → T and for each γ ∈ Ĝ,

ηg(γ) = γ(g) ∈ T.

A5.0.16 Theorem. [Pontryagin-van Kampen Duality for Compact Groups]

If G is any abelian compact group, then the evaluation map η : G → ̂̂
G is a

topological group isomorphism.

A5.0.17 Remark. The above theorem implies that no information about G is

lost in going to the dual group. But the dual group is just an abelian group without

topology. From this we deduce the fact that every piece of information about G can

be expressed in terms of algebraic information about its dual group. So questions

about compact abelian groups are reduced to ones about abelian groups.

The next proposition provides some examples of this:

A5.0.18 Proposition. Let G be an abelian compact group.

(i) The weight, w(G), of G equals the cardinality of its dual group Ĝ;
(ii) G is metrizable if and only if its dual group Ĝ is countable;
(iii) G is connected if and only if its dual group Ĝ is torsion-free (i.e., it has no

nontrivial finite subgroups);
(iv) G is torsion-free if and only if its dual group Ĝ is divisible (i.e., if g ∈ Ĝ,

then there is an hn ∈ Ĝ with (hn)n = g, for all positive integers n.)

The next theorem is quite surprising.

A5.0.19 Theorem. If abelian connected compact groups G1 and G2 are
homeomorphic, then they are topologically isomorphic.

We now present the main structure theorem for locally compact abelian groups

which follows from Pontryagin van-Kampen Duality and answers Hilbert’s fifth

problem for locally compact abelian groups.
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A5.0.20 Theorem. Every connected locally compact abelian group is
topologically isomorphic to Rn ×K, where K is a compact connected abelian
group and n is a nonnegative integer.

Iwasawa Montgomery

Zippin Gleason

Yamabe

One of the most significant papers on
topological groups was published in 1949 by
Kenkichi Iwasawa (1917–1998), 3 years before
Hilbert’s Fifth Problem was finally settled by the
concerted contributions of Andrew Mattei Gleason
(1921–2008), Dean Montgomery (1909–1992),
Leon Zippin (1905–1995), and Hidehiko Yamabe
(1923–1960).

It was Iwasawa who recognized for the first
time that the structure theory of locally compact
groups reduces to that of compact groups and
Lie groups provided one knew that they happen
to be approximated by Lie groups in the sense
of projective limits, in other words, if they were
pro-Lie groups. [See Hofmann and Morris [182].]

And this is what Yamabe established in 1953
for all locally compact groups G which are almost
connected (i.e., the quotient group of G by its
connected identity component is compact), e.g.
connected locally compact groups or compact
groups.

In 1976 the Council of the Australian Mathematical Society resolved to bring
a high calibre speaker from overseas for each Annual Meeting. The first of these
invited speakers, in 1977, was Karl Heinrich Hofmann34.

34Hofmann is a mathematical grandson of David Hilbert.
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Lashof

Hofmann was aware that in 1957 Richard
Kenneth Lashof (1922–2010) recognized that not
only Lie groups, but any locally compact group G
has a Lie algebra g. Hofmann believed that this
observation was the nucleus of a complete and rich,
although infinite dimensional, Lie theory which had
never been exploited.

Karl Hofmann & Sidney Morris at work

In his 1977 AustMS invited lecture
at LaTrobe University, Hofmann made
a bold proposal, and that was to
extend Lie Theory from Lie groups
to a much wider class of topological
groups.

The first stage of this project
was to extend the Lie Theory to all
Compact Groups and this culminated
in the publication of the first edition of
the 800 page book, Karl H. Hofmann
and Sidney A. Morris, “The Structure
of Compact Groups”, de Gruyter, 1998, with the 2nd edition in 2006, and the 3rd

900+ page edition, Hofmann and Morris [183], appearing in 2013. This book uses
Lie Theory to expose the structure of compact groups, thereby proving old and new
results by new methods.
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In our book, Lie Theory is used to describe general compact groups in terms of
their building blocks:

Killing Cartan

(i) simple simply connected Lie groups
(which are known. For a discussion, see
http://tinyurl.com/hpqkjq2 in Wikipedia.
The classification of simple Lie groups
was done by Wilhelm Killing and Élie
Cartan.)

(ii) compact connected abelian groups (which are understood from Pontryagin-van
Kampen Duality), and

(iii) profinite (⇔ compact totally disconnected) groups.

For each topological group G define the topological space L(G) = Hom(R, G)

of all continuous group homomorphisms from R to G, endowed with the topology
of uniform convergence on compact sets.

Define the continuous function exp : L(G)→ G by expX = X(1) and a
“scalar multiplication” (r,X) 7→ r.X : R× L(G)→ L(G) by (r.X)(s) = X(sr).

This is useful when G is such that L(G) is a Lie algebra with addition and
bracket multiplication continuous. In Hofmann and Morris [183], it is shown that
this occurs for all compact groups.

http://tinyurl.com/hpqkjq2
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Hofmann and Morris, August 2016

Having demonstrated conclusively
the power of Lie Theory in the context
of compact groups, the second stage was
to apply it to locally compact groups.
However, the category of locally compact
groups is not a good one, as even infinite
products of locally compact groups are
not locally compact except in the trivial
case that they are almost all compact,
e.g, even Rℵ0 is not locally compact.
The category of all pro-Lie groups
(and their continuous homomorphisms)
is well-behaved and includes all compact groups, all Lie groups, and all connected
locally compact groups.

Pro-Lie groups are defined to be projective limits of Lie groups. Lie Theory was
successfully applied to this class and the structure of these groups was fully exposed
in the 600+ page book: Karl H. Hofmann and Sidney A. Morris, “The Lie Theory
of Connected Pro-Lie Groups”, European Mathematical Society Publ. House, 2007,
Hofmann and Morris [182].

Our next beautiful structure theorem describes the the structure of abelian
connected pro-Lie groups completely and the topology of connected pro-Lie groups.

A5.0.21 Theorem. Let G be a connected pro-Lie group. Then G is
homeomorphic to RJ × C, for some set J and maximal (connected) compact
subgroup, C, of G. If G is abelian, then G is topologically isomorphic to RJ×C.

The above theorem due to Karl H. Hofmann and Sidney A. Morris is a
generalization of the classical result for connected locally compact groups.
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A5.0.22 Theorem. Let G be a connected locally compact group. Then
G is homeomorphic to Rn × C, for some set n ∈ N and maximal (connected)
compact subgroup, C, of G. If G is abelian, then G is topologically isomorphic
to Rn × C.

We aim to describe the topology of compact groups in terms of simple simply
connected compact Lie groups, compact connected abelian groups, and profinite
groups.

Our next result is surprising. This theorem tells us everything about the
topology of totally disconnected compact groups.

A5.0.23 Theorem. The underlying topological space of every infinite
totally disconnected compact group is a Cantor cube.

This result is not trivial, but it can be proved by elementary means or by an
application of the structure theory of compact groups.

We shall see that the above theorem does much more than describe the topology
of a special class of compact groups.

A5.0.24 Definition. If G is any topological group, then the largest
connected set containing 1 is said to be the identity component of G and
is denoted by G0.

It is readily verified that for any topological group G, the identity component
G0 is a closed normal subgroup of G.

Further, if G is a compact group, then G0 is a compact group.

The following proposition is obvious.

A5.0.25 Proposition. Let G be a topological group. Then the quotient
group G/G0 is a totally disconnected topological group. Further, if G is a
compact group, then G/G0 is a totally disconnected compact group.
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Now we state a powerful result which significantly reduces the task of describing
the topology of a general compact group.

A5.0.26 Theorem. If G is any compact group then it is homeomorphic to
the product group G0 ×G/G0.

Theorem A5.0.26 and Theorem A5.0.23 together reduce the study of the
topology of compact groups to the study of the topology of connected compact
groups.

A5.0.27 Definition. Let G be a topological group. Then G is said to
have no small subgroups or be an NSS-group if there exists an open set O
containing the identity and O contains no non-trivial subgroup of G.

For each positive integer n, the compact groups O(n), each discrete group, T,
R, and Ra × Tb × Zc, for non-negative integers a, b, c are NSS-groups.

A5.0.28 Theorem. [Hilbert 5 for Compact Groups] If G is a compact
group, then the following conditions are equivalent:

(i) G is a Lie group;

(ii) G is an NSS-group;

(iii) the topological space |G| is locally euclidean (that is, an open set
containing 1 in G is homeomorphic to an open set containing 0 in Rn,
for some positive integer n).

Condition (iii) proves that compact Lie groups are characterized by just their
topology. This is a beautiful result.

The work of D. Montgomery, L. Zippin and A. Gleason in the 1950s characterized
noncompact Lie groups by conditions (ii) and (iii) above.

Earlier we reduced the study of the topology of compact groups to the study of
the topology of connected compact groups.
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Next we reduce the study to that of the topology of
(a) abelian connected compact groups

and what we shall call

(b) semisimple groups.

A5.0.29 Definition. Let g, h be elements of a group G. Then g−1h−1gh ∈
G is said to be a commutator and the smallest subgroup of G containing all
commutators is called the commutator subgroup and denoted by G′.

A5.0.30 Theorem. If G is any connected compact group, then G′ is
connected and
(i) every element of G′ is a commutator,
(ii) G′ is a compact group, and
(iii) G′′ = G′.

Condition (i) is remarkable; (ii) and (iii) are not valid without connectivity.

A5.0.31 Definition. A connected compact group G is said to be
semisimple if G′ = G.

A5.0.32 Corollary. If G is any connected compact group, then G′ is
semisimple.

A5.0.33 Theorem. If G is a connected compact group, it is homeomorphic
to G′ ×G/G′.
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A5.0.34 Corollary. If G is any compact group then it is homeomorphic to
G/G0 × (G0)′ ×G0/(G0)′, where G/G0 is homeomorphic to a Cantor cube.

We now state the Sandwich Theorem for Semisimple Connected Compact
Groups. This tells us that each semisimple connected compact group is almost
a product of simple simply connected Lie groups.

A5.0.35 Theorem. Let G be a semisimple connected compact group.
Then there is a family {Sj | j ∈ J} of simple simply connected compact Lie
groups and surjective continuous homomorphisms q and f∏

j∈J
Sj

f−→ G
q−→
∏
j∈J

Sj/Z(Sj)

where each finite discrete abelian compact group Z(Sj) is the centre of Sj and∏
j∈J

Sj
qf−→

∏
j∈J

Sj/Z(Sj)

is the product of the quotient morphisms Sj → Sj/Z(Sj).

A5.0.36 Remark. In conclusion, then, we have that every compact group is
homeomorphic to the product of three groups whose topology we know: a compact
totally disconnected group (which is homeomorphic to a Cantor cube), a compact
connected abelian group, and a compact connected semisimple group.
Using Theorem A5.0.21 we then have that every connected pro-Lie group is also
homeomorphic to a product of three groups whose topology we know: RI for
some index set I, a compact connected abelian group, and a compact connected
semisimple group.
This completes our meandering through a century of study of topological groups.
Hopefully this overview of some of the highlights puts what follows in this appendix
into context. The next section begins our formal study of topological groups.
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A5.1 Topological Groups

A5.1.1 Definition. Let (G,τ ) be a set G, that is a group, with a topology
τ on G. Then (G,τ ) is said to be a topological group if

(i) the mapping (x, y)→ xy of the product space (G,τ )× (G,τ ) onto (G,τ )

is continuous, and

(ii) the mapping x→ x−1 of (G,τ ) onto (G,τ ) is continuous.
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A5.1.2 Examples.

(1) The additive group of real numbers with the euclidean topology is a topological
group, usually denoted by R.

(2) The multiplicative group of positive real numbers with the induced topology
from R is also a topological group.

(3) The additive group of rational numbers with the euclidean topology is a
topological group denoted by Q.

(4) The additive group of integers with the discrete topology is a topological group
denoted by Z.

(5) Any group with the discrete topology is a topological group.

(6) Any group with the indiscrete topology is a topological group.

(7) The “circle" group consisting of the complex numbers of modulus one (i.e. the
set of numbers e2πix, 0 6 x < 1) with the group operation being multiplication
of complex numbers and the topology induced from the euclidean topology on
the complex plane is a topological group. This topological group is denoted by
T (or S1).

(8) Linear groups. Let A = (ajk) be an n × n matrix, where the coefficients ajk
are complex numbers. The transpose tA of the matrix A is the matrix (akj) and
the conjugate A of A is the matrix (ajk), where ajk is the complex conjugate of
the number ajk. The matrix A is said to be orthogonal if A = A and tA = A−1

and unitary if A−1 = t(A).
The set of all non-singular n × n matrices (with complex number coefficients)
is called the general linear group (over the complex number field) and is
denoted by GL(n,C). The subgroup GL(n,C) consisting of those matrices
with determinant one is the special linear group (over the complex field) and
is denoted by SL(n,C). The unitary group U(n) and the orthogonal group
O(n) consist of all unitary matrices and all orthogonal matrices, respectively;
they are subgroups of GL(n,C). Finally we define the special unitary group
and the special orthogonal group as SU(n) = SL(n,C) ∩ U(n) and SO(n) =
SL(n,C) ∩O(n), respectively.

The group GL(n,C) and all its subgroups can be regarded as subsets of Cn2,
where C denotes the complex number plane, and so Cn2 is a 2n2-dimension
euclidean space. As such GL(n,C) and all its subgroups have induced topologies
and it is easily verified that, with these, they are topological groups.
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A5.1.3 Remark. Of course not every topology on a group makes it into a
topological group; i.e. the group structure and the topological structure need not be
compatible. If a topology τ on a group G makes (G,τ ) into a topological group,
then τ is said to be a group topology or a topological group topology.

A5.1.4 Example. Let G be the additive group of integers. Define a topology
τ on G as follows: a subset U of G is open if either

(a) 0 6∈ U , or

(b) G\U is finite.

Clearly this is a (compact Hausdorff) topology, but Proposition A5.1.5 below shows
that (G,τ ) is not a topological group.

A5.1.5 Proposition. Let (G,τ ) be a topological group. For each a ∈ G,
left and right translation by a are homeomorphisms of (G,τ ). Inversion is also
a homeomorphism.

Proof. The map La : (G,τ )→ (G,τ ) given by g 7→ ag is the product of the two
continuous maps

(G,τ )→ (G,τ )× (G,τ ) given by g 7→ (a, g), where g ∈ G, a is fixed, and

(G,τ )× (G,τ )→ (G,τ ) given by (x, y) 7→ xy, x, y ∈ G,

and is therefore continuous. So left translation by any a ∈ G is continuous. Further,
La has a continuous inverse, namely La−1, since La

[
La−1(g)

]
= La

[
a−1g

]
=

a(a−1g) = g and La−1 [La(g)] = La−1[ag] = a−1(ag) = g. So left translation is
a homeomorphism. Similarly right translation is a homeomorphism.

The map I : (G,τ ) → (G,τ ) given by g 7→ g−1 is continuous, by definition.
Also I has a continuous inverse, namely I itself, as I[I(g)] = I[g−1] = [g−1]−1 = g.
So I is also a homeomorphism. �
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It is now clear that the (G,τ ) in Example A5.1.4 above is not a topological
group as left translation by 1 takes the open set {−1} onto {0}, but {0} is not an
open set. What we are really saying is that any topological group is a homogeneous
space while the example is not. Homogeneous spaces are defined next.

A5.1.6 Definition. A topological space (X,τ ) is said to be homogeneous
if it has the property that for each ordered pair x, y of points of X, there exists
a homeomorphism f : (X,τ )→ (X,τ ) such that f(x) = y.

While every topological group is a homogeneous topological space, we will see
shortly that not ever homogeneous space can be made into a topological group.

A5.1.7 Definition. A topological space is said to be a T1-space if each
point in the space is a closed set.

It is readily seen that any Hausdorff space is a T1-space but that the converse
is false. See Exercises 4.1 #13.

We will see, however, that any topological group which is a T1-space is
Hausdorff. Incidentally, this is not true, in general, for homogeneous spaces–as
any infinite set with the cofinite topology is a homogeneous T1space but is not
Hausdorff. As a consequence we will then have that not every homogeneous
space can be made into a topological group.

A5.1.8 Proposition. Let (G,τ ) be any topological group and e its
identity element. If U is any neighbourhood of e, then there exists an open
neighbourhood V of e such that

(i) V = V −1 (that is, V is a symmetric neighbourhood of the identity e)

(ii) V 2 ⊆ U .

(Here V −1 = {v−1 : v ∈ V } and V 2 = {v1v2 : v1 ∈ V, v2 ∈ V }, not the set
{v2 : v ∈ V }.)

Proof. Exercise. �
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A5.1.9 Proposition. Any topological group (G,τ ) which is a T1-space is
also a Hausdorff space.

Proof. Let x and y be distinct points of G. Then x−1y 6= e. The set G\{x−1y}
is an open neighbourhood of e and so, by Proposition A5.1.8, there exists an open
symmetric neighbourhood V of e such that V 2 ⊆ G \ {x−1y}. Thus x−1y 6∈ V 2.

Now xV and yV are open neighbourhoods of x and y, respectively. Suppose
xV ∩ yV 6= Ø. Then xv1 = yv2, where v1 and v2 are in V ; that is, x−1y = v1v

−1
2 ∈

V.V −1 = V 2, which is a contradiction. Hence xV ∩ yV = Ø and so (G,τ ) is
Hausdorff. �

A5.1.10 Remark. So to check that a topological group is Hausdorff it is only
necessary to verify that each point is a closed set. Indeed, by Proposition A5.1.5, it
suffices to show that {e} is a closed set.

Warning. Many authors include “Hausdorff" in their definition of topological group.

A5.1.11 Remark. The vast majority of work on topological groups deals only
with Hausdorff topological groups. (Indeed many authors include “Hausdorff" in their
definition of topological group.) We will see one reason for this shortly. However, it
is natural to ask: Does every group admit a Hausdorff topology which makes it into
a topological group? The answer is obviously “yes"–the discrete topology. But we
mention the following problem.

Question. Does every group admit a Hausdorff non-discrete group topology which
makes it into a topological group?

Shelah [339] provided a negative answer, under the assumption of the continuum
hypothesis. However in the special case that the group is abelian (that is,
commutative) the answer is “yes" and we shall prove this soon. �
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Exercises A5.1

1. Let (G,τ ) be a topological group, e its identity element, and k any element of G.
If U is any neighbourhood of e, show that there exists an open neighbourhood
V of e such that

(i) V = V −1,

(ii) V 2 ⊆ U , and

(iii) kV k−1 ⊆ U . (In fact, with more effort you can show that if K is any
compact subset of (G,τ ) then V can be chosen also to have the property:
(iv) for any k ∈ K, kV k−1 ⊆ U .)

2. (i) Let G be any group and let N = {N} be a family of normal subgroups of
G. Show that the family of all sets of the form gN , as g runs through G
and N runs through N is an open subbasis for a topological group topology
on G. Such a topology is called a subgroup topology.

(ii) Prove that every topological group topology on a finite group is a subgroup
topology with N consisting of precisely one normal subgroup.

3. Show that

(ii) if (G,τ ) is a topological group, then (G,τ ) is a regular space;

(iii) any regular T0-space is Hausdorff, and hence any topological group which is
a T0-space is Hausdorff.

4. Let (G,τ ) be a topological group, A and B subsets of G and g any element of
G. Show that

(i) If A is open, then gA is open.

(ii) If A is open and B is arbitrary, then AB is open.

(iii) If A and B are compact, then AB is compact.

(iv) If A is compact and B is closed, then AB is closed.

(v)* If A and B are closed, then AB need not be closed.
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5. Let S be a compact subset of a metrizable topological group G, such that
xy ∈ S if x and y are in S. Show that for each x ∈ S, xS = S. (Let y be a
cluster point of the sequence x, x2, x3, . . . in S and show that yS =

⋂∞
n=1 x

nS;
deduce that yxS = yS.) Hence show that S is a subgroup of G. (Cf. Hewitt
and Ross [173], Theorem 9.16.)

6. A topological group G is said to be ω-narrow if for any neighbourhood N of
the identity e, there exist a countable set xn ∈ G, n ∈ N, of members of G such
that G =

⋃
n∈N

Nxn. Verify each of the following statements:

(i) Every countable topological group is ω-narrow.

(ii) For each n ∈ N, Rn is ω-narrow.

(iii) An uncountable discrete topological group is not ω-narrow.

(iv) Every topological group which is a Lindelöf space is ω-narrow. In particular
every topological group which is compact or a kω-space is ω-narrow.

(v) Every topological group which is a second countable space is ω-narrow.

(vi)* Every separable topological group is ω-narrow.

[Hint. Let U be any open neighbourhood of e. Find a neighbourhood V

of e such that V = V −1 and V 2 ⊆ U . Call a subset S of G V -disjoint if
xV ∩ yV = Ø, for each distinct pair x, y ∈ S. The set S of all V -disjoint
subsets of G is partially-ordered by set inclusion ⊆. As the union of any
totally-ordered set of V -disjoint sets is a V -disjoint set, use Zorn’s Lemma
to show there is a maximal element M of the partially-ordered set S. Verify
that {mV : m ∈ M} is a disjoint set of non-empty open sets in G. Verify
that in a separable space there is at most a countable number of disjoint
open sets and hence M is countable. As M is maximal, show that for
every x ∈ G, there exists an m ∈ M such that xV ∩ mV 6= Ø. Then
x ∈ mV V −1 = mV 2 ⊆ mU. Deduce that MU = G and so G is ω-narrow.]
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A5.2 Subgroups and Quotient Groups of Topological Groups

A5.2.1 Definition. Let G1 and G2 be topological groups. A map
f : G1 → G2 is said to be a continuous homomorphism if it is both a
homomorphism of groups and continuous. If f is also a homeomorphism then it
is said to be a topological group isomorphism or a topological isomorphism
and G1 and G2 are said to be topologically isomorphic.

A5.2.2 Example. Let R be the additive group of real numbers with the usual
topology and R× the multiplicative group of positive real numbers with the usual
topology. Then R and R× are topologically isomorphic, where the topological
isomorphism R → R× is x 7→ ex. (Hence we need not mention this group R×
again, since, as topological groups, R and R× are the same.) �

A5.2.3 Proposition. Let G be a topological group and H a subgroup of
G. With its subspace topology, H is a topological group.

Proof. The mapping (x, y) 7→ xy of H×H onto H and the mapping x 7→ x−1 of
H onto H are continuous since they are restrictions of the corresponding mappings
of G×G and G. �

A5.2.4 Examples. (i) Z 6 R; (ii) Q 6 R. �

A5.2.5 Proposition. Let H be a subgroup of a topological group G. Then

(i) the closure H of H is a subgroup of G;

(ii) if H is a normal subgroup of G, then H is a normal subgroup of G;

(iii) if G is Hausdorff and H is abelian, then H is abelian.

Proof. Exercise �
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A5.2.6 Corollary. Let G be a topological group. Then

(i) {e} is a closed normal subgroup of G; indeed, it is the smallest closed
subgroup of G;

(ii) if g ∈ G, then {g} is the coset g{e} = {e}g;

(iii) If G is Hausdorff then {e} = {e}.

Proof. This follows immediately from Proposition A5.2.5 (ii) by noting that {e}
is a normal subgroup of G.

A5.2.7 Proposition. Any open subgroup H of a topological group G is
(also) closed.

Proof. Let xi, i ∈ I be a set of right coset representatives of H in G. So
G =

⋃
i∈I Hxi, where Hxi ∩Hxj = Ø, for any distinct i and j in the index set I.

Since H is open, so is Hxi open, for each i ∈ I.
Of course for some i0 ∈ I, Hxi0 = H, that is, we have G = H∪

(⋃
i∈J Hxi

)
, where J =

I\{i0}.
These two terms are disjoint and the second term, being the union of open sets, is
open. So H is the complement (in G) of an open set, and is therefore closed in
G.

Note that the converse of Proposition A5.2.7 is false. For example, Z is a closed
subgroup of R, but it is not an open subgroup of R.
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A5.2.8 Proposition. Let H be a subgroup of a Hausdorff group G. If H
is locally compact, then H is closed in G. In particular this is the case if H is
discrete.

Proof. Let K be a compact neighbourhood in H of e. Then there exists a
neighbourhood U in G of e such that U ∩H = K. In particular, U ∩H is closed in
G. Let V be a neighbourhood in G of e such that V 2 ⊆ U .

If x ∈ H, then as H is a group (Proposition A5.2.5), x−1 ∈ H. So there exists
an element y ∈ V x−1 ∩ H. We will show that yx ∈ H. As y ∈ H, this will imply
that x ∈ H and hence H is closed, as required.

To show that yx ∈ H we verify that yx is a limit point of U ∩H. As U ∩H is
closed this will imply that yx ∈ U ∩H and so, in particular, yx ∈ H.

Let O be an arbitrary neighbourhood of yx. Then y−1O is a neighbourhood
of x, and so y−1O ∩ xV is a neighbourhood of x. As x ∈ H, there is an element
h ∈ (y−1O ∩ xV ) ∩H. So yh ∈ O. Also yh ∈ (V x−1(xV ) = V 2 ⊆ U , and yh ∈ H;
that is, yh ∈ O ∩ (U ∩ H). As O is arbitrary, this says that yx is a limit point of
U ∩H, as required.

A5.2.9 Proposition. Let U be a symmetric neighbourhood of e in a

topological group G. Then H =
∞⋃
n=1

Un is an open (and closed) subgroup

of G.

Proof. Clearly H is a subgroup of G.

Let h ∈ H. Then h ∈ Un, for some n.

So h ∈ hU ⊆ Un+1 ⊆ H; that is, H contains the neighbourhood hU of h.

As h was an arbitrary element of H, H is open in G. It is also closed in G, by
Proposition A5.2.7.
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A5.2.10 Corollary. Let U be any neighbourhood of e in a connected

topological group G. Then G =
∞⋃
n=1

Un; that is, any connected group is

generated by any neighbourhood of e.

Proof. Let V be a symmetric neighbourhood of e such that V ⊆ U . By

Proposition A5.2.9, H =
∞⋃
n=1

V n is an open and closed subgroup of G.

As G is connected, H = G; that is G =
∞⋃
n=1

V n.

As V ⊆ U , V n ⊆ Un, for each n and so G =
∞⋃
n=1

Un, as required.

A5.2.11 Definition. A topological group G is said to be compactly
generated if there exists a compact subset X of G such that G is the smallest
subgroup (of G) containing X.

A5.2.12 Examples.

(i) R is compactly generated by [0, 1] (or any other non-trivial compact interval).

(ii) Of course, any compact group is compactly generated.

A5.2.13 Corollary. Any connected locally compact group is compactly
generated.

Proof. Let K be any compact neighbourhood of e. Then by Corollary A5.2.10,

G =
∞⋃
n=1

Kn; that is, G is compactly generated.

A5.2.14 Remark. In due course we shall describe the structure of compactly
generated locally compact Hausdorff abelian groups. We now see that this class
includes all connected locally compact Hausdorff abelian groups. �
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Notation. By LCA-group we shall mean locally compact Hausdorff abelian
topological group.

A5.2.15 Proposition. The component of the identity (that is, the largest
connected subset containing e) of a topological group is a closed normal
subgroup.

Proof. Let C be the component of the identity in a topological group G. As in
any topological space components are closed sets, C is closed.

Let a ∈ C. Then a−1C ⊆ C, as a−1C is connected (being a homeomorphic
image of C) and contains e.

So
⋃
a∈C

a−1C = C−1C ⊆ C, which implies that C is a subgroup.

To see that C is a normal subgroup, simply note that for each x in G, x−1Cx is a
connected set containing e and so x−1Cx ⊆ C.

A5.2.16 Proposition. Let N be a normal subgroup of a topological group
G. If the quotient group G/N is given the quotient topology under the canonical
homomorphism p : G→ G/N (that is, U is open in G/N if and only if p−1(U)

is open in G), then G/N becomes a topological group. Further, the map p is
not only continuous but also open. (A map is said to be open if the image of
every open set is open.)

Proof. The verification that G/N with the quotient topology is a topological
group is routine. That the map p is continuous is obvious (and true for all quotient
maps of topological spaces).

To see that p is an open map, let O be an open set in G. Then p−1(p(O)) =
NO ⊆ G.

Since O is open, NO is open. (See Exercises A5.2 #4.) So by the definition of the
quotient topology on G/N , p(O) is open in G/N ; that is, p is an open map.
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A5.2.17 Remarks.

(i) Note that quotient maps of topological spaces are not necessarily open maps.

(ii) Quotient maps of topological groups are not necessarily closed maps. For
example, if R2 denote the product group R × R with the usual topology,
and p is the projection of R2 onto its first factor R, then the set S ={(
x, 1

x

)
: x ∈ R, x 6= 0

}
is closed in R2 and p is a quotient map with p(S) not

closed in R. �

A5.2.18 Proposition. If G is a topological group and N is a compact
normal subgroup of G then the canonical homomorphism p : G → G/N is a
closed map. The homomorphism p is also an open map.

Proof. If S is a closed subset of G, then p−1(p(S)) = NS which is the product
in G of a compact set and a closed set. By Exercises A5.1 #4 then, this product
is a closed set. So p(S) is closed in G/N and p is a closed map. As p is a quotient
mapping, Proposition A5.2.16 implies that it is an open map.

A5.2.19 Definition. A topological space is said to be totally
disconnected if the component of each point is the point itself.

A5.2.20 Proposition. If G is any topological group and C is the
component of the identity, then G/C is a totally disconnected topological group.

Proof. Note that C is a normal subgroup of G and so G/C is a topological group.

The proof that G/C is totally disconnected is left as an exercise. �
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A5.2.21 Proposition. If G/N is any quotient group of a locally compact
group G, then G/N is locally compact.

Proof. Simply observe that any open continuous image of a locally compact
space is locally compact.

A5.2.22 Proposition. Let G be a topological group and N a normal
subgroup. Then G/N is discrete if and only if N is open. Also G/N is Hausdorff
if and only if N is closed.

Proof. This is obvious (noting that a T1-group is Hausdorff).

Exercises A5.2

1. Let G and H be topological groups and f : G → H a homomorphism. Show
that f is continuous if and only if it is continuous at the identity; that is, if and
only if for each neighbourhood U in H of e, there exists a neighbourhood V in
G of e such that f(V ) ⊆ U .

2. Show that the circle group T is topologically isomorphic to the quotient group
R/Z.

3. Let B1 and B2 be (real) Banach spaces. Verify that

(i) B1 and B2, with the topologies determined by their norms, are topological
groups.

(ii) If T : B1 → B2 is a continuous homomorphism (of topological groups) then
T is a continuous linear transformation. (So if B1 and B2 are “isomorphic as
topological groups" then they are “isomorphic as topological vector spaces"
but not necessarily “isomorphic as Banach spaces".)
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4. Let H be a subgroup of a topological group G. Show that H is open in G if and
only if H has non-empty interior (that is, if and only if H contains a non-empty
open subset of G).

5. Let H be a subgroup of a topological group G. Show that

(i) H is a subgroup of G.

(ii) If H is a normal subgroup of G, then H is a normal subgroup of G.

(iii) If G is Hausdorff and H is abelian, then H is abelian.

6. Let Y be a dense subspace of a Hausdorff space X. If Y is locally compact,
show that Y is open in X. Hence show that a locally compact subgroup of
a Hausdorff group is closed.

7. Let C be the component of the identity in a topological group G. Show that G/C
is a Hausdorff totally disconnected topological group. Further show that if f is
any continuous homomorphism of G into any totally disconnected topological
group H, then there exists a continuous homomorphism g : G/C → H such
that gp = f , where p is the projection p : G→ G/C.

8. Show that the commutator subgroup [G,G] of a connected topological group
G is connected. ([G,G] is generated by {g−1

1 g−1
2 g1g2 : g1, g2 ∈ G}.)

9. If H is a totally disconnected normal subgroup of a connected Hausdorff group
G, show that H lies in the centre, Z(G), of G (that is, gh = hg, for all g ∈ G
and h ∈ H).
[Hint: Fix h ∈ H and observe that the map g 7→ ghg−1 takes G into H.]
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10. (i) Let G be any topological group. Verify that G/{e} is a Hausdorff topological

group. Show that if H is any Hausdorff group and f : G → H is a
continuous homomorphism, then there exists a continuous homomorphism
g : G/{e} → H such that gp = f , where p is the canonical map
p : G→ G/{e}.

(This result is the usual reason given for studying Hausdorff topological
groups rather than arbitrary topological groups. However, the following
result which says in effect that all of the topology of a topological
group lies in its “Hausdorffization", namely G/{e}, is perhaps a better
reason.)

(ii) Let Gi denote the group G with the indiscrete topology and i : G → Gi
the identity map. Verify that the map p × i : G → G/{e} × Gi, given by
p × i(g) = (p(g), i(g)), is a topological group isomorphism of G onto its
image p× i(G).

11. Show that every Hausdorff group, H, is topologically isomorphic to a closed
subgroup of an arcwise connected, locally arcwise connected Hausdorff
group G. (Consider the set G of all functions f : [0, 1) → H such that there
is a sequence 0 = a0 < a1 < a2 < · · · < an = 1 with f being constant
on each [ak, ak−1). Define a group structure on G by fg(t) = f(t)g(t) and
f−1(t) = (f(t))−1, where f and g ∈ G and t ∈ [0, 1). The identity of G is the
function identically equal to e in H. For ε > 0 and any neighbourhood V of e
in H let U(V, ε) be the set of all f such that λ({t ∈ [0, 1) : f(t) 6∈ V }) < ε,
where λ is Lebesgue measure on [0, 1). The set of all U(V, ε) is an open basis
for a group topology on G. The constant functions form a closed subgroup of
G topologically isomorphic to H.)
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12. Verify the following statements.

(i) Every subgroup of an ω-narrow topological group is ω-narrow.

(ii) Let G and H be topological groups and f : G → H a continuous
homomorphism. If G is an ω-narrow topological group, then H is an ω-
narrow topological group.

(iii) Let I be an index set and for each i ∈ I, let Gi be an ω-narrow topological
group. Then the product

∏
i∈I

Gi is an ω-narrow topological group.

(iv) Exercises A5.1 #6(vi) says that every separable topological group is an ω-
narrow topological group. However, it follows from (iii) above that there
exist non-separable ω-narrow topological groups.

(v) Let the topological group G be a subgroup of a (finite or infinite) product of
topological groups each of which is a second countable space. By Exercises
A5.1 #6 and (i) and (iii) above, G is an ω-narrow topological group.

[It is proved in Theorem 3.4.23 of Arhangel’skii and Tkachenko [14] that a
topological group is ω-narrow if and only if it is topologically isomorphic to
a subgroup of a product of second countable topological groups.]

A class V of topological groups is said to be a variety of topological groups
if (i) every subgroup of a member of V is a member of V (ii) every quotient
group of a member of V is a member of V and (iii) every product of a set of
members of V is a member of V. (See Morris [278].) So we see that the class of
ω-narrow topological groups is a variety of topological groups. Other examples
are the class of all topological groups and the class of all abelian topological
groups.
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A5.3 Embedding in Divisible Groups

A5.3.1 Remark. Products of topological spaces are discussed in detail in
Chapters 8, 9 and 10. The most important result on products is, of course,
Tychonoff’s Theorem 10.3.4 which says that any (finite or infinite) product (with
the product topology) of compact topological spaces is compact. Further, Theorem
10.3.4 says that a product of topological spaces {(Xi,τ i) : i ∈ I} is compact only
if each of the spaces (Xi,τ i) is compact.

If each Gi is a group then
∏
i∈I

Gi has the obvious group structure (
∏
i∈I

gi ·
∏
i∈I

hi =∏
i∈I

(gihi), where gi and hi ∈ Gi).

If {Gi : i ∈ I} is a family of groups then the restricted direct product (weak
direct product), denoted

∏
i∈I

rGi, is the subgroup of
∏
i∈I

Gi consisting of elements∏
i∈I

gi, with gi = e, for all but a finite number of i ∈ I.

From now on, if {Gi : i ∈ I} is a family of topological groups then
∏
i∈I

Gi will

denote the direct product with the product topology. Further
∏
i∈I

rGi will denote the

restricted direct product with the topology induced as a subspace of
∏
i∈I

Gi.

A5.3.2 Proposition. If each Gi, i ∈ I is a topological group, then
∏
i∈I

Gi

is a topological group. Further
∏
i∈I

rGi is a dense subgroup of
∏
i∈I

Gi.

Proof. Exercise.
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A5.3.3 Proposition. Let {Gi : i ∈ I} be a family of topological groups.
Then

(i)
∏
i∈I

Gi is locally compact if and only if each Gi is locally compact and all

but a finite number of Gi are compact.

(ii)
∏
i∈I

rGi is locally compact Hausdorff if and only if each Gi is locally compact

Hausdorff and Gi = {e} for all but a finite number of Gi.

Proof. Exercise.

To prove the result we foreshadowed: every infinite abelian group admits a
non-discrete Hausdorff group topology we need some basic group theory.

A5.3.4 Definition. A group D is said to be divisible if for each n ∈ N,
{xn : x ∈ D} = D; that is, every element of D has an nth root.

A5.3.5 Examples. It is easily seen that the groups R and T are divisible, but
the group Z is not divisible.

A5.3.6 Proposition. Let H be a subgroup of an abelian group G. If φ
is any homomorphism of H into a divisible abelian group D, then φ can be
extended to a homomorphism Φ of G into D.

Proof. By Zorn’s Lemma 10.2.16, it suffices to show that if x 6∈ H, φ can be
extended to the group H0 = {xnh : h ∈ H,n ∈ Z}.
Case (i). Assume xn 6∈ H, n ∈ N. Then define Φ(xnh) = φ(h), for all n ∈ Z.
Clearly Φ is well-defined, a homomorphism, and extends φ on H.

Case (ii). Let k > 2 be the least positive integer n such that xn ∈ H. So
φ(xk) = d ∈ D. As D is divisible, there is a z ∈ D such that zk = d. Define
Φ(xnh) = φ(h)zn, for all n ∈ Z. Clearly Φ is well-defined, a homomorphism and
extends φ on H.
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A5.3.7 Corollary. If G is an abelian group, then for any g and h in G, with
g 6= h, there exists a homomorphism φ : G→ T such that φ(g) 6= φ(h); that is,
φ separates points of G.

Proof. Clearly it suffices to show that for each g 6= e in G, there exists a
homomorphism φ : G→ T such that φ(g) 6= e.

Case (i). Assume gn = e, and gk 6= e for 0 < k < n. Let H = {gm : m ∈ Z}. Define
φ : H → T by φ(g) = an nth root of unity = r, say, (r 6= e), and φ(gm) = rm, for
each m. Now extend φ to G by Proposition A5.3.6.

Case (ii). Assume gn 6= e, for all n > 0. Define φ(g) = z, for any z 6= e in T. Extend
φ to H and then, by Proposition A5.3.6, to G.

For later use we also record the following corollary of Proposition A5.3.6.

A5.3.8 Proposition. Let H be an open divisible subgroup of an abelian
topological group G. Then G is topologically isomorphic to H ×G/H. (Clearly
G/H is a discrete topological group.)

Proof. Exercise.

A5.3.9 Theorem. If G is any infinite abelian group, then G admits a
non-discrete Hausdorff group topology.

Proof. Let {φi : i ∈ I} be the family of distinct homomorphisms of G into T.
Put H =

∏
i∈I

Ti, where each Ti = T. Define a map f : G → H =
∏
i∈I

Ti by putting

f(g) =
∏
i∈I

φi(g). Since each φi is a homomorphism, f is also a homomorphism. By

Corollary A5.3.7, f is also one-one; that is, G is isomorphic to the subgroup f(G)
of H.

As H is a Hausdorff topological group, f(G), with the topology induced from
H, is also a Hausdorff topological group. It only remains to show that f(G) is not
discrete.
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Suppose f(G) is discrete. Then, by Proposition A5.2.8, f(G) would be a
closed subgroup of H. But by Tychonoff’s Theorem 10.3.4, H is compact and so
f(G)would be compact; that is, f(G) would be an infinite discrete compact space–
which is impossible. So we have a contradiction, and thus f(G) is not discrete.

A5.3.10 Remark. Corollary A5.3.7 was essential to the proof of Theorem
A5.3.9. This Corollary is a special case of a more general theorem which will be
discussed later. We state the result below.

A5.3.11 Theorem. If G is any LCA-group, then for any g and h in G,
with g 6= h, there exists a continuous homomorphism φ : G → T such that
φ(g) 6= φ(h).

Exercises A5.3

1. If {Gi : i ∈ I} is a family of topological groups, show that

(i)
∏
i∈I

Gi is a topological group;

(ii)
∏
i∈I

rGi is a dense subgroup of
∏
i∈I

Gi;

(iii)
∏
i∈I

Gi is locally compact if and only if each Gi is locally compact and all

but a finite number of Gi are compact;

(iv)
∏
i∈I

rGi is locally compact Hausdorff if and only if each Gi is locally compact

Hausdorff and Gi = {e} for all but a finite number of Gi.

2. Show that if G is an abelian topological group with an open divisible subgroup
H, then G is topologically isomorphic to H ×G/H.

3. Let G be a torsion-free abelian group (that is, gn 6= e for each g 6= e in G, and
each n ∈ N). Show that if g and h are in G with g 6= h, then there exists a
homomorphism φ of G into R such that φ(g) 6= φ(h).
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4. Let G be a locally compact totally disconnected topological group.

(i) Show that there is a neighbourhood base of the identity consisting of
compact open subgroups.
(Hint: You may assume that any locally compact Hausdorff totally disconnected
topological space has a base for its topology consisting of compact open
sets.)

(ii) If G is compact, show that the “subgroups" in (i) can be chosen to be
normal.

(iii) Hence show that any compact totally disconnected topological group is
topologically isomorphic to a closed subgroup of a product of finite discrete
groups.
(Hint: Let {Ai : i ∈ I} be a base of neighbourhoods of the identity
consisting of open normal subgroups. Let φi : G → G/Ai, i ∈ I, be
the canonical homomorphisms, and define Φ : G →

∏
i∈I

(G/Ai) by putting

Φ(g) =
∏
i∈I

φi(gi).)

5. Let f : R → T be the canonical map and θ any irrational number. On the
topological space G = R2 × T2 define an operation.

(x1, x2, t1, t2)·(x′1, x
′
2, t
′
1, t
′
2) = (x1+x′1, x2+x′2, t1+t′1+f(x2x

′
1), t2+t′2+f(θx2x

′
1)).

Show that, with this operation, G is a topological group and that the commutator
subgroup of G is not closed in G. (The commutator subgroup of a group G is
the subgroup of G generated by the set {g−1h−1gh : g, h ∈ G}.)

6. Let I be a set directed by a partial ordering >. For each i ∈ I, let there be given
a Hausdorff topological group Gi. Assume that for each i and j in I such that
i < j, there is an open continuous homomorphism fji of Gj into Gi. Assume
further that if i < j < k, then fki = fjifkj. The object consisting of I, the
groups Gi and the mappings fji, is called an inverse mapping system or a
projective mapping system. The subset H of the product group G =

∏
i∈I

Gi

consisting of all
∏
i∈I

(xi) such that if i < j then xi = fji(xj) is called the injective

limit or projective limit of the inverse mapping system. Show that H is a closed
subgroup of G.
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A5.4 Baire Category and Open Mapping Theorems

A5.4.1 Theorem. (Baire Category Theorem for Locally Compact
Spaces) If X is a locally compact regular space, then X is not the union of a
countable collection of closed sets all having empty interior.

Proof. Suppose that X =
∞⋃
n=1

An, where each An is closed and Int(An) = φ, for

each n. Put Dn = X\An. Then each Dn is open and dense in X. We shall show

that
∞⋂
n=1

Dn 6= Ø, contradicting the equality X =
∞⋃
n=1

An.

Let U0 be a non-empty open subset of X such that U0 is compact. As D1 is
dense in X, U0 ∩ D1 is a non-empty open subset of X. Using the regularity of X
we can choose a non-empty open set U1 such that U1 ⊆ U0∩D1. Inductively define
Un so that each Un is a non-empty open set and Un ⊆ Un−1 ∩ Dn. Since U0 is

compact and each Un is non-empty,
∞⋂
n=1

Un 6= Ø. This implies
∞⋂
n=1

Dn 6= Ø. This

contradiction the supposition is false and so the theorem is proved.

A5.4.2 Remark. We saw that the Baire Category Theorem was proved for
complete metric spaces in Theorem 6.5.1. The above Theorem also remains valid
if “locally compact regular" is replaced by “locally compact Hausdorff".

A5.4.3 Corollary. Let G be any countable locally compact Hausdorff
topological group. Then G has the discrete topology.

Proof. Exercise.
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A5.4.4 Theorem. (Open Mapping Theorem for Locally Compact
Groups) Let G be a locally compact group which is σ-compact; that is, G =
∞⋃
n=1

An, where each An is compact. Let f be any continuous homomorphism of

G onto a locally compact Hausdorff group H. Then f is an open mapping.

Proof. Let U be the family of all symmetric neighbourhoods of e in G and U ′

the family of all neighbourhoods of e in H. It suffices to show that for every U ∈ U
there is a U ′ ∈ U ′ such that U ′ ⊆ f(U).

Let U ∈ U . Then there exists a V ∈ U having the property that V is compact
and (V )−1V ⊆ U . The family of sets {xV : x ∈ G} is then an open cover of G and
hence also of each compact set An. So a finite collection of these sets will cover
any given An. So a finite collection of these sets will cover any given An. Thus
there is a countable collection {xnV : n ∈ N} which covers G.

So H =
∞⋃
n=1

f(xnV ) =
∞⋃
n=1

f(xnV ) =
∞⋃
n=1

f(xn)f(V ). This expresses H as a

countable union of closed sets, and by the Baire Category Theorem A5.4.1, one of
them must have non-empty interior; that is, f(xm)f(V ) contains an open set. Then
f(V ) contains an open subset V ′ of H.

To complete the proof select any point x′ of V ′ and put U ′ = (x′)−1V ′. Then
we have

U ′ = (x′)−1V ′ ⊆ (V ′)−1V ′ ⊆ (f(V ))−1f(V ) = f((V )−1V ) ⊆ f(U),

as required.

A5.4.5 Remark. We met the Open Mapping Theorem for Banach Spaces in
Theorem 6.5.5

Exercises A5.4

1. Show that any countable locally compact Hausdorff group has the discrete
topology.
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2. Show that the Open Mapping Theorem A5.4.4 does not remain valid if either
of the conditions “σ-compact” or “onto” is deleted.

3. Show that any continuous homomorphism of a compact group onto a Hausdorff
group is an open mapping.

4. Show that for any n ∈ N, the compact topological group Tn is topologically
isomorphic to the quotient group Rn/Zn.

5. (i) Let φ be a homomorphism of a topological group G into a topological group
H. If X is a non-empty subset of G such that the restriction φ : X → H is
an open map, show that φ : G→ H is also an open map.

[Hint: For any subset U of G, φ(U) =
⋃
g∈G

φ(U ∩ gX).]

(ii) Hence show that if G and H are locally compact Hausdorff groups with φ a
continuous homomorphism : G→ H such that for some compact subset K
of G, φ(K) generates H algebraically, then φ is an open map.

[Hint: Show that there is a compact neighbourhood U of e such thatK ⊆ U .
Put X = the subgroup generated algebraically by U .]

6. Let G and H be topological groups, and let η be a homomorphism of H into
the group of automorphisms of G. Define a group structure on the set G×H
by putting

(g1, h1) · (g2, h2) = (g1η(h1)(g2), h1h2).

Further, let (g, h) 7→ η(h)(g) be a continuous map of G×H onto G. Show that

(i) Each η(h) is a homeomorphism of G onto itself; and

(ii) With the product topology and this group structure G×H is a topological
group. (It is called the semidirect product of G by H that is determined
by η, and is denoted by Goη H.)
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7. (i) Let G be a σ-compact locally compact Hausdorff topological group with N
a closed normal subgroup of G and H a closed subgroup of G such that
G = NH and N ∩H = {e}. Show that G is topologically isomorphic to an
appropriately defined semidirect product N oη H.

[Hint: Let η(h)(n) = h−1nh, h ∈ H and n ∈ N .]

(ii) If H is also normal, show that G is topologically isomorphic to N ×H.

(iii) If A and B are closed compactly generated subgroups of a locally compact
Hausdorff abelian topological group G such that A∩B = {e} and G = AB,
show that G is topologically isomorphic to A×B.

8. Let G and H be Hausdorff topological groups and f a continuous homomorphism
of G into H. If G has a neighbourhood U of e such that U is compact and
f(U) is a neighbourhood of e in H, show that f is an open map.

A5.5 Subgroups and Quotient Groups of RRRn

In this section we expose the structure of the closed subgroups and Hausdorff
quotient groups of Rn, n > 1.

Notation. Unless explicitly stated otherwise, for the remainder of this chapter we
shall focus our attention on abelian groups which will in future be written additively.
However, we shall still refer to the product of two groups A and B (and denote it
by A× B) rather than the sum of the two groups. We shall also use An to denote
the product of n copies of A and

∏
i∈I

Ai for the product of the groups Ai, i ∈ I.

The identity of an abelian group will be denoted by 0.

A5.5.1 Proposition. Every non-discrete subgroup G of R is dense.

Proof. We have to show that for each x ∈ R and each ε > 0, there exists an
element g ∈ G ∩ [x− ε, x+ ε].

As G is not discrete, 0 is not an isolated point. So there exists an element
xε ∈ (G\{0})∩ [0, ε]. Then the intervals [nxε, (n+1)xε], n = 0,±1,±2, . . . cover R
and are of length 6 ε. So for some n, nxε ∈ [x−ε, x+ε] and of course nxε ∈ G.
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A5.5.2 Proposition. Let G be a closed subgroup of R. Then G = {0},
G = R or G is a discrete group of the form aZ = {0, a,−a, 2a,−2a, . . . }, for
some a > 0.

Proof. Assume G 6= R. As G is closed, and hence not dense in R, G must be
discrete. If G 6= {0}, then G contains some positive real number b. So [0, b] ∩G is
a closed non-empty subset of the compact set [0, b]. Thus [0, b]∩G is compact and
discrete. Hence [0, b] ∩G is finite, and so there exists a least element a > 0 in G.

For each x ∈ G, let
[x
a

]
denote the integer part of x

a . Then x −
[x
a

]
a ∈ G

and 0 6 x −
[x
a

]
a < a. So x −

[x
a

]
a = 0; that is, x = na, for some n ∈ Z, as

required.

A5.5.3 Corollary. If a, b ∈ R then gp {a, b}, the subgroup of R generated
by {a, b}, is closed if and only if a and b are rationally dependent. [Real numbers
a and b are said to be rationally dependent if there exists integers n and m
such that na = bm.]

Proof. Exercise.

A5.5.4 Examples. gp {1,
√

2} and gp {
√

2,
√

3} are dense in R.

A5.5.5 Corollary. Every proper Hausdorff quotient group of R is
topologically isomorphic to T.

Proof. If R/G is a proper Hausdorff quotient group of R, then, by Proposition
A5.2.22, G is a closed subgroup of R. By Proposition A5.5.2, G is of the form aZ,
a > 0. Noting that the map x→ 1

ax is a topological group isomorphism of R onto
itself such that aZ maps to Z, we see that R/aZ is topologically isomorphic to R/Z
which, we know, is topologically isomorphic to T.
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A5.5.6 Corollary. Every proper closed subgroup of T is finite.

Proof. Identify T with the quotient group R/Z and let p : R → R/Z be the
canonical quotient homomorphism. If G is any proper closed subgroup of R/Z then
p−1(G) is a proper closed subgroup of R. So p−1(G) is discrete. By Proposition
A5.2.16, the restriction p : p−1(G)→ G is an open map, so we see that G is discrete.
As G is also compact, it is finite.

We now proceed to the investigation of closed subgroups of Rn, for n > 1. Here
we use the fact that Rn is a vector space over the field of real numbers.

Notation. If A is a subset of Rn, we denote by sp R(A) the subgroup

{α1a1 + · · ·+ αmam : αi ∈ R, ai ∈ A, i = 1, . . . ,m, m a positive integer};

and by sp Q(A) the subgroup

{α1a1 + · · ·+ αmam : αi ∈ Q, ai ∈ A, i = 1, . . . , m, m a positive integer};

and by gp (A) the subgroup of Rn generated by A.

Clearly gp (A) ⊆ sp Q(A) ⊆ sp R(A). We define rank (A) to be the dimension of
the vector space sp R(A).

A5.5.7 Proposition. If {a1, . . . , am} is a linearly independent subset of
Rn, then gp {a1, . . . , am} is topologically isomorphic to Zm.

Proof. Choose elements am+1, . . . , an so that {a1, . . . , am, am+1, . . . , an} is a
basis for Rn. It is clear that if {c1, . . . , cn} is the canonical basis for Rn, then
gp {c1, . . . , cm} is topologically isomorphic to Zm. By Exercises A5.5#2, every linear
transformation of Rn onto itself is a homeomorphism. So the linear map taking ai
to ci, i = 1, . . . , n, yields a topological group isomorphism of gp {a1, . . . , am} onto
gp {c1, . . . , cm} = Zm.
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A5.5.8 Proposition. Let G be a discrete subgroup of Rn of rank
p, and a1, . . . , ap ∈ G a basis for sp R(G). Let P be the closed
parallelotope with centre 0 and basis vectors a1, . . . , ap; that is, P ={

P∑
i=1

riai : −1 6 ri 6 1, i = 1, . . . , p

}
. Then G∩P is finite and gp (G∩P ) = G.

Further, every point in G is a linear combination of {a1, . . . , ap} with rational
coefficients; that is, G ⊆ sp Q{a1, . . . , ap}.

Proof. As P is compact and G is discrete (and closed in Rn), G ∩ P is discrete
and compact, and hence finite.

Now G ⊆ sp R{a1, . . . , ap} implies that each x ∈ G can be written as x =
p∑
i=1

tiai,

ti ∈ R. For each positive integer m, the point

zm = mx−
p∑
i=1

[mti]ai =

p∑
i=1

(mti − [mti])ai

where [ ] denotes “integer part of", belongs to G. As 0 6 mti − [mti] < 1, zm ∈ P .

Hence x = z1 +
p∑
i=1

[ti]ai, which says that gp (G ∩ P ) = G.

Further, as G ∩ P is finite there exist integers h and k such that zh = zk. So
(h− k)ti = [hti]− [kti], x ∈ sp Q{a1, . . . , ap}.

A5.5.9 Corollary. Let {a1, . . . , ap} be a linearly independent subset of

Rn, and b =
p∑
i=1

tiai, ti ∈ R. Then gp {a1, . . . , ap, b} is discrete if and only if

t1, . . . , tp are rational numbers.

Proof. Exercise.
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A5.5.10 Theorem. Every discrete subgroup G of Rn of rank p is generated
by p linearly independent vectors, and hence is topologically isomorphic to Zp.

Proof. Since G is of rank p, G ⊆ sp R{a1, . . . , ap}, where a1, . . . , ap are linearly
independent elements of G. By Proposition A5.5.8, G = gp {g1, . . . , gr} where each
gi ∈ sp Q{a1, . . . , ap}. So there exists a d ∈ Z such that gi ∈ gp

{
1
da1, . . . ,

1
dap
}
,

i = 1, . . . , r.

Now, if {b1, . . . , bp} is a linearly independent subset of G, then bi =
∑
βijaj,

where the determinant, det(βij) 6= 0, and βij ∈ 1
dZ. So det(βij) ∈ 1

dpZ. So out of all
such {b1, . . . , bp} there exists one with

∣∣det(βij)
∣∣ minimal. Let this set be denoted by

{b1, . . . , bp}. We claim thatG = gp {b1, . . . , bp} and hence is topologically isomorphic
to Zp.

Suppose G 6= gp {b1, . . . , bp}. Then there exists an element g ∈ G with

g =
p∑
i=1

λibi and not all λi ∈ Z. Without loss of generality we can assume that

λ1 = r
s, r 6= 0 and s > 1. Since b1 ∈ G we can also assume that |λ1| < 1 (by

subtracting multiples of b1, if necessary). Then putting b′1 = g, b′i = bi, i = 2, . . . , p

and b′i =
∑
β′ijaj we see that

det(β′ij) = det


λ1 0 0 . . . 0
λ2 1 0 . . . 0
λ3 0 1 . . . 0
... ... ... . . . ...
λp 0 0 . . . 1

 det(βij) = λ1 det(βij).

As |λ1| < 1 this means that
∣∣∣det(β′ij)

∣∣∣ < ∣∣det(βij)
∣∣, which is a contradiction.
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A5.5.11 Proposition. Every non-discrete closed subgroup H of Rn, n > 1,
contains a line through zero.

Proof. As H is non-discrete there exists a sequence h1, h2, . . . of points in H

converging to 0, with each hn 6= 0. Let C be an open cube with centre 0 containing
all the hn. Let mn denote the largest integer m > 0 such that mhn ∈ C. The
points mnhn, n = 1, 2, . . . lie in a compact set C and therefore have a cluster point
a ∈ C ∩H.

If ‖mnhn − a‖ 6 ε we have ‖(mn + 1)hn − a‖ 6 ε + ‖hn‖, where ‖ ‖ denotes
the usual norm in Rn. Since hn → 0 as n → ∞ it follows that a is also a cluster
point of the sequence (mn + 1)hn, n = 1, 2, . . . , whose points belong to the closed
set Rn \ C. Hence a ∈ C ∩ (Rn \ C)–the boundary of C, which implies a 6= 0.

Let t be any real number. Since |tmn− [tmn]| < 1, the relation ‖mnhn−a‖ 6 ε
implies that ‖[tmn]hn − ta‖ 6 |t|ε + ‖hn‖; since hn → 0 as n → ∞, ta is a limit
point of the sequence [tmn]hn, n = 1, 2, . . . . But the points of this sequence belong
to H and so ta ∈ H, since H is closed. So H contains the line through a 6= 0 and
0.
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A5.5.12 Theorem. Let G be a closed subgroup of Rn, n > 1. Then there
are (closed) vector subspaces U , V and W of Rn such that

(i) Rn = U × V ×W

(ii) G ∩ U = U

(iii) G ∩ V is discrete

(iv) G ∩W = {0}

(v) G = (G ∩ U)× (G ∩ V ).

Proof. Let U be the union of all lines through 0 lying entirely in G. We claim
that U is a vector subspace of Rn.

To see this let x and y be in U and λ, µ and δ ∈ R. Then δλx is in U and hence
also in G. Similarly δµy ∈ G. So δ(λx+µy) = δλx+ δµy ∈ G. As this is true for all
δ ∈ R, we have that λx+µy ∈ U . So U is a vector subspace of Rn, and G∩U = U .

Let U ′ be any complementary subspace of U ; that is, Rn = U×U ′. So if g ∈ G,
then g = h + k, h ∈ U , k ∈ U ′. As U ⊆ G, h ∈ G so k = g − h ∈ G. Hence
G = U × (G ∩ U ′).

Put V = sp R(G ∩ U ′) and W equal to a complementary subspace in U ′ of V .
So G ∩W = {0}. Clearly G ∩ V contains no lines through 0, which by Proposition
A5.5.11, implies that G ∩ V is discrete.

A5.5.13 Theorem. Let G be a closed subgroup of Rn, n > 1. If r
equals the rank of G (that is, sp R(G) has dimension r) then there exists a basis
a1, . . . , an of Rn such that

G = sp R{a1, . . . , ap} × gp {ap+1, . . . , ar}.

So G is topologically isomorphic to Rp×Zr−p and the quotient group Rn/G is
topologically isomorphic to Tr−p × Rn−r.

Proof. Exercise. �
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Before stating the next theorem let us record some facts about free abelian
groups.

A5.5.14 Definition. A group F is said to be a free abelian group if it
is the restricted direct product of a finite or infinite number of infinite cyclic
groups. Each of these infinite cyclic groups has a single generator and the set
S of these generators is said to be a basis of F .

A5.5.15 Remarks.

(i) It can be shown that an abelian group F is a free abelian group with basis S if
and only if S is a subset of F with the property that every map f of S into any
abelian group G can be extended uniquely to a homomorphism of F into G.

(ii) One consequence of (i) is that any abelian group G is a quotient group of some
free abelian group. (Let F be the free abelian group with basis S of the same
cardinality as G. Then there is a bijection φ of S onto G. Extend this map to
a homomorphism of F onto G.)

(iii) Proposition A5.5.7 together with Theorem A5.5.10 show that any subgroup of
Zn is isomorphic to Zm, for some m. In other words, any subgroup of a free
abelian group with finite basis is a free abelian group with finite basis. It can
be shown that any subgroup of a free abelian group is a free abelian group. For
details see A.G. Kurosh [236].

(iv) Finally, we record that if the abelian group G admits a homomorphism φ onto
a free abelian group F then G is isomorphic to F ×A, where A is the kernel of
φ. (Note that is suffices to produce a homomorphism θ of F into G such that
φθ is the identity map of F . To produce θ, let S be a basis of F and for each
s ∈ S choose a gs ∈ G such that φ(gs) = s. As F is a free abelian group the
map s → gs of S into G can be extended to a homomorphism θ of F into G.
Clearly φθ acts identically on F .)

�
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A5.5.16 Theorem. Let H = V × F , where V is a divisible abelian
Hausdorff group and F is a discrete free abelian group. If G is a closed subgroup
of H, then there exists a discrete free abelian subgroup F ′ of H isomorphic to
F such that (i) H = V × F ′, and (ii) G = (G ∩ V )× (G ∩ F ′).

Proof. Let π1 : H → V and π2 : H → F be the projections. The restriction
of π2 to G is a homomorphism from G to F with kernel G ∩ V . Since F is a free
abelian group, and every subgroup of a free abelian group is a free abelian group,
G/(G∩V ) is free abelian, and therefore, by the above Remark (iv), G is algebraically
isomorphic to (G ∩ V )× C, where C is a free abelian subgroup of G.

Let p1 and p2 be the restrictions of π1 and π2 to C, respectively. Then p2 is
one-one as C ∩ V = C ∩G ∩ V = {0}.

C F

V

................................................................................................................. ............
p2

............................................................................................................
.....
.......
.....

p1
......
......
......
......
......
......
......
......
......
......
......
......
......
................
............

θ

We can define a homomorphism θ : p2(C) → V by putting θ(p2(c)) = p1(c)

and then use Proposition A5.3.6 to extend θ to a homomorphism of F into the
divisible group V . So θp2 = p1. If we now define a homomorphism φ : F → H by
φ(x) = θ(x) + x and put F ′ = φ(F ) we have that H = V × F ′, algebraically; the
decomposition being given by

v + f = [v − θ(f)] + [θ(f) + f ], v ∈ V and f ∈ F.

Also C ⊆ F ′, since for each c in C we have

c = p1(c) + p2(c) = θ(p2(c)) + p2(c) = φ(p2(c)) ∈ φ(F ) = F ′.

So (i) and (ii) are satisfied algebraically.

Now φ : F → F ′ is an algebraic isomorphism and since φ−1 is induced by π2,
φ−1 is continuous. But F is discrete, so φ is a homeomorphism and F ′ is a discrete
free abelian group.
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To show that H has the product topology with respect to the decomposition
H = V × F ′, it suffices to show that the corresponding projections π′1 : H → V

and π′2 : H → F ′ are continuous. But this is clearly the case since π′1(h) =

π1(h) − θ(π2(h)) and π′2(h) = π2(h) + θ(π2(h)), for each h ∈ H. Hence the
decomposition G = (G ∩ V )× (G ∩ F ′) also has the product topology.

A5.5.17 Corollary. Let G be a closed subgroup of Rn × Zm. Then G is
topologically isomorphic to Ra × Zb, where a 6 n and a+ b 6 n+m. Further,
(Rn×Zm)/G is topologically isomorphic to Rc×Td×D, where D is a discrete
finitely generated abelian group (with f 6 m generators) and c+ d 6 n.

Proof. Exercise. �

A5.5.18 Corollary. Let G be a closed subgroup of Rn×Tm×D, where D
is a discrete abelian group. Then G is topologically isomorphic to Ra×Tb×D′,
where D′ is a discrete group and a + b 6 n + m. Further (Rn × Tm × D)/G

is topologically isomorphic to Rc × Td ×D′′, where D′′ is a discrete group and
c+ d 6 n+m.

Proof. Let F be a discrete free abelian group with D as a quotient group. (See
Remarks A5.5.15.) Then there is a natural quotient homomorphism p of Rn+m×F
onto Rn×Tm×D. So G is a quotient group of p−1(G) 6 Rn+m×F . Now Theorem
A5.5.16 together with Theorem A5.5.13 describe both p−1(G) and the kernel of the
map of p−1(G) onto G, and yield the result.

A5.5.19 Remark. In Corollary A5.5.18 we have not said that a 6 n, b 6 m

and c 6 n. These inequalities are indeed true. They follow from the above and the
Pontryagin-van Kempen Duality Theorem.
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A5.5.20 Corollary. Let G be a closed subgroup of Tn. Then G is
topologically isomorphic to Ta×D where D is a finite discrete group and a 6 n.

Proof. Exercise.

A5.5.21 Definition. The topological groups G andH are said to be locally
isomorphic if there are neighbourhoods V of e in G and U of e in H and a
homeomorphism f of V onto U such that if x, y and xy all belong to V then
f(xy) = f(x)f(y).

A5.5.22 Example. R and T are obviously locally isomorpic topological groups.

A5.5.23 Proposition. If D is a discrete normal subgroup of a topological
group G, then G and G/D are locally isomorphic.

Proof. Exercise.

A5.5.24 Lemma. Let U be a neighbourhood of 0 in an abelian topological
group G and V be a neighbourhood of 0 in Rn, n > 1. If there is a continuous
map f of V onto U such that x ∈ V , y ∈ V and x + y ∈ V implies
f(x+y) = f(x)+f(y), then f can be extended to a continuous homomorphism
of Rn onto the open subgroup of G generated by U .

Proof. Exercise �
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A5.5.25 Theorem. Let G be a Hausdorff abelian topological group locally
isomorphic to Rn, n > 1. Then G is topologically isomorphic to Ra × Tb ×D,
where D is a discrete group and a+ b = n.

Proof. By Lemma A5.5.24 there is a continuous homomorphism f of Rn onto
an open subgroup H of G. As G is locally isomorphic to Rn, it has a compact
neighbourhood of 0 and so is locally compact. Hence H is locally compact and the
Open Mapping Theorem A5.4.4 says that f is an open map; that is, H is a quotient
group of Rn. Further the kernel K of f is discrete since otherwise there would be
elements x 6= 0 of K arbitrarily close to 0 such that f(x) = 0, which is false as f
maps a neighbourhood of 0 homeomorphically into G. So Theorem A5.5.13 tells us
that H is topologically isomorphic to Ra × Tb, with a+ b = n.

Now H is an open divisible subgroup of G which, by Proposition A5.3.8, implies
that G is topologically isomorphic to H ×D, where D = G/H is discrete. Thus G
is topologically isomorphic to Ra × Tb ×D, as required.

The next corollary follows immediately.

A5.5.26 Corollary. Any connected topological group locally isomorphic to
Rn, n > 1, is topologically isomorphic to Ra × Tb, where a+ b = n.

A5.5.27 Remark. We conclude this section by noting that some of the results
presented here can be extended from finite to infinite products of copies of R. For

example, it is known that any closed subgroup of a countable product
∞∏
i=1

Ri of

isomorphic copies Ri of R is topologically isomorphic to a countable product of
isomorphic copies of R and Z. However, this result does not extend to uncountable
products. For details of the countable products case, Brown et al. [59] and Leptin
[244]. The uncountable case is best considered in the context of pro-Lie groups,
Hofmann and Morris [182].
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Exercises A5.5

1. If a, b ∈ R show that the subgroup of R generated by {a, b} is closed if and only
if a and b are rationally dependent.

2. Prove that any linear transformation of the vector space Rn, n > 1, onto itself
is a homeomorphism.

3. (i) Let {a1, . . . , ap} be a linearly independent subset of Rn, n > 1, and

b =
p∑
i=1

tiai,

ti ∈ R. Show that gp {a1, . . . , ap, b} is discrete if and only if t1, . . . , tp are
rational numbers.

(ii) Hence prove the following (diophantine approximation) result: Let θ1, . . . , θn
be n real numbers. In order that for each ε > 0 there exist an integer q and
n integers pi, i = 1, . . . , n such that

|qθi − pi| 6 ε, i = 1, . . . , n

where the left hand side of at least one of these inequalities does not vanish,
it is necessary and sufficient that at least one of the θi be irrational.

4. Prove Theorem A5.5.13 using the results preceding the Theorem.

5. Prove Corollary A5.5.17 using the results preceding the Corollary.

5. Prove Corollary A5.5.20 using the results preceding the Corollary.

6. Prove Proposition A5.5.23 using the results preceding the Proposition.

7. Prove that if a, b, n,m are integers with a + b = n + m and D1 and D2 are
discrete groups, then Ra × Tb ×D1 is locally isomorphic to Rn × Tm ×D2.

8. Show that if G and H are locally isomorphic topological groups then there exists
a neighbourhood V ′ of e in G and U ′ of e in H and a homeomorphism f of V ′

onto U ′ such that if x, y and xy all belong to V ′ then f(xy) = f(x)f(y) and if
x′, y′ and x′y′ all belong to U ′ then f−1(x′y′) = f−1(x′)f−1(y′).
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9. (i) Verify that any topological group locally isomorphic to a Hausdorff topological

group is Hausdorff.

(ii) Verify that any connected topological group locally isomorphic to an abelian
group is abelian.

(iii) Deduce that any connected topological group locally isomorphic to Rn,
n > 1, is topologically isomorphic to Ra × Tb, where a+ b = n.

10. Prove Proposition A5.5.24 using the results preceding the Proposition.

11. Let U be a neighbourhood of 0 in an abelian topological group G and V a
neighbourhood of 0 in Rn, n > 1. If there is a continuous map f of V onto U
such that x ∈ V , y ∈ V and x + y ∈ V implies f(x + y) = f(x) + f(y), show
that f can be extended to a continuous homomorphism of Rn onto the open
subgroup of G generated by U .

A5.6 Uniform Spaces

We now say a few words about uniform spaces just enough for our purposes here.
For further discussion, see Kelley [219] and Bourbaki [50].

We introduce some notation convenient for this discussion.

Let X be a set and X×X = X2 the product of X with itself. If V is a subset of
X2 then V −1 denotes the set {(y, x) : (x, y) ∈ V } ⊆ X2. If U and V are subsets of
X2 then UV denotes the set of all pairs (x, z), such that for some y ∈ X, (x, y) ∈ U
and (y, z) ∈ V . Putting V = U defines U2. The set {(x, x) : x ∈ X} is called the
diagonal.
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A5.6.1 Definitions. A uniformity on a set X is a non-empty set U of
subsets of X ×X such that

(a) Each member of U contains the diagonal;

(b) U ∈ U =⇒ U−1 ∈ U ;

(c) if U ∈ U then there is a V ∈ U such that V 2 ⊆ U ;

(d) if U ∈ U and V ∈ U , then U ∩ V ∈ U ;

(e) if U ∈ U and U ⊆ V ⊆ X2, then V ∈ U .

The pair (X,U) is called a uniform space and each member of U is called an
entourage.

A5.6.2 Examples. If R is the set of real numbers, then the usual uniformity
on R is the set U of all subsets of U of R×R such that {(x, y) : |x− y| < r} ⊆ U ,
for some positive real number r.

Indeed if (X, d) is any metric space then we can define a uniformity U on
X by putting U equal to the collection of all subsets U of X × X such that
{(x, y) : d(x, y) < r} ⊆ U , for some positive real number r.

Let (G,τ ) be a topological group and for each neighbourhood U of e, let
UL = {(x, y) : x−1y ∈ U} and UR = {(x, y) : xy−1 ∈ U}. Then the left uniformity
L on G consists of all sets V ⊆ G×G such that UL ⊆ V , for some U . Similarly we
define the right uniformity. The two-sided uniformity consists of all sets W such
that UL ⊆ W or UR ⊆ W , for some U .

A5.6.3 Remarks. Given any uniformity U on a set X we can define a
corresponding topology on X. For each x ∈ X, let Ux = {y ∈ X : (x, y) ∈ U}.
Then as U runs over U , the system Ux defines a base of neighbourhoods at x for
a topology; that is, a subset T of X is open in the topology if and only if for each
x ∈ T there is a U ∈ U such that Ux ⊆ T .

It is easily verified that if (G, τ ) is a topological group then the topologies
arising from the left uniformity, the right uniformity and the two-sided
uniformity all agree with the given topology.
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A5.6.4 Definitions. Let (E,τE) and (F,τF ) be topological spaces and
M any set of subsets M of E and {Vi : i ∈ I}, for some index set I, a base of
open sets for the topology τF on F . Let P (M,Vi) = {f : f ∈ FE and f(M) ⊆
Vi}.
(FE denotes the set of all functions f : E → F .)
The family {P (M,Vi) : M ∈M, I ∈ I}, is a subbase for a topology on FE.
[If F is a Hausdorff space andM is a covering of E then it is easily verified that
this topology is Hausdorff.]
Two important special cases of this topology are when

(a)M is the collection of all finite subsets of E – the topology is then the
p-topology or the topology of pointwise convergence, and

(b)M is the collection of all compact subsets of E – the k-topology or the
compact-open topology.

Since every finite set is compact, p ⊆ k. Therefore a subset of FE which is
k-compact is also p-compact, but the converse if false.

Observe that FE with the p-topology is simply
∏
x∈E

Fx, with the product

topology, where each Fx is a homeomorphic copy of F .

We are interested in C(E,F ), the subset of FE consisting of all continuous
functions from E to F , and we shall want to find conditions which guarantee that
a subset of C(E,F ) is k-compact.

A5.6.5 Definition. Let (E,τE) and (F,τF ) be topological spaces and G
a subset of FE. A topology τ on G is said to be jointly continuous if the map
θ from the product space (G,τ )× (E,τE) to (F,τF ), given by θ(g, x) = g(x),
is continuous.



608 APPENDIX 5: TOPOLOGICAL GROUPS

A5.6.6 Proposition. Each topology τ on G ⊆ FE which is jointly
continuous is finer than the k-topology.

Proof. Let U be an open set in (F,τF ), (K,τK) a compact subspace of (E,τE),
and θ the map taking (g, x) to g(x), g ∈ G and x ∈ E. We want to show that for
each f ∈ P (K,U) = {g : g ∈ G and g(K) ⊆ U} there is a set W ∈ τ such that
f ∈ W ⊆ P (K,U).

As θ is jointly continuous, the set V = (G × K) ∩ θ−1(U) is open in
(G,τ ),×(K,τK). If f ∈ P (K,U), then {f} × K ⊆ V and since {f} × K is
compact, there is a W ∈ τ such that f ∈ W and W × K ⊆ θ−1(U). Hence
W ⊆ P (K,U) as required. �

A5.6.7 Proposition. Let (E,τE) and (F,τF ) be topological spaces and
G ⊆ C(E,F ). Then G is k-compact, that is compact in the k topology, if

(a) G is k-closed in C(E,F ),

(b) the closure of the set {g(x) : g ∈ G} is compact in (F,τF ), for each x ∈ E,
and

(c) the p-topology for the p-closure of G in FE is jointly continuous.

Proof. Let G be the p-closure in FE of G. By condition (b),
∏
x∈E

({g(x) : g ∈ G})

is a p-compact set, and since G is a p-closed subset of this set, G is p-compact.

By condition (c), the p-topology on G is jointly continuous – so G ⊆ C(E,F ).
Also by Proposition A5.6.6, the p-topology on G is finer than the k-topology and
hence they coincide. Thus G is k-compact. As G is k-closed in C(E,F ) and G is
k-compact and a subset of C(E,F ), we have that G is k-compact. �
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A5.6.8 Definitions. Let E be a topological space and F a uniform space.
A subset G of C(E,F ) is said to be equicontinuous at the point x ∈ E if
for each U in the uniformity U of F , there exists a neighbourhood V of x such
that (g(y), g(x)) ∈ U , for all y ∈ V and g ∈ G. The family G is said to be
equicontinuous if it is equicontinuous at every x ∈ E.

A5.6.9 Proposition. Let G be a subset of C(E,F ) which is equicontinuous
at x ∈ E. Then the p-closure, G, in FE of G is also equicontinuous at x.

Proof. Exercise.

A5.6.10 Proposition. Let G be an equicontinuous subset of C(E,F ).
Then the p-topology on G is jointly continuous.

Proof. Exercise.

By combining Propositions A5.6.7, A5.6.9 and A5.6.10 we obtain the following:

A5.6.11 Theorem. (Ascoli’s Theorem) Let (E,τE) be a topological
space and F a uniform space. A subset G of C(E,F ) is k-compact if

(a) G is k-closed in C(E,F ),

(b) the closure of the set {g(x) : g ∈ G} is compact, for each x ∈ E, and

(c) G is equicontinuous.

A5.6.12 Remark. If E is a locally compact Hausdorff space and F is a
Hausdorff uniform space then the converse of Theorem 5.6.11 is valid; that is,
any k-compact subset of G of C(E,F ) satisfies conditions (a), (b) and (c). (See
Kelley [219])
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Exercises A5.6

1. Let (X,U) be any uniform space and (X,τ ) the associated topological space.
Show that (X,τ ) is a regular space.

2. If (G,τ ) is a topological group show that the topologies associated with the left
uniformity on G, the right uniformity on G, and the two-sided uniformity on G
coincide with τ .

3. (i) Let G be a topological group and {Un : n = 1, 2, . . . } a base for the left
uniformity

on G such that

(a)
∞⋂
n=1

Un = diagonal of G×G,

(b) Un+1Un+1Un+1 ⊆ Un, and

(c) Un = U−1
n , for each n.

Show that there exists a metric d on G such that

Un ⊆ {(x, y) : d(x, y) < 2−n} ⊆ Un−1, for each n > 1.

[Hint: Define a real-valued function f on G × G by letting f(x, y) = 2−n

if (x, y) ∈ Un−1\Un and f(x, y) = 0 if (x, y) belongs to each Un. The
desired metric d is constructed from its “first approximation”, f , by a
chaining argument. For each x and y in G let d(x, y) be the infimum of{

n∑
i=0

f(xi, xi+1)

}
over all finite sequences x0, x1, . . . , xn+1 such that x = x0

and y = xn+1.]

(ii) Prove that a topological group is metrizable if and only if it satisfies the
first axiom of countability at the identity; that is, there is a countable
base of neighbourhoods at the identity.
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4. Let E be a topological space, F a uniform space and G a subset of C(E,F ).
Show that

(i) if G is equicontinuous at x ∈ E, then the p-closure in FE of G is also
equicontinuous at x; and

(ii) if G is an equicontinuous subset of C(E,F ), then the p-topology on G is
jointly continuous.

A5.7 Dual Groups

We are now ready to begin our study of duality.

A5.7.1 Definitions. If G is an abelian topological group then a continuous
homomorphism γ : G → T is said to be a character. The collection of all
characters is called the character group or dual group of G, and is denoted
by G∗ or Γ.

Observe that G∗ is an abelian group if for each γ1 and γ2 in G∗ we define

(γ1 + γ2)(g) = γ1(g) + γ2(g), for all g ∈ G.

Instead of writing γ(g), γ ∈ Γ and g ∈ G we shall generally write (g, γ).

A5.7.2 Example. Consider the group Z. Each character γ of Z is determined
by γ(1), as γ(n) = nγ(1), for each n ∈ Z. Of course γ(1) can be any element of
T. For each a ∈ T, let γa denote the character γ of Z with γ(1) = a. Then the
mapping a → γa is clearly an algebraic isomorphism of T onto the character group
of Z. So the dual group Z∗ of Z is algebraically isomorphic to T. �
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A5.7.3 Example. Consider the group T. We claim that every character γ of
T can be expressed in the form γ(x) = mx, where m is an integer characterizing the
homomorphism γ.

To see this let K denote the kernel of γ. Then by Corollary A5.5.6, K = T or
K is a finite cyclic group. If K = T, then γ is the trivial character and γ(x) = 0.x,
x ∈ T. If K is a finite cyclic group of order r then, by Corollart A5.5.5, T/K is
topologically isomorphic to T. Indeed, if p is the canonical map of T onto T/K then
the topological isomorphism θ : T/K → T is such that θp(x) = rx. Let α be the
continuous one-one homomorphism of T into T induced by γ.

T T

T/K

T

....................................................................................................................................................................................................................................................................... ............
γ

............................................................................................................
.....
.......
.....

θ

............................................................................................................
.....
.......
.....

p

..........................................................................................................................................................................................................................................................................................................................................................................................
....
............

α

Exercises A5.7 #1 implies that α(x) = x, for all x ∈ T, or α(x) = −x, for all x ∈ T.
So γ(x) = rx or −rx, for each x ∈ T.

Hence each character γ of T is of the form γ = γm for some m ∈ Z, where
γm(x) = mx for all x ∈ T. Of course γm + γn = γm+n. Thus the dual group T∗ of
T is algebraically isomorphic to Z, with the isomorphism being m→ γm. �

We now topologize G∗.

A5.7.4 Remark. Note that G∗ is a p-closed subset of C(G,T). �

A5.7.5 Proposition. Let G be any abelian topological group. Then G∗

endowed with the p-topology or the k-topology is a Hausdorff abelian topological
group.

Proof. Exercise.
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A5.7.6 Theorem. If G is any LCA-group then G∗, endowed with the
k-topology, is an LCA-group.

Proof. To show that G∗, with the k-topology, is locally compact, let U be any
compact neighbourhood of 0 in G and Va = {t : t = exp(2πix) ∈ T and 1 > x >

1 − a or a > x > 0}, where a is a positive real number less than 1
4. Then Va is an

open neighbourhood of 0 in T.
Let Na = P (U, Va) = {γ ∈ G∗ : (g, γ) ∈ Va, for each g ∈ U}. By the definition

of the k-topology, Na is a neighbourhood of 0 in G∗. we shall show that the k-closure
of Na, clk(Na), is k-compact. To do this we use Ascoli’s Theorem A5.6.11.

Firstly, we show that Na is equicontinuous. Let ε > 0 be given. We wish to
show that there exists a neighbourhood U1 of 0 in G such that for all γ ∈ Na and
g, h, and g − h in U1, (g − h, γ) = (g, γ)− (h, γ) ∈ Vε, where

Vε = {t : t = exp(2πix) ∈ T and 1 > x > 1− ε or ε > x > 0}.

Suppose that there is no such U1. Without loss of generality assume ε < 1
4 and

let n be a positive integer such that 1
2 > nε > a. Further, let W be a neighbourhood

of 0 in G such that
n∑
i=1

Wi ⊆ U, where each Wi = W. (1)

By assumption, then, for some g and h in W with g − h ∈ W and some
γ ∈ Na, (g − h, γ) 6∈ Vε. So without loss of generality (g − h, γ) = exp(2πix)

with a > x > ε. Let j be a positive integer less than or equal to n such that
1
2 > jx > a. So (j(g − h), γ) 6∈ Va. But as jg, jh and j(g − h) all belong to U , by
(1), (j(g − h), γ) ∈ Va, which is a contradiction. Hence Na is equicontinuous.

By Proposiition A5.6.9 the p-closure of Na is equicontinuous. As any subset of
an equicontinuous set is equicontinuous, and clk(Na) is a subset of the p-closure of
Na, we have that clk(Na) is equicontinuous.

As T is compact, condition (b) of Ascoli’s Theorem A5.6.11 is also satisfied
and hence clk(Na) is a compact neighbourhood of 0. So G∗ with the k-topology is
locally compact. �
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As a corollary to the proof of Theorem A5.7.6 we have

A5.7.7 Corollary. Let G be any LCA-group, Γ its dual group endowed with
the k-topology, K a compact neighbourhood of 0 in G and for some positive real
number a < 1

4 , Va = {t : t = exp(2πix) ∈ T with 1 > x > 1− a or a > x > 0}.
Then P (K,Va) is a compact neighbourhood of 0 in Γ. �

A5.7.8 Notation. From now on G∗ and Γ will denote the dual group of G
with the k-topology.

A5.7.9 Theorem. Let G be an LCA-group and Γ its dual group. If G is
compact, then Γ is discrete. If G is discrete, then Γ is compact.

Proof. Let G be compact and Va be as in Corollary A5.7.7 Then P (G, Va) is a
neighbourhood of 0 in Γ. As Va contains no subgroup other than {0}, we must have
P (G, Va) = {0}. So Γ has the discrete topology.

Let G be discrete. Then by Corollary A5.7.7, P ({0}, Va) is a compact subset of
Γ. But P ({0}, Va) clearly equals Γ, and hence Γ is compact.

A5.7.10 Corollary. The dual group T∗ of T is topologically isomorphic to
Z.

Exercises A5.7

1. Show that if γ is a continuous one-to-one homomorphism of T into itself then
either γ(x) = x, for all x ∈ T or γ(x) = −x, for all x ∈ T.

[Hint: Firstly show that γ must be onto. Next, observe that T has only one
element of order 2.]
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2. Show that if G is any abelian topological group, then G∗ endowed with the
p-topology or the k-topology is a Hausdorff topological group.

[Hint: Let γ1 − γ2 ∈ P (K,U). Let W be an open symmetric neighbourhood of
0 in T such that 2W + (γ1 − γ2)(K) ⊆ U . Observe that

[γ1 + P (K,W )]− [γ2 + P (K,W )] ⊆ P (K,U).]

3. Show that the dual group of Z is topologically isomorphic to T.

4. Show that R is topologically isomorphic to its dual group.

5. Find the dual groups of the discrete finite cyclic groups.

6. Let G be any abelian topological group and G∗ its dual group. Show that
the family of all sets P (K,Vε), as K ranges over all compact subsets of G
containing O and ε ranges over all positive numbers less than one, is a base of
open neighbourhoods of O for the k-topology on G∗.
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A5.8 Pontryagin–van Kampen Duality Theorem: Introduction

We begin with a statement of the duality theorem.

Theorem. [Pontryagin-van Kampen Duality Theorem] Let G be an LCA-
group and Γ its dual group. For fixed g ∈ G, let g′ : Γ→ T be the function
given by g′(γ) = γ(g), for all γ ∈ Γ. If α : G→ Γ∗ is the mapping given by
α(g) = g′, then α is a topological group isomorphism of G onto Γ∗.

A5.8.1 Remarks.

(i) Roughly speaking this says that every LCA-group is the dual group of its dual
group.

(ii) This theorem says that every piece of information about an LCA-group
is contained in some piece of information about its dual group. In
particular all information about a compact Hausdorff abelian group is contained
in information about its dual group – a discrete abelian group. So any compact
Hausdorff abelian group can be completely described by the purely algebraic
properties of its dual group; for example, if G is a compact Hausdorff abelian
group then we shall see that

(a) G is metrizable if and only if Γ is countable.

(b) G is connected if and only if Γ is torsion-free.
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A5.8.2 Lemma. In the notation of the above Theorem, α is a continuous
homomorphism of G into Γ∗.

Proof. Firstly we have to show that α(g) ∈ Γ∗; that is, α(g) = g′ is a continuous
homomorphism of Γ into T.

As α(g)(γ1 + γ2) = (γ1 + γ2)(g) = γ1(g) + γ2(g) = α(g)(γ1) +α(g)(γ2), for each
γ1 and γ2 in Γ, α(g) : Γ→ T is a homomorphism.

To see that α(g) is continuous, it suffices to note that α(g)(γ) ∈ Vε whenever
γ ∈ P ({g}, Vε), where Vε is an ε-neighbourhood of 0 in T as in Theorem A5.7.6.
So α is a map of G into Γ∗.

That α is a homomorphism follows by observing

α(g1 + g2)(γ) = γ(g1 + g2) = γ(g1) + γ(g2) = α(g1)(γ) + α(g2)(γ), for all γ ∈ Γ,

=⇒ α(g1 + g2) = α(g1) + α(g2), for all g1, g2 ∈ G.

To show that α is continuous, it suffices to verify continuity at 0 ∈ G. Let
W be any neighbourhood of 0 in Γ∗. Without loss of generality we can assume
W = P (K,Vε), for some compact subset K of Γ. We have to find a neighbourhood
of 0 in G which maps into W .

Let U be any open neighbourhood of 0 in G such that U is compact and consider
the neighbourhood P

(
U, Vε/2

)
of 0 in Γ. The collection

{
γ + P

(
U, Vε/2

)
: γ ∈ Γ

}
covers the compact set K and so there exist γ1, . . . , γm in Γ such that

K ⊆
[
γ1 + P

(
U, Vε/2

)]
∪ · · · ∪

[
γm + P

(
U, Vε/2

)]
.

Let U1 be a neighbourhood of 0 in G such that U1 ⊆ U and γi(g) ∈ Vε/2, for
all g ∈ U1 and i = 1, . . . ,m. (This is possible since the γi are continuous.) We
claim that U1 is the required neighbourhood. To see this let g ∈ U1 and consider
α(g)(γ), where γ ∈ K. Then γ ∈ γi + P

(
U, Vε/2

)
, for some i ∈ {1, . . . ,m}. So

γ − γi ∈ P
(
U, Vε/2

)
. Thus (γ − γi)(g) ∈ Vε/2 for g ∈ U1 ⊆ U . As γi(g) ∈ Vε/2,

this implies that γ(g) ∈ Vε/2 + Vε/2 ⊆ Vε. So α(g)(γ) ∈ Vε, as required.
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The duality theorem will be proved for compact groups and discrete groups first,
and then it will extended to all LCA-groups.

There are a number of proofs of the duality theorem in the literature. The proof
presented in this Appendix is from Morris [277]. An elegant proof appears in Rudin
[333]. Hewitt and Ross [173] present the more classical approach of first deriving
the structure theory of LCA-groups and then using it in the proof of duality. A proof
using category theory is given in Roeder [324]. Other references include Weil [399],
Cartan and Godement [70], Raikov [316], Naimark [288], Dikranjan et al. [104] and
of course, Pontryagin [311].

Exercises A5.8

1. Show that Z satisfies the Pontryagin-van Kampen Duality Theorem.
(Note. This requires more than just showing that Z∗∗ is topologically isomorphic
to Z. You must prove that the map α in the duality theorem is a topological
group isomorphism.)

[Hint. See Example A5.7.2 and Example A5.7.3.]

2. Show that T satisfies the Pontryagin-van Kampen Duality Theorem.

[Hint. Firstly show that α is 1-1 and onto. Then use the Open Mapping
Theorem A5.4.4.

3. Prove that every discrete finite cyclic group satisfies the Pontryagin-van Kampen
Duality Theorem.

4. Prove that the topological group R satisfies the Pontryagin-van Kampen Duality
Theorem.
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A5.9 Dual Groups of Subgroups, Quotients, and Finite Products

Wenow make some observations which are needed in the proof of the duality theorem,
but which are also of interest in themselves.

A5.9.1 Theorem. If G1, . . . , Gn are LCA-groups with dual groups
Γ1, . . . ,Γn, respectively, then Γ = Γ1 × Γ2 × · · · × Γn is the dual group of
G1 ×G2 × · · · ×Gn.

Proof. It suffices to prove this for the case n = 2, and finite products can then
be easily deduced by mathematical induction.

If g = g1 + g2 is the unique representation of g ∈ G as a sum of elements of
G1 and G2, then the pair γ1 ∈ Γ1 and γ2 ∈ Γ2 determine a character γ ∈ Γ by the
formula

(g, γ) = (g1, γ1) + (g2, γ2) (1)

Since every γ ∈ Γ is completely determine by its action on the subgroups G1

and G2, equation (1) shows that Γ is algebraically the direct sum of Γ1 and Γ2.

To see that Γ has the product topology Γ1 × Γ2 simply note that

(a) P (K,Vε) ⊇ P
(
K1, Vε/2

)
+ P

(
K2, Vε/2

)
, where K is any compact subset of

G = G1 × G2, K1 = p1(K), K2 = p2(K) and p1 and p2 are the projections of
G onto G1 and G2, respectively, and

(b) if K1 is a compact subset of G1 containing 0 and K2 is a compact subset of G2

containing 0, then P (K1 ×K2, Vε) ⊆ P (K1, Vε) + P (K2, Vε) . (See Exercises
A5.7 #6.)

A5.9.2 Corollary. For each n > 1, Rn is topologically isomorphic to its
dual group.
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A5.9.3 Corollary. For each n > 1, the topological groups Tn and Zn are
dual groups of each other.

A5.9.4 Corollary. If G1, . . . , Gn are LCA-groups which satisfy the
Pontryagin-van Kampen Duality Theorem, then G1 × G2 × · · · × Gn satisfies
the Pontryagin-van Kampen Duality Theorem. Hence Ra × Tb × G satisfies
the Pontryagin-van Kampen Duality Theorem, where G is a discrete finitely
generated abelian group, and a and b are non-negative integers.

Proof. Exercise.

Theorem A5.9.1 shows that the dual group of a finite product is the product of
the dual groups. We shall see, in due course, that the dual of a closed subgroup is
a quotient group, and the dual of a quotient group is a closed subgroup. As a first
step towards this we have Proposition A5.9.5.
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A5.9.5 Proposition. Let f be a continuous homomorphism of an LCA-
group A into an LCA-group B. Let a map f∗ : B∗ → A∗ be defined by putting
f∗(γ)(a) = γf(a), for each γ ∈ B∗ and a ∈ A. Then f∗ is a continuous
homomorphism of B∗ into A∗. If f is onto, then f∗ is one-one. If f is both an
open mapping and one-one, then f∗ is onto.

A B

T

................................................................................................................................................................... ............
f

...................................................................................................................................................... ........
....

f∗(γ)

..............................................................................................................................................................
.....
.......
.....

γ

Proof. The verification that f∗ is a homomorphism of B∗ into A∗ is routine. To
see that f∗ is continuous, let P (K,U) be a subbasic open set in A∗, where U is an
open subset of T and K is a compact subset of A. The continuity of f∗ follows
from the fact that (f∗)−1(P (K,U)) = P (f(K), U) is an open subset of B∗.

Assume f is onto and suppose that f∗(γ1) = f∗(γ2) where γ1 and γ2 are in B∗.
Then f∗(γ1)(a) = f∗(γ2)(a), for all a ∈ A; that is, γ1f(a) = γ2f(a), for all a ∈ A.
As f is onto this says that γ1(b) = γ2(b), for all b ∈ B. Hence γ1 = γ2 and f∗ is
one-one.

Assume that f is both an open mapping and one-one. Let δ ∈ A∗. As f is
one-one, Proposition A5.3.6 tells us that there is a (not necessarily continuous)
homomorphism γ : B → T such that δ = γf . As δ is continuous and f is an open
mapping, γ is indeed continuous; that is, γ ∈ B∗. As f∗(γ) = δ, we have that f∗ is
onto.

A5.9.6 Corollary. If B is a quotient group of A, where A and B are either
both compact Hausdorff abelian groups or both discrete abelian groups, then
B∗ is topologically isomorphic to a subgroup of A∗.

Proof. Exercise.
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A5.9.7 Corollary. If A is a subgroup of B, where A and B are discrete
abelian groups, then A∗ is a quotient group of B∗.

Proof. Exercise.

A5.9.8 Remark. As noted earlier we shall see in due course that Corollary
A5.9.6 and Corollary A5.9.7 remain true if the hypotheses “compact Hausdorff" and
“discrete" are replaced by “locally compact Hausdorff". We also mention that the
analogous results for duality in Banach spaces appears in Exercises 10.3 #33(xvi).

The next lemma indicates that, before proving the Pontryagin-van Kampen
Duality Theorem, we shall have to see that LCA-groups have enough characters to
separate points.

A5.9.9 Lemma. In the notation of the Pontryagin-van Kampen Duality
Theorem, the map α is one-one if and only if G has enough characters to
separate points; that is, for each g and h in G, with g 6= h, there is a γ ∈ Γ

such that γ(g) 6= γ(h).

Proof. Assume that α is one-one. Suppose that there exist g and h in G, with
g 6= h, such that γ(g) = γ(h) for all γ ∈ Γ. Then α(g)(γ) = α(h)(γ), for all γ ∈ Γ.
So α(g) = α(h), which implies that g = h, a contradiction. Hence G has enough
characters to separate points.

Assume now that G has enough characters to separate points. Let g and h be in
G, with g 6= h. Then there is a γ ∈ Γ such that γ(g) 6= γ(h). So α(g)(γ) 6= α(h)(γ),
which implies that α(g) 6= α(h). So α is one-one.
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The final proposition in this section should remind some readers of the Stone-
Weierstrass Theorem.

A5.9.10 Proposition. Let G be an LCA-group and Γ its dual group.
Let G satisfy the Pontryagin-van Kampen Duality Theorem and also have the
property that every nontrivial Hausdorff quotient group Γ/B of Γ has a nontrivial
character. If A is a subgroup of Γ which separates points of G, then A is dense
in Γ.

Proof. Suppose A is not dense in Γ. If B is the closure of A in Γ then Γ/B

is a nontrivial LCA-group. So there exists a nontrivial continuous homomorphism
φ : Γ/B → T.

Let f be the canonical homomorphism : Γ → Γ/B. Then φf is a continuous
homomorphism : Γ→ T. Furthermore, φf(Γ) 6= 0 but φf(B) = 0.

As G satisfies the Pontryagin-van Kampen Duality Theorem, there is a g ∈ G
such that φf(γ) = γ(g), for all γ ∈ Γ. So γ(g) = 0 for all γ in A. But since A
separates points in G, this implies g = 0. So φf(Γ) = 0, which is a contradiction.
Hence A is dense in Γ.

Of course the second sentence in the statement of Proposition A5.9.10 will, in
due course, be seen to be redundant.
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Exercises A5.9

1. (i) Show that if G1, . . . , Gn are LCA-groups which satisfy the Pontryagin-van

Kampen Duality Theorem, then G1×G2×· · ·×Gn satisfies the Pontryagin-
van Kampen Duality Theorem.

(ii) Deduce that ever discrete finitely generated abelian group satisfies the
Pontryagin-van Kampen Duality Theorem.

[Hint: Use the fact that every finitely generated abelian group is a direct
product of a finite number of cyclic groups.]

(iii) Hence show that Ra×Tb×G satisfies the Pontryagin-van Kampen Duality
Theorem, where G is a discrete finitely generated abelian group, and a and
b are non-negative integers.

2. Show that if B is a quotient group of A, where A and B are either both compact
Hausdorff abelian groups or both discrete abelian groups, then B∗ is topologically
isomorphic to a subgroup of A∗.

3. Show that if A is a subgroup of B, where A and B are discrete abelian groups,
then A∗ is a quotient group of B∗.

4. Show that if G is any LCA-group and Γ is its dual group, then Γ has enough
characters to separate points.
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A5.10 Peter-Weyl Theorem

In Lemma A5.9.9 we saw that a necessary condition for a topological group to
satisfy duality is that it have enough characters to separate points. That discrete
abelian groups have this property has been indicated already in Corollary A5.3.7.
For compact groups we use a result from the representation theory of topological
groups. [For a brief outline of this theory, see Higgins [175]. Fuller discussions
appear in Adams [5], Hewitt and Ross [173], Pontryagin [311] and Hofmann [184].]

The following theorem is named after Hermann Weyl and his student Fritz Peter.
Weyl and Peter proved this in Weyl and Peter [400] in 1927 for compact Lie groups
and E.R. van Kampen extended it to all compact groups in van Kampen [376] in
1935 using the 1934 work, von Neumann [389], of John von Neumann on almost
periodic functions.

A5.10.1 Theorem. (Peter-Weyl Theorem) Let G be a compact
Hausdorff group. Then G has sufficiently many irreducible continuous
representations by unitary matrices. In other words, for each g ∈ G, g 6= e,
there is a continuous homomorphism φ of G into the unitary group U(n), for
some n, such that φ(g) 6= e.

If G is abelian then, without loss of generality, it can be assumed that n = 1.
As U(1) = T we obtain the following corollary, which is the result which we shall use
in proving duality for compact abelian groups.

A5.10.2 Corollary. Every compact Hausdorff abelian topological group has
enough characters to separate points.

Corollary A5.10.2 was first proved by John von Neumann for compact metrizable
abelian groups. A derivation of Corollary A5.10.2 from von Neumann’s result is
outlined in Exercises A5.10 #2 and #3.
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A5.10.3 Corollary. Let G be any compact Hausdorff abelian group. Then
G is topologically isomorphic to a closed subgroup of the product

∏
i∈I

Ti, where

each Ti is topologically isomorphic to T, and I is some index set.

Proof. Exercise.

A5.10.4 Corollary. Let G be a compact Hausdorff abelian group. Then
every neighbourhood U of 0 contains a closed subgroup H such that G/H is
topologically isomorphic to Tn×D, for some finite discrete group D and n > 0.

Proof. Exercise.

Exercises A5.10

1. Using Exercises A5.3 #4(i), show that every compact totally disconnected
abelian topological group has enough characters to separate points.

2. Show that every compactly generated locally compact Hausdorff group G

can be approximated by metrizable groups in the following sense: For each
neighbourhood U of e, there exists a compact normal subgroup H of G such
that H ⊆ U and G/H is metrizable.

[Hint: Let V1, V2, V3, . . . be a sequence of symmetric compact neighbourhoods
of e such that (i) V1 ⊆ U , (ii) V 2

n+1 ⊆ Vn, for n > 1, and (iii) g−1Vng ⊆ Vn−1,
for n > 2 and g ∈ K, where K is a compact set which generates G. Put

H =
∞⋂
n=1

Vn and use Exercises A5.6 #3.]

3. Using Exercise 2 above, deduce statement B from statement A.

(A) Every compact metrizable abelian group has enough characters to separate
points.
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(B) Every compact Hausdorff abelian group has enough characters to separate
points.

4. (i) Show that every compact Hausdorff abelian group G is topologically isomorphic
to a subgroup of a product

∏
i∈I

Ti of copies of T.

[Hint: See the proof of Theorem A5.3.9.]

(ii) If G is also metrizable show that the index set I can be chosen to be a
countable set.

[Hint: Use Exercises A5.6 #3(ii).]

(iii) Using (i) show that if G is any compact Hausdorff abelian group, then every
neighbourhood U of 0 contains a closed subgroup H such that G/H is
topologically isomorphic to Tn × D, for some finite discrete group D and
n > 0.

[Hint: Reread Remark A5.3.1. Use Corollary A5.5.20.]

5. Show that every compact Hausdorff group is topologically isomorphic to a

subgroup of a product of copies of U , where U =
∞∏
n=1

U(n).
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A5.11 The Duality Theorem for Compact
Groups and Discrete Groups

The next proposition provides the last piece of information we need in order to
prove the Pontryagin-van Kampen Duality Theorem for compact groups and discrete
groups. (This proposition should be compared with Proposition A5.9.10.)

A5.11.1 Proposition. Let G be a discrete abelian group and Γ its dual
group. If A is a subgroup of Γ which separates points of G, then A is dense in
Γ.

Proof. Noting how the topology on Γ is defined, it suffices to show that each
non-empty sub-basic open set P (K,U), where K is a compact subset of G and U
is an open subset of T, intersects A nontrivially.

As G is discrete, K is finite. Let H be the subgroup of G generated by K
and f∗ : Γ → H∗ the map obtained by restricting the characters of G to H.
According to Proposition A5.9.5 and Corollary A5.9.7, f∗ is an open continuous
homomorphism of Γ onto H∗. As A separates points of G, f∗(A) separates points
of H. Observing that Corollary 5.9.4 says that H satisfies the Pontryagin-van
Kampen Duality Theorem, Proposition A5.9.10 then implies that f∗(A) is dense in
H∗. So f∗(P (K,U))∩ f∗(A) 6= Ø. In other words there is a γ ∈ A such that, when
restricted to H, γ maps K into U . Of course this says that γ ∈ P (K,U) ∩ A.
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A5.11.2 Theorem. (Pontryagin-van Kampen Duality Theorem for
Compact Groups) Let G be a compact Hausdorff abelian group and Γ its
dual group. Then the canonical map α of G into Γ∗ is a topological group
isomorphism of G onto Γ∗.

Proof. By Lemma A5.8.2, Lemma A5.9.9 and Theorem A5.10.1, α is a
continuous one-one homomorphism of G into Γ∗. Clearly α(G) separates points
of Γ. As Γ is discrete, Proposition A5.11.1 then implies that α(G) is dense in Γ∗.
However, α(G) is compact and hence closed in Γ∗. Thus α(G) = Γ∗; that is, the
map α is onto. Finally, the Open Mapping Theorem for Locally Compact Groups
A5.4.4 tells us that α is also an open map.

A5.11.3 Corollary. Let G be a compact Hausdorff abelian group and Γ its
dual group. If A is a subgroup of Γ which separates points of G, then A = Γ.

Proof. This is an immediate consequence of Theorem A5.11.2, Proposition A
5.9.10, Corollary A5.3.7, and Corollary A5.7.7.

A5.11.4 Corollary. Let G be an LCA-group with enough characters to
separate points and K a compact subgroup of G. Then every character of K
extends to a character of G.

Proof. The collection of characters of K which extend to characters of G form
a subgroup A of K∗. As G has enough characters to separate points, A separates
points of K. So by Corollary A5.11.3, A = K∗.

A5.11.5 Corollary. Let B be an LCA-group with enough characters to
separate points and f a continuous one-one homomorphism of a compact group
A into B. Then the map f∗ : B∗ → A∗, described in Proposition A5.9.5, is a
quotient homomorphism.
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Proof. Exercise.

A5.11.6 Theorem. (Pontryagin-van Kampen Duality Theorem for
Discrete Groups) Let G be a discrete abelian group and Γ its dual group.
Then the canonical map α is a topological group isomorphism of G onto Γ∗.

Proof. As in Theorem A5.11.2, α is a continuous one-one homomorphism of G
into Γ∗. As α(G) separates points of Γ and Γ is compact, Corollary A5.11.3 yields
that α(G) = Γ. As G and Γ∗ are discrete this completes the proof.

We conclude this section by showing how duality theory yields a complete
description of compact Hausdorff abelian torsion groups. (Recall that a group G is
said to be a torsion group if each of its elements is of finite order.) The first step
is the following interesting result.

A5.11.7 Definition. Let Gi, i ∈ I, be a set of groups, for some index
set I. Then the subgroup H =

∏
i∈I

rGi of the direct product
∏
i∈I Gi, where

g = (. . . , gi, . . . ) ∈ H if and only if each gi ∈ Gi and gi is the identity element
for all but a finite number of i ∈ I, is said to be the restricted direct product.
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A5.11.8 Theorem. If G =
∏
i∈I Gi is the direct product of any family

{Gi : i ∈ I} of compact Hausdorff abelian groups, then the discrete group
G∗ is algebraically isomorphic to the restricted direct product

∏
i∈I

r Γi of the

corresponding dual groups {Γi = G∗i : i ∈ I}.

Proof. Each g ∈ G may be thought of as a “string" g = (. . . , gi, . . . ), the
group operation being componentwise addition. If γ = (. . . , γi, . . . ), where γi ∈ Γi
and only finitely many γi are non-zero, then γ is a character on G defined by
(g, γ) =

∑
i∈I(gi, γi), for each g ∈ G. (Observe that this is a finite sum!) Let us

denote the subgroup of G∗ consisting of all such γ by A. Then A is algebraically
isomorphic to the restricted direct product

∏
i∈I

r Γi.

We claim that A separates points of G. To see this let g ∈ G, g 6= 0. Then
g = (. . . , gi, . . . ) with some gi 6= 0. So there is a γi ∈ Γi such that γi(gi) 6= 0.
Putting γ = (. . . , γj, . . . ) where γj = 0 unless j = i, we see that γ(g) = γi(gi) 6= 0.
As γ ∈ A, A separates points of G. By Corollary A5.11.3, this implies that
A = G∗.

A5.11.9 Corollary. Every countable abelian group is algebraically
isomorphic to a quotient group of a countable restricted direct product of copies
of Z.

Proof. Let G be a countable abelian group. Put the discrete topology on G and
let Γ be its dual group. Of course Γ is compact and by Exercises A5.10 #4, Γ is
topologically isomorphic to a subgroup of a product

∏
i∈I

Ti of copies of T, where the

cardinality of the index set I equals the cardinality of Γ∗. By Theorem A5.11.6, Γ∗

is topologically isomorphic to G. So Γ is topologically isomorphic to a subgroup of
a countable product of copies of T. Taking dual groups and using Theorem A5.11.8
and Corollary A5.11.5 we obtain the required result.
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Of course the above corollary also follows from the fact that the free abelian
group on a countable set is a countable restricted direct product of copies of Z, and
that any countable abelian group is a quotient group of the free abelian group on a
countable set.

A5.11.10 Remark. Kaplan [215, 216] has investigated generalizations of
Theorem A5.11.7 to direct products of non-compact groups. As a direct product of
LCA-groups is not, in general, an LCA-group we must first say what we mean by the
dual group of a non-LCA-group: If G is any abelian topological group we define Γ

to be the group of continuous homomorphisms of G into T, with the compact open
topology. Then Γ is an abelian topological group and we can form Γ∗ in the same
way. As in the locally compact case there is a natural map α which takes g ∈ G to
α(g) a function from Γ into T. We can then ask for which groups is α a topological
group isomorphism of G onto Γ∗. Such groups will be called reflexive.

A satisfactory description of this class is not known, but it includes not only all
LCA-groups but also all Banach spaces (considered as topological groups). (See
Smith [345].) Kaplan showed that if {Gi : i ∈ I} is a family of reflexive groups
then

∏
i∈I

Gi is also a reflexive group. Its dual group is algebraically isomorphic to the

restricted direct product of the family {G∗i : i ∈ I}. The topology of the dual group
is slightly complicated to describe, but when I is countable it is simply the subspace
topology induced on

∏
i∈I

rG∗i if
∏
i∈I

G∗i is given the box topology. In particular this is

the case when each Gi is an LCA-group–thus generalizing Theorem A5.11.7.

For further comments on reflexive groups see Brown et al. [59], Venkataraman
[382], Noble [299], Varopoulos [380], and Vilenkin [384].

Reflexivity of abelian topological groups, including nuclear groups, has been
thoroughly studied in Banaszczyk [29]. For relevant research on reflexivity, see
Hofmann and Morris [182], Nickolas [297], Nickolas [296],Chasco et al. [78], Chasco
and Martin-Peinador [77], Chasco and DomÃŋnguez [76], Chasco [75], Barr [33]
and Pestov [305].

To prove the structure theorem of compact Hausdorff abelian torsion groups we
have to borrow the following result of abelian group theory. (See Fuchs [139].)



633

A5.11.11 Theorem. An abelian group all of whose elements are of
bounded order is algebraically isomorphic to a restricted direct product

∏
i∈I

rZ(bi),

with only a finite number of the bi distinct, where Z(bi) is the discrete cyclic
group with bi elements.

A5.11.12 Theorem. A compact Hausdorff abelian torsion group is
topologically isomorphic to

∏
i∈I

Z(bi), where I is some index set and there exist

only a finite number of distinct bi.

Proof. Exercise.

Exercises A5.11

1. If f is a continuous one-one homomorphism of a compact group A into an LCA-
group B which has enough characters to separate points, show that the map
f∗ : B∗ → A∗, described in Proposition A5.9.5, is a quotient homomorphism.

2. Show that every compact Hausdorff abelian torsion group G is topologically
isomorphic to a product

∏
i∈I

Z(bi), where Z(bi) is a discrete cyclic group with bi

elements, I is an index set, and there are only a finite number of distinct bi.

[Hint: Let G(n) = {x ∈ G : nx = 0}. Observe that G =
∞⋃
n=1

G(n) and, using the

Baire Category Theorem A5.4.1, show that one of the quotient groups G/G(n)

is finite.

Deduce that the orders of all elements of G are bounded.

Then use the structure theorem of abelian groups of bounded order A5.11.11.]
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A5.12 Monothetic LCA-groups and
Compactly Generated LCA-groups

We have proved the duality theorem for compact groups and for discrete groups.
To extend the duality theorem to all LCA-groups we shall prove two special cases
of the following proposition:

If G is an LCA-group with a subgroup H such that both H and G/H satisfy the
duality theorem, then G satisfies the duality theorem.

The two cases we prove are when H is compact and when H is open.

The duality theorem for all LCA-groups then follows from the fact that every LCA-
group G has an open subgroup H which in turn has a compact subgroup K such
that H/K is an “elementary group" which is known to satisfy the duality theorem.
By an “elementary group" we mean one which is of the form Ra × Zb × Tc × F ,
where F is a finite discrete abelian group and a, b and c are non-negative integers.

Once we have the duality theorem we use it, together with the above structural
result, to prove the Principal Structure Theorem.

We begin with some structure theory.

A5.12.1 Definition. A topological group is said to be monothetic if it
has a dense cyclic subgroup.

A5.12.2 Examples. Z and T are monothetic. �
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A5.12.3 Theorem. Let G be a monothetic LCA-group. Then either G is
compact or G is topologically isomorphic to Z.

Proof. If G is discrete then either G = Z or G is a finite cyclic group and hence
is compact. So we have to prove that G is compact if it is not discrete.

Assume G is not discrete. Then the dense cyclic subgroup {xn : n =

0,±1,±2, . . . }, where xn + xm = xn+m for each n and m, is infinite. (If the
cyclic subgroup were finite it would be discrete and hence closed in G. As it is also
dense in G, this would mean that it would equal G and G would be discrete.)

Let V be an open symmetric neighbourhood of 0 in G with V compact. If
g ∈ G, then V + g contains some xk. So there is a symmetric neighbourhood W of
0 in G such that (g − xk) + W ⊆ V . As G is not discrete, W contains an infinite
number of the xn and as W is symmetric x−n ∈ W if xn ∈ W . Hence there exists
a j < k such that xj ∈ W . Putting i = k − j we have i > 0 and

g − xi = g − xk + xj ∈ g − xk +W ⊆ V.

This proves that G =
∞⋃
i=1

(xi + V ). (The important point is that we need xi

only for i > 0 .) As V is a compact subset of G we have that

V ⊆
N⋃
i=1

(xi + V ), for some N. (1)

For each g ∈ G, let n = n(g) be the smallest positive n such that g ∈ xn + V .
By (1), xn − g ∈ xi + V for some 1 6 i 6 N . So we have that g ∈ xn−i + V .

Since i > 0, n− i < n and so by our choice of n, n− i 6 0. Thus n 6 i 6 N .
So for each g ∈ G, n 6 N , which means that

G =
N⋃
i=1

(xi + V )

which is a finite union of compact sets and so G is compact.
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A5.12.4 Theorem. A compact Hausdorff abelian group G is monothetic if
and only if G∗ is topologically isomorphic to a subgroup of Td, the circle group
endowed with the discrete topology.

Proof. Exercise.

We now use Theorem to obtain our first description of the structure of compactly
generated LCA-groups. (Recall that an LCA-group G is said to be compactly
generated if it has a compact subset V such that G is generated algebraically by
V . Without loss of generality V can be chosen to be a symmetric neighbourhood
of 0.)

A5.12.5 Proposition. If G is an LCA-group which is algebraically
generated by a compact symmetric neighbourhood V of 0, then G has a closed
subgroup A topologically isomorphic to Zn, for some integer n > 0, such that
G/A is compact and V ∩ A = {0}.

Proof. If we put V1 = V and inductively define Vn+1 = Vn + V , for each integer

n > 1, then G =
∞⋃
n=1

Vn. As V2 is compact there are elements g1, . . . , gm in G

such that V2 ⊆
m⋃
i=1

(gi + V ). Let H be the group generated by {g1, . . . , gm}. So

Vi ⊆ V +H, for i = 1 and i = 2. If we assume that Vn ⊆ V +H, then we have

Vn+1 ⊆ V + (V +H) = V2 +H ⊆ (V +H) +H = V +H.

So, by induction, Vn ⊆ V +H, for all n > 1, and hence G = V +H.

Let Hi be the closure in G of the subgroup Hi generated by gi, for i = 1, . . . ,m.

If each Hi is compact, then as H = H1 + · · · + Hm, H is compact and so
G = V + H is compact. (Use Exercises A5.1 #4.) The Proposition would then
be true with n = 0. If G is not compact, then, by Theorem A5.12.4, one of the
monothetic groups Hi is topologically isomorphic to Z. In this case Hi = Hi and
we deduce that
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if G = V +H, where H is a finitely generated group, and
G is not compact, then H has a subgroup topologically
isomorphic to Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (*)

As H is a finitely generated abelian group (and every subgroup of an abelian
group with p generators can be generated by 6 p elements) there is a largest n
such that H contains a subgroup A topologically isomorphic to Zn. Since A is
discrete and V is compact, A∩V is finite. Without loss of generality we can assume
that A ∩ V = {0}. (If necessary we replace A by a subgroup A′ which is also
topologically isomorphic to Zn and has the property that A′∩V {0}. For example, if
A = gp {a1, . . . , an} and r is chosen such that A∩ V ⊆ {k1a1 + · · ·+ knan : 1− r 6
ki 6 r − 1, i = 1, . . . , n} then we put A′ = gp {ra1, . . . , ran}.)

Let f be the canonical homomorphism of G onto K = G/A. Then K =

f(V ) + f(H). By Exercises A5.12 #2 and our choice of n, f(H) has no subgroup
topologically isomorphic to Z. By (*) applied to K instead of G, we see that K is
compact, as required.

The above proposition allows us to prove a most important theorem which
generalizes Theorem A5.10.1.



638 APPENDIX 5: TOPOLOGICAL GROUPS

A5.12.6 Theorem. Every LCA-group has enough characters to separate
points.

Proof. Let G be any LCA-group and g any non-zero element of G. Let V be
a compact symmetric neighbourhood of 0 which contains g. Then the subgroup H
generated algebraically by V is, by Proposition A5.2.9, an open subgroup of G.

By Proposition A5.12.5, H has a closed subgroup A such that H/A is compact
and V ∩H = {0}. Defining f to be the canonical map of H onto H/A we see that
f(g) 6= 0.

According to Theorem A5.10.1 there is a continuous homomorphism φ : H/A→
T such that φ(f(g)) 6= 0. Then φf is a continuous homomorphism of H into T. As
H is an open subgroup of G and T is divisible, Proposition A5.3.6 tells us that φf
can be extended to a continuous homomorphism γ : G → T. Clearly γ(g) 6= 0 and
so G has enough characters to separate points.

A5.12.7 Corollary. Let H be a closed subgroup of an LCA-group G. If
g is any element of G not in H, then there is a character γ of G such that
γ(g) 6= 0 but γ(h) = 0, for all h ∈ H.

Proof. Exercise.

The next corollary is an immediate consequence of the opening sentences in the
proof of Theorem A5.12.6.

A5.12.8 Corollary. Every LCA-group has a subgroup which is both open
and a compactly generated LCA-group.
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Gelfand

A5.12.9 Remarks. Theorem A5.12.6 was first
proved by E.R. van Kampen. A proof based on
the theory of Banach algebras was given by Israil
Moiseevic Gelfand and Dmitrii Abramovich Raikov
in Gelfand and Raikov [148].
The reader should not be misled, by Theorem
A5.12.6, into thinking that all Hausdorff abelian
topological groups have enough characters to
separate points. This is not so. See §23.32 of
Hewitt and Ross [173].
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The next proposition gives another useful description of the structure of
compactly generated LCA-groups.

A5.12.10 Proposition. If G is a compactly generated LCA-group, then
it has a compact subgroup K such that G/K is topologically isomorphic to
Ra × Zb × Tc × F , where F is a finite discrete abelian group and a, b and c are
non-negative integers.

Proof. By Proposition A5.12.5 there exists a discrete finitely generated subgroup
D of G such that G/D is compact. Let N be a compact symmetric neighbourhood
of 0 such that 3N ∩ D = {0}. If f : G → G/D is the canonical homomorphism
then f(N) is a neighbourhood of 0 in G/D and, by CorollaryA5.12.8, there exists
a closed subgroup B ⊆ f(N) such that (G/D)/B is topologically isomorphic to
Tn × E, where E is a finite discrete group and n > 0. If we let K ′ = f−1(B) then
we see that G/K ′ is topologically isomorphic to Tn × E.

Putting K = K ′ ∩N , we have that K is compact and f(K) = B. To see that
K is a subgroup of G, let x and y be in K. Then x− y ∈ K ′, so there is a z ∈ K
such that f(z) = f(x−y). This implies that x−y−z ∈ D, and since 3N ∩D = {0}
it follows that x− y − z = 0; that is, x− y ∈ K and so K is a subgroup of G.

We claim that K ′ = K + D. For if k′ ∈ K ′, there is a k ∈ K such that
f(k′) = f(k) and so k′ − k ∈ D. Thus K ′ = K + D. By Exercises A5.4 #7, K ′

is topologically isomorphic to K × D. Hence if θ is the canonical map of G onto
G/K then θ(D) is topologically isomorphic to D and (G/K)/θ(D) is topologically
isomorphic to G/K ′ which is in turn topologically isomorphic to Tn × E. As θ(D)

and E are discrete, Exercises A5.5 #7 tells us that G/K is locally isomorphic to
Tn and hence also to Rn. Theorem A5.5.25 then says that G/K is topologically
isomorphic to Ra × Tc × S, where S is a discrete group and a > 0 and c > 0. As
G is compactly generated G/K and hence also S are compactly generated. So S
is a discrete finitely generated abelian group and thus is topologically isomorphic to
Zb × F , for some finite discrete group G and b > 0.
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Exercises A5.12

1. (i) Let f be a continuous homomorphism of an LCA-group A into an LCA-group

B. If f(A) is dense in B, show that the map f∗ : B∗ → A∗, described in
Proposition A5.9.5, is one-one.

(ii) Show that if G is a compact Hausdorff abelian group which is monothetic
then G∗ is topologically isomorphic to a subgroup of Td, the circle group
endowed with the discrete topology.
[Hint: Use (i) with A = Z and B = G.]

(iii) Let A be an LCA-group which satisfies the duality theorem and B an LCA-
group. If f is a continuous one-one homomorphism of A into B show that
f∗(B∗) is dense in A∗.
[Hint: See the proof of Corollary A5.11.4 and use Proposition A5.9.10 and
Theorem A5.12.6.]

(iv) Show that if G is a compact Hausdorff abelian group with G∗ topologically
isomorphic to a subgroup of Td, then G is monothetic.

2. Let A and B be LCA-groups and H a (not necessarily closed) finitely generated
subgroup of A. If f is a continuous homomorphism of A into B such that the
kernel of f lies wholly in H and is topologically isomorphic to Zn, for some
n > 1, and such that f(H) contains a subgroup topologically isomorphic to Z,
show that H contains a subgroup topologically isomorphic to Zn+1.
[Hint: Use Corollary A5.4.3.]

3. If H is a closed subgroup of an LCA-group G and g is an element of G not in
H, show that there is a character γ of G such that γ(g) 6= 0 but γ(h) = 0, for
all h ∈ H.
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4. Let G be a locally compact Hausdorff group.

(i) Prove that G is a kω-space if and only if it is σ-compact. (See Exercises
10.3 #5 for the definition of kω-space.)

(ii) If G is σ-compact, show that the Xn in the kω-decomposition can be chosen
to be neighbourhoods of e.

[Hint: As G is σ-compact, G =
∞⋃
n=1

Yn where each Yn is compact. Let V be a

compact symmetric neighbourhood of e and putXn = Y1V ∪Y2V ∪· · ·∪YnV .]

(iii) Every connected locally compact Hausdorff group is a kω-space.

(iv) G has an open neighbourhood U of 1 such that U is a compact neighbourhood
of 1.

(v) The subgroup gp (U) of G generated algebraically by U is open in G.

(vi) The subgroup gp (U) of G generated algebraically by U is open in G, and
so gp (U) is an open locally compact σ-compact subgroup of G.

(vii) (Glöckner et al. [156]) A topological space (X,τ ) is said to be a locally
kω-space if each point in (X,τ ) has an open neighbourhood which is a
kω-space. Prove that every locally compact Hausdorff group is a locally
kω-space.

(viii) Verify that every discrete space, every compact Hausdorff space, every kω-
space, and every closed subspace of a locally kω-space is a locally kω-space.

(ix) Verify that every metrizable kω-space is separable but not every metrizable
locally kω-space is separable.

(x) Prove that every locally kω-space is a k-space.
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5. Let P be a property of topological groups; that is if topological groups G and
H are topologically isomorphic then G has property P if and only if H has
property P. The property P is said to be a three space property if whenever
G is any topological group with a closed normal subgroup N and the topological
groups N and G/N have property P, then G has property P. (See Bruguera
and Tkachenko [63].)

(i) Prove that “being a finite group” is a three space property.

(ii) Prove that “being a finitely generated group” is a three space property.

(iii) Prove that for any given infinite cardinal m, “being a topological group of
cardinality 6 m” is a three space property.

(iv) Prove that “being a discrete group” is a three space property.

(v) Let G be a locally compact Hausdorff group and N a closed normal subgroup
of G. If f : G → G/N is the canonical map, show that for each compact
subset C of G/N there exists a compact subset S of G such that f(S) = C.

(vi) Deduce that if N is a closed normal subgroup of a locally compact Hausdorff
group G such that both N and G/N are compactly generated, then G is also
compactly generated. So “being a compactly generated locally compact
Hausdorff group” is a three space property.

(vii) If in (v), N is also compact show that f−1(C) is compact.

(viii) Deduce that if G is a Hausdorff topological group having a normal subgroup
K such that both K and G/K are compact, then G is compact. So “being
a compact Hausdorff group” is a three space property.
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A5.13 The Duality Theorem and the
Principal Structure Theorem

A5.13.1 Definition. Let A, B, and C be topological groups, f1 a
continuous homomorphism of A into B and f2 a continuous homomorphism
of B into C. The sequence

f1 f2
0 −−→ A −−→ B −−→ C −−→ 0

is said to be exact if (i) f1 is one-one; (ii) f2 is onto; and (iii) the kernel of f2

equals f1(A).
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A5.13.2 Proposition. Let K be a compact subgroup of an LCA-group G,
so that we have an exact sequence

f1 f2
0 −−→ K −−→ G −−→ G/C −−→ 0

where f2 is an open continuous homomorphism and f1 is a homeomorphism of
K onto its image in G. Then the sequence

f∗1 f∗2
0 ←−− K∗ ←−− G∗ ←−− (G/K)∗ ←−− 0

is exact and f∗1 and f∗2 are open continuous homomorphisms.

Proof. By Proposition A5.9.5, f∗2 is one-one. Using Corollary A5.11.5 together
with Theorem A5.12.6 we see that f∗1 is both open and onto. To see that the image
of f∗2 equals the kernel of f∗1 consider the diagram

0 K G G/K 0

T

................................................................................................................................................................................................................................................................................................................................................... .........
...

f∗1 f
∗
2 (γ)

.......................................................................................................................................... ............ .......................................................................................................................................... ............
f1

.................................................................................................................... ............
f2

.................................................................................................................... ............

............................................................................................................................................................................................................. ........
....

f∗2 (γ)
.....................................................................................................................................
.....
.......
.....

γ

Let γ be any character of G/K and k any element of K. Then

f∗1 f
∗
2γ(k) = γf2f1(k) = 0

as the given sequence is exact. Therefore f∗1 f
∗
2 (γ) = 0 and so Image f∗2 ⊆

Kernel f∗1 . Now if φ ∈ G∗ and f∗1 (φ) = 0, then we have φf1(k) = 0 for all
k ∈ K. So there exists a homomorphism δ : G/K → T such that δf2 = φ. As f2
is both open and onto, δ is continuous. So Kernel f∗1 ⊆ Image f∗2 . Hence Image
f∗2 = Kernel f∗1 .

Finally we have to show that f∗2 is an open map. Let C be a compact
subset of G/K, U an open subset of T and P (C,U) the set of all elements of
(G/K)∗ which map C into U . Then P (C,U) is a sub-basic open set in (G/K)∗.
Now by Exercises A5.12 #5(i) there exists a compact subset S of G such that
f2(S) = C. Thus we see that P (S, U) is a sub-basic open subset of G∗ such that
f∗2 (P (C,U)) = P (S, U)∩ f∗2 ((G/K)∗). So f∗2 is a homeomorphism of (G/K)∗ onto
its image in G∗. As K∗ is discrete, Kernel f∗1 is open in G∗; that is, Image f∗2 is
open in G∗. So f∗2 is an open map.
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A5.13.3 Proposition. Let A be an open subgroup of an LCA-group G, so
that we have an exact sequence

f1 f2
0 −−→ A −−→ G −−→ G/A −−→ 0

where the homomorphisms f1 and f2 are open continuous maps. Then the
sequence

f∗1 f∗2
0 ←−− A∗ ←−− G∗ ←−− (G/A)∗ ←−− 0

is exact, f∗1 is open and continuous and f∗2 is a homeomorphism of (G/A)∗ onto
its image in G∗.

Proof. By Proposition A5.9.5, f∗1 is onto and f∗2 is one-one. That Image
f∗2 = Kernel f∗1 is proved exactly as in Proposition A5.13.2. As A is open in G,
G/A is discrete and (G/A)∗ is compact. As f∗2 is one-one and (G/A)∗ is compact,
f∗2 is a homeomorphism of (G/A)∗ onto its image in G∗.

Finally we have to show that f∗1 is an open map. Let K be a compact
neighbourhood of 0 in G which lies in A. If Va is as in Corollary A5.7.7, then P (K,Va)

is an open set in G∗ such that P (K,Va) is compact. Of course, f∗1 (P (K,Va))

consists of those elements of A∗ which map K into Va, and so is open in A∗. If we
put H equal to the group generated by f∗1 (P (K,Va)) then H is an open subgroup
of A∗. Furthermore as gp {P (K,Va))} is an open and closed subgroup of G∗,
P (K,Va) ⊆ gp {P (K,Va)} = B. As B is generated by P (K,Va) it is σ-compact.
The Open Mapping Theorem A5.4.4 then implies that f∗1 : B → H is open. As
B is an open subgroup of G∗ and H is an open subgroup of A∗, f∗1 : G∗ → A∗ is
open.

The next Proposition is a corollary of the 5-Lemma of category theory. (See
https://en.wikipedia.org/wiki/Short_five_lemma.) It is easily verified by “diagram-
chasing".

https://en.wikipedia.org/wiki/Short_five_lemma
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A5.13.4 Proposition. Let A, B, C, D, E and F be abelian topological
groups and f1, f2, f3, f4, f5, f6 and f7 be continuous homomorphisms as
indicated in the diagram below.

f1 f2
0 −−→ A −−→ B −−→ C −−→ 0

f5

y yf6

yf7

0 −−→ D −−→ E −−→ F −−→ 0
f3 f4

Let each of the horizontal sequences be exact and let the diagram be
commutative (that is, f3f5 = f6f1 and f4f6 = f7f2). If f5 and f7 are
algebraically isomorphisms (that is, both one-one and onto) then f6 is also
an algebraic isomorphism.

We now prove the Pontryagin van-Kampen Duality Theorem for compactly
generated LCA-groups.
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A5.13.5 Theorem. Let G be a compactly generated LCA-group and Γ

its dual group. Then the canonical map α of G into Γ∗ is a topological group
isomorphism of G onto Γ∗.

Proof. By Proposition A5.12.10, G has a compact subgroup K such that G/K
is topologically isomorphic to Ra×Zb×Tc×F , where F is a finite discrete abelian
group and a, b, and c are non-negative integers. So we have an exact sequence

f1 f2
0 −−→ K −−→ G −−→ G/K −−→ 0

Applying Proposition A5.13.2 to this sequence and Proposition A5.13.3 to the dual
sequence, we obtain that the sequence

f∗∗1 f∗∗2
0 −−→ K∗∗ −−→ Γ∗ −−→ (G/K)∗∗ −−→ 0

is also exact. It is easily verified that the diagram

f1 f2
0 −−→ K −−→ G −−→ G/K −−→ 0

αK

y yα yαG/K
0 −−→ K∗∗ −−→ Γ∗ −−→ (G/K)∗∗ −−→ 0

f∗∗1 f∗∗2

is commutative, where αK and αG/K are the canonical maps. As we have
already seen that K and G/K satisfy the duality theorem, αK and αG/K are
both topological isomorphisms. This implies, by Proposition A5.13.4, that α is
an algebraic isomorphism. As α is continuous and G is compactly generated, the
Open Mapping Theorem A5.4.4 then implies that α is an open map, and hence a
topological isomorphism.

At long last we can prove the Pontryagin van-Kampen Duality for all LCA-groups.
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A5.13.6 Theorem. [Pontryagin-van Kampen Duality Theorem] Let G
be an LCA-group and Γ its dual group. Then the canonical map α of G into
Γ∗ is a topological group isomorphism of G onto Γ∗.

By Corollary A5.12.8, G has an open subgroup A which is compactly generated.
So we have an exact sequence

f1 f2
0 −−→ A −−→ G −−→ G/A −−→ 0

Applying Proposition A5.13.3 and then Proposition A5.13.2 yields the exact sequence

f∗∗1 f∗∗2
0 −−→ A∗∗ −−→ Γ∗ −−→ (G/A)∗∗ −−→ 0

and the commutative diagram

f1 f2
0 −−→ A −−→ G −−→ G/A −−→ 0

αA

y yα yαG/A
0 −−→ A∗∗ −−→ Γ∗ −−→ (G/A)∗∗ −−→ 0.

f∗∗1 f∗∗2

As A is a compactly generated LCA-group and G/A is a discrete group, both A and
G/A satisfy the duality theorem and so αA and αG/A are topological isomorphisms.
By Proposition A5.13.4, α is an algebraic isomorphism. Since f1, f∗∗1 and αA are
all open maps and αf1 = f∗∗1 αA, we see that α is also an open map, and hence a
topological isomorphism.

We can now prove the structure theorem for compactly generated LCA-
groups, from which the Principal Structure Theorem for all LCA-groups is a trivial
consequence.
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A5.13.7 Theorem. Let G be a compactly generated LCA-group. Then G
is topologically isomorphic to Ra×Zb×K, for some compact abelian group K
and non-negative integers a and b.

Proof. By Proposition A5.12.10, we have an exact sequence

f1 f2

0 −−→ C −−→ G −−→ Ra × Zb × Tc × F −−→ 0

where C is a compact group, F is a finite discrete group and a, b and c are non-
negative integers. By Proposition A5.13.2, we, therefore, have an exact sequence

f∗1 f∗2
0 ←−− C∗ ←−− G∗ ←−− Ra × Tb × Zc × F ←−− 0

where f∗2 is an open map. So G∗ has an open subgroup topologically isomorphic
to Ra × Tb. As R and T are divisible groups, Proposition A5.3.8 says that G∗ is
topologically isomorphic to Ra×Tb×D, for some discrete groupD. As G satisfies the
duality theorem, G is topologically isomorphic to G∗∗ which in turn is topologically
isomorphic to Ra × Zb ×K, where K is the compact group D∗.

Since every LCA-group has an open compactly generated subgroup we obtain
the Principal Structure Theorem for LCA-groups.

A5.13.8 Theorem. [Principal Structure Theorem for LCA-Groups]
Every LCA-group has an open subgroup topologically isomorphic to Ra×K, for
some compact abelian group K and non-negative integer a.

As an immediate consequence we have the following significant result.

A5.13.9 Theorem. Every connected LCA-group is topologically
isomorphic to Ra × K, where K is a compact connected abelian group and
a is a non-negative integer.
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A5.13.10 Remarks.

(i) Theorem A5.13.7 generalizes the well-known result that every finitely generated
abelian group is the direct product of a finite number of copies of the infinite
cyclic group with a finite abelian group.

(ii) One might suspect that one could improve upon the Principal Structure Theorem
for LCA-Groups A5.13.8 and show that every LCA-group is topologically
isomorphic to Ra ×K ×D, where K is compact, D is discrete and a is a non-
negative integer. Unfortunately, as the following example shows, this statement
is false.

A5.13.11 Example. Let G be the group
∞∏
i=1

Hi, where each Hi is a cyclic

group of order four. Let C be the subgroup of G consisting of all elements g ∈ G
such that 2g = 0. Then C is algebraically isomorphic to

∞∏
i=1

Ci, where each Ci is a

cyclic group of order two. Put the discrete topology on each Ci and the product
topology on C. So C is a compact totally disconnected topological group.

Define a topology on G as follows: A base of open neighbourhoods at 0 in G
consists of all the open subsets of C containing 0. With this topology G is a totally
disconnected LCA-group having C as an open subgroup.

Suppose that G is topologically isomorphic to Ra×K×D, where K is a compact
abelian group, D is a discrete abelian group, and a is a non-negative integer. As G
is totally disconnected, a = 0. Further, as G is not compact, D must be infinite.

By the Principal Structure Theorem for LCA-Groups A5.13.8, G has an open
subgroup H. As G is totally disconnected a = 0. topologically isomorphic to Ra×C,
where C is compact and a is a non-negative integer. Suppose that G is topologically
isomorphic to H ×D, where D is a discrete subgroup of G. As G is not compact
D must be infinite

As D is discrete and C is compact, D ∩ C is finite.
If x ∈ D, then 2x ∈ D ∩ C. If 2x = 2y, for y ∈ D, then 2(x − y) = 0, and so

x−y ∈ D∩C. As D∩C is finite, 2x = 2y for only a finite number of y ∈ D. Hence
D is finite. This is a contradiction and so our supposition is false.
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Exercises A5.13

1. Show that if G is an LCA-group such that G and its dual group are connected,
then G is topologically isomorphic to Rn, for some non-negative integer n.

2. Show that an LCA-group G has enough continuous homomorphisms into
R to separate points if and only if G is topologically isomorphic to Rn ×D,
where D is a discrete torsion-free abelian group.
[Hint: a compact group admits no nontrivial continuous homomorphisms into
R.]

3. Describe the compactly generated LCA-groups which are topologically isomorphic
to their dual groups.

4. A topological group G is said to be solenoidal if there exists a continuous
homomorphism f of R into G such that f(R) = G.

(i) Show that if G is also locally compact Hausdorff, then G is either a compact
connected abelian group or is topologically isomorphic to R.
[Hint : Observe that f(R) is topologically isomorphic to R1 × R2 × · · · ×
Rn × K, where each Ri is a copy of R. Let pi be the projection of f(R)

onto Ri and note that pif is a continuous homomorphism of R into Ri.]

(ii) Show that if G is a compact Hausdorff solenoidal group then the dual group
of G is topologically isomorphic to a subgroup of Rd, the additive group of
real numbers with the discrete topology.

5. Let F be a field with a topology such that the algebraic operations are
continuous. (The additive structure of F , then, is an abelian topological
group.) Show that if F is locally compact Hausdorff and connected then F ,
as a topological group, is isomorphic to Rn, for some positive integer n. (A
further analysis would show that F is either the real number field R (n = 1),
the complex number field (n = 2) or the quaternionic field (n = 4).)
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6. Show that if G is any LCA-group then there exists a continuous one-one
homomorphism β of G into a dense subgroup of a compact Hausdorff abelian
group. Prove this by two different methods.
[Hint: (1) Use the fact that any LCA-group has enough characters to separate
points.
(2) Alternatively, let Γ be the dual group of G and Γd the group Γ endowed
with the discrete topology. Put K = (Γd)

∗ and let β be defined by

(g, γ) = (γ, β(g)), g ∈ G, γ ∈ Γ.

The group K = (Γd)
∗ is called the Bohr compactification of G.

Harald Bohr (left) and Niels Bohr

Harald Bohr (1887–1951) was a Jewish Danish mathematician and younger
brother of the Nobel prize-winning physicist Niels Bohr. Harald did research
in mathematical analysis with the Cambridge University mathematician, G.H.
Hardy, and Harald was the founder of the theory of almost-periodic functions.
He was also a member of the Danish Football Team which won a silver medal
in the 1908 Olympics.]

7. A topological group G is said to be maximally almost periodic (MAP) if there
exists a continuous one-to-one homomorphism of G into a compact Hausdorff
group.

(i) Verify that every compact Hausdorff is maximally almost periodic.

(ii) Using Exercises A5.13 #6, verify that every LCA-group is a MAP-group.
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8. A topological group G is said to be minimally almost periodic (m.a.p.) (von
Neumann [389], von Neumann and Wigner [390]) if there every continuous
homomorphism φ of G into every compact Hausdorff group satisfies φ(g) = 1,
for each g ∈ G; that is, every continuous homomorphism of G into a compact
Hausdorff group is trivial. A group H is said to be simple if it has no normal
subgroups other than 1 and H. A topological group S is said to be topologically
simple if its only closed normal subgroups are 1 and S.

(i) Verify that every simple group with the discrete topology is topologically
simple.

(ii) Verify that every infinite topologically simple group is minimally almost
periodic.

(iii) Verify that no infinite abelian group is a simple group.

It is easy to verify that there exist infinite simple groups, which by (i) and (ii)
above show that there exist minimally almost periodic groups. Let ℵ be any
infinite cardinal number and S a set of cardinality ℵ. Let Aℵ be the group of
all even permutations of S which fix all but a finite number of members of S.
That Aℵ is a simple group follows easily from 3.2.4 of Robinson [323]

The concept of minimally periodic group was introduced by John von Neumann
and in a subsequent paper with Nobel prize-winning physicist Eugene Paul
Wigner proved that the Special Linear group SL(2,C) with even the discrete
topology is a m.a.p. group. Dieter Remus (Remus [319]) proved that every
free abelian group and every infinite divisible abelian group admits a m.a.p.
topology. Saak Gabriyeylan (Gabriyelyan [142]) proved that every infinitely-
generated abelian group admits a m.a.p. topology.

Wigner
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9. Let Γ be any LCA-group and γ1, . . . , γn ∈ Γ. If φ is any homomorphism of Γ

into T, show that there is a continuous homomorphism ψ of Γ into T such that
|ψ(γi)− φ(γi)| < ε, i = 1, . . . , n.
[Hint: Use Exercises A5.13 #6, method (2).]

10. A topological group G is said to be almost connected if G/G0 is a compact
group, where G0 is the connected component of the identity in G.

(i) Using Exercises A5.13 #5(vi), prove that every almost connected locally
compact group is compactly generated.

(ii) Deduce from (i) above and Theorem A5.13.7 that every almost connected
locally compact abelian group is topologically isomorphic to Rn ×K,
where K is a compact abelian group and n is a non-negative integer.

(iii) Using Exercises A5.12.5(vi) and (ii) above, prove that “being an almost
connected LCA-group” is a three space property. (See Exrercises A5.12
#5 for the definition and examples of the three space property”.)
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Introduction35

In the theory of metric spaces, convergent sequences play a key role. This is
because they can be used to capture everything about the topology of the metric
space. For example, a set S in a metric space (X, d) is closed if and only if every
convergent sequence of points in S converges to a point in S. So convergent
sequences determine the closed sets, the open sets, the continuous functions and the
topological properties. For example, a mapping between metric spaces is continuous
if and only if it maps convergent sequences to convergent sequences, and a subset
C of a metric space is compact if and only if every sequence consisting of points in
C has a subsequence which converges.

However, every metric space (X, d) satisfies the first axion of countability, that
is, every point in X has a countable base of neighbourhoods or, in other words,
for each point a ∈ X there is a countable set of neighbourhoods U1, U2, . . . , Un, . . .

such that every neighbourhood of a contains a Un for some n ∈ N . [We can choose
Un = {x ∈ X : d(x, a) < 1

n}, for each n ∈ N.] However, a general topological
space does not necessarily satisfy the first axiom of countability; that is, it need not
have a countable base of neighbourhoods for each point. For this reason convergent
sequences, which are of course countable sets, do not capture the topology of a
general toplogical space.

Therefore we need a more general concept than convergent sequences which is
rich enough to capture the topology of general topological spaces. In this appendix
we introduce the notion of a filter. Filters do indeed capture everything about the
topology of a general topological space. In particular, we shall see how closedness,
continuity, and compactness can be expressed in terms of filters. We shall also
see how filters can be used to give an alternative proof of the powerful Tychonoff
Theorem.

There is an equivalent, but less elegant, generalization of convergent sequences
which uses nets rather than filters. It is interesting to note that filters, which were
introduced by Cartan [68, 69] in 1937, have been the preferred approach of many

35Two 14 minute YouTube videos provide a very gentle introduction to this Appendix, and in
particular to §6.3. They are:- Topology Without Tears – Sequences and Nets –
Video 3a – http://youtu.be/wXkNgyVgOJE &
Video 3b –http://youtu.be/xNqLF8GsRFE .

http://youtu.be/wXkNgyVgOJE
http://youtu.be/xNqLF8GsRFE
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European (especially, French) mathematicians, while American mathematicians have
tended to prefer nets, which were introduced in 1922 by E.H. Moore and H.L. Smith
[273]. Bourbaki [50] sum up their philospophy on fllters: ’it replaces to advantage
the notion of “Moore-Smith convergence”’. Here we treat both filters and nets.

A6.1 Filters

§A6.1 introduces filters and ultrafilters on any non-empty set X. Filters and
ultrafilters are then related to the notion of a topology on the set X. It is shown
how the property of Hausdorffness can be expressed in terms of filters or ultrafilters.
But the magic of ultrafilters, in particular, is demonstrated in an elegant proof of
the powerful Tychonoff Theorem for compact spaces.

So we begin with the definition of a fliter and find examples. Then we introduce
the notion of an ultrafilter and verify that for every filter there is a finer filter which is
an ultrafilter. We find a beautiful characterization of ultrafilters amongst all filters.

A6.1.1 Definition. Let X be a set and F a set of subsets of X. Then F
is said to be a filter on X if
(i) F1, F2 ∈ F implies F1 ∩ F2 ∈ F ;
(ii) F ∈ F and F ⊆ G ⊆ X imply G ∈ F ; and
(iii) Ø /∈ F .
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A6.1.2 Remarks.

(i) If F is a filter on a set X, then by Definition A6.1.1(ii), X ∈ F .
(ii) If F is a filter on a set X, then it is not a topology on X.

[This is clear since Ø /∈ F .]
(iii) If τ is a topology on a set X, then τ is not a filter on X.

[Again this is clear, since Ø ∈ τ .]
(iv) If F is a filter on a set X, then τ = F ∪ {Ø} is a topology on X.

[We see that X ∈ τ , Ø ∈ τ , and unions and finite interesections of sets in τ
are in τ by Definition A6.1.1 (ii) and Definition A6.1.1(i), respectively. So τ is
indeed a topology on X.]

(v) If τ is a topology on a set X, then τ \ {Ø} is not necessarily a filter on X.
[For example, if τ is the Euclidean topology on R, then S = τ \ {Ø} is not a
filter since the open interval (0, 1) is a member of S, while the closed interval
[0, 1] is not a member of S, and so S does not satisfy Definition A6.1.1(ii).]

(vi) If F is a filter on a set X such that
⋂

Fi∈F
Fi = Ø, then F is said to be a free

filter.

A6.1.3 Examples.

(i) Let X be any non-empty set and F consist of just the set X. Then F is a filter
on X.

(ii) Let X be any non-empty set and S a subset of X. If F consists of S and all
subsets of X which contain S, then F is a filter on X and is called the principal
filter generated by S

(iii) LetX be an infinite set and F = {F : Ø 6= F ⊆ X, X\F is a finite subset of X}.
Then F is a filter on X and is called the Fréchet filter. Every Fréchet filter is
a free filter and every free filter contains the Fréchet filter. [Verify this.]

(iv) Let (X,τ ) be a topological space. For each x ∈ X, the set of all neighbourhoods
of x is a filter. This filter is known as the neighbourhood filter, Nx, of the
point x in (X,τ ). A neighbourhood filter is clearly not a free filter.

(v) Let f be a mapping of a set X into a set Y and F a filter on X. Then f(F)

is a filter on Y if and only if f is surjective. Further, f−1(f(F)) = F .
[Verify these statements.]



662 APPENDIX 6: FILTERS AND NETS

A6.1.4 Proposition.

(i) If F is a fliter on a set X, then F has the finite intersection property; that
is, if F1, F2, . . . , Fn ∈ F , n ∈ N, then F1 ∩ F2 ∩ · · · ∩ Fn 6= Ø;

(ii) Let S be a set of subsets of a non-empty set X. There exists a filter F on
X such that S ⊆ F if and only if S has the finite intersection property.

Proof. Part (i) follows from (i) and (iii) of Defintion A6.1.1 using mathematical
induction.

If F is a filter containing S, then it follows from (i) that F , and hence also
S, has the finite intersection property. Conversely, if S has the finite intersection
property, define

F = {F : F ⊆ X such that there exist S1, S2, . . . , Sn ∈ S, n ∈ N with
n⋂
i=1

Si ⊆ F.}

Clearly F satisfies Definition A6.1.1 and S ⊆ F , and so part (ii) is proved. �

Using Proposition A6.1.4(ii) we introduce the following definition.

A6.1.5 Definition. Let S be a non-empty set of subsets of a non-empty
set X. If S has the finite intersection property, then the filter

F = {F : F ⊆ X such that there exist S1, . . . , Sn ∈ S, with
n⋂
i=1

Si ⊆ F.}

is said to be the filter generated by S.

A6.1.6 Definitions. Let F1 and F2 be filters on a set X. Then F1 is said
to be finer than F2, and F2 is said to be coarser than F1, if F2 ⊆ F1. Further,
if F1 6= F2 also, then F1 is said to be strictly finer than F2, and F2 is said to
be strictly coarser than F1.
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A6.1.7 Remarks.

(i) Let S be a non-empty set of subsets of a non-empty set X, where S has the
finite intersection property. Then the filter generated by S is the coarsest filter
on X containing the set S.

(ii) Let I be an index set and Fi, i ∈ I, a non-empty set of filters on a set X.
Put S = {F : F ∈ Fi, i ∈ I}. If S has the finite intersection property, then by
Proposition A6.1.4,

F = {F : F ⊆ X such that there exist S1, . . . , Sn ∈ S, n ∈ N, with
n⋂
i=1

Si ⊆ F.}

is the filter generated by S, and is the coarsest filter containing each of the
filters Fi, i ∈ I. So F is the coarsest filter that is finer than each Fi, i ∈ I.

A6.1.8 Definition. Let X be a non-empty set and U a filter on X. Then
U is said to be an ultrafilter on X if no filter on X is strictly finer than U .

A6.1.9 Remark. Let X be a non-empty set and x0 ∈ X. Let U be the set of
all subsets of X which contain the given element x0. Then U is an ultrafilter. The
proof of this is left as an exercise.
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A6.1.10 Proposition. (Ultrafilter Lemma) If F0 is any filter on a set X,
then there exists an ultrafilter U on X such that U is finer than F0.

Proof. Let F0 denote the set of all filters on the set X which are finer than the
given fliter F0. Noting Definition 10.2.1, we see that we can make F0 into a partially
ordered set (F0,6) by putting Fi 6 Fj, for Fi,Fj ∈ F0, if Fi ⊆ Fj. Observe that
as F0 ∈ F0, F0 is a non-empty set. We shall now apply Zorn’s Lemma 10.2.16.

Let F1 be any subset of F0. Then the partial order 6 on F0 induces a partial
order on F1. If (F1,6) is a linearly ordered set of filters, then we claim that there is
a filter F2 which is an upper bound of F1.

Define F2 = {F : F ∈ Fi, Fi ∈ F1}; in other words, F2 is the union of all
the filters in F1. We will show that F2 is a filter by verifying it satisfies Definition
A6.1.1. As the empty set, Ø, is not a member of any of the filters Fi in F1, Ø /∈ F2.
If F1, F2 ∈ F2, F1 ∈ Fi ∈ F1 and F2 ∈ Fj ∈ F1. As F1 is a linearly ordered set,
without loss of generality we can assume Fi 6 Fj; that is, Fi ⊆ Fj. So Fi, F2 ∈ Fj.
As Fj is a filter, F1∩F2 ∈ Fj ⊆ F2. Finally, let F ∈ F2 and let G be a subset of X
containing F . Then F ∈ Fi ∈ F1. As Fi is a filter, G ∈ Fi ⊆ F2. So F2 is indeed a
filter. Clearly F2 is an upper bound of F1. Then by Zorn’s Lemma 10.2.16, F0 has
a maximal element, U .

Suppose F3 is a filter on X which is strictly finer than U . As U ∈ F0, U is finer
than F0. Then F3 is also finer than F0. So F3 ∈ F0. But this contradicts the
maximality of U . So our supposition is false, and no filter is strictly finer than U .
So U is indeed an ultrafilter and is finer than F0.

A6.1.11 Remark. As any filter finer than a free filter is a free filter, it follows
from the Ultrafilter Lemma A6.1.10 and Example A6.1.3(iii) that free ultrafilters
exist. The existence of free ultrafilters is by no means obvious.

As an immediate consequence of the Ultrafilter Lemma A6.1.10 and Proposition
A6.1.4 we have the next corollary which is, in fact, a generalisation of the Ultrafilter
Lemma A6.1.10.
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A6.1.12 Corollary. If S is a non-empty set of subsets of a non-empty set
X and S has the finite intersection property, then there is an ultrafilter U on X
such that S ⊆ U .

A6.1.13 Corollary. Let U be an ultrafilter on a set X. If A and B are
subsets of X such that A ∪ B ∈ U , then either A ∈ U or B ∈ U . In particular,
if A is any subset of X, then either A ∈ U or X \ A ∈ U .

Proof. Suppose there exist F1, F2 ∈ U such that F1 ∩ A = Ø and F2 ∩ B = Ø,
where A ∪ B ∈ U . Then (F1 ∩ F2) ∩ (A ∪ B) = Ø. But this is a contradiction
as F1 ∩ F2 and A ∪ B are members of the filter U . So, without loss of generality,
asssume F ∩ A 6= Ø, for all F ∈ U .

Let S = U ∪ {A}. Then S has the finite intersection property. By Corollary
A6.1.12, there exists an ultrafilter U1 such that U ⊆ S ⊆ U1. But this is a
contradiction unless U = U1, as the ultrafilter U is maximal. Thus A ∈ U , which
completes the proof. �

Corollary A6.1.13 suggests a characterization of ultrafilters amongst all filters.

A6.1.14 Proposition. Let F be a filter on a set X. Then F is an ultrafilter
on X if and only if it has the property that for every subset A of X, either A ∈ F
or (X \ A) ∈ F .

Proof. If F is an ultrafilter, then Corollary A6.1.13 shows that for every subset
A of X, A ∈ F or X \ A ∈ F .

Now assume that for every subset A of X, A ∈ F or (X \ A) ∈ F . Suppose F
is not an ultrafilter. Then there exists a filter F1 such that F ⊂ F1. So there exists
a subset S of X such that S ∈ F1 but S 6∈ F . By our assumption, (X \ S) ∈ F .
This implies (X \ S) ∈ F1. So both S and X \ S are members of the filter F1 and
S ∩ (X \ S) = Ø. This is a contradiction to F1 being a filter. So our supposition is
false, and F is indeed an ultrafilter. �
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A6.1.15 Corollary. Let U be an ultrafilter on a set X. Then either⋂
Ui∈U

Ui = Ø or there exists an x0 ∈ X such that {x0} ∈ U and
⋂

Ui∈U
Ui = {x0}.

Proof. Let x be any point in X. By Proposition A6.1.14, either {x} ∈ U or
(X \ {x}) ∈ U . If {x} ∈ U , then

⋂
Ui∈U

Ui ⊆ {x}. So either
⋂

Ui∈U
Ui = {x} or Ø, as

required. On the other hand, if {x} /∈ U , for all x ∈ X, then (X \ {x}) ∈ U , for all
x ∈ X. In this case, ⋂

Ui∈U
Ui ⊆

⋂
x∈X

(X \ {x}) = Ø. �

A6.1.16 Corollary. Let f be a mapping of a set X into a set Y and let
U be an ultrafilter on X. Then f(U) is an ultrafilter on Y if and only if f is
surjective.

Proof. ByExamples A6.1.3(v), f(U) is a filter on Y if and only if f is surjective.
So let us assume that f is surjective. We shall prove that f(U) is an ultrafilter using
Proposition A6.1.14. So, let A be any subset of Y . As f is surjective,

(X \ f−1(A)) = f−1(Y \ A).

Since U is an ultrafilter, f−1(A) ∈ U or (X \ f−1(A)) ∈ U . Thus

A ∈ f(U) or f(X \ f−1(A)) = f(f−1(Y \ A)) = (Y \ A) ∈ f(U).

So f(U) is an ultrafilter by Proposition A6.1.14. �
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A6.1.17 Proposition. Let F be a filter on a set X and let Ui, i ∈ I, be
the set of all ultrafilters on X which are finer than F . Then F =

⋂
i∈I Ui.

Proof. For each i ∈ I, Ui ⊇ F . So
⋂
i∈I
Ui ⊇ F .

Suppose that there exists a subset S of X, such that S /∈ F , but S ∈ Ui, for
each i ∈ I. As each Ui is a filter, (X \S) /∈ Ui, for each i ∈ I. So (X \S) /∈ F . Let
F = {Fj : j ∈ J} for some index set J . Either (i) (X \ S)∩ Fj 6= Ø, for each j ∈ J
or (ii) (X \ S) ∩ Fj = Ø, for some j ∈ J .

In case (i), {Fj : j ∈ J} ∪ {X \ S} has the finite intersection property. So by
Corollary A6.1.12, there exists an ultrafilter U such that U ⊇ ({Fj : j ∈ J}∪{X\S});
that is, (X \ S) ∈ U and F ⊆ U . So U = Ui and (X \ S) ∈ Ui, for some i ∈ I. This
is a contradiction, and so case (i) cannot occur.

In case (ii), for some j ∈ J , (X \S)∩Fj = Ø and thus Fj ⊆ S. As Fj ∈ F and
F is a filter, this implies S ∈ F . This too is a contradiction, and so case (ii) cannot
occur.

Thus our supposition is false; that is, S cannot exist. This says that F =
⋂
i∈I
Ui,

as required.

A6.1.18 Remark. As an immediate consequence of Proposition A6.1.17 we
obtain the following: If F is a filter on a set X and there exists an ultrafilter U on
X which is strictly finer than F , then there must exist at least one other ultrafilter
(strictly) finer than F .

While filters on sets are interesting, our focus is on topological spaces. So
we now examine the interplay between topologies and filters via the notion of
convergence.
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A6.1.19 Definition. Let (X,τ ) be a topological space, x ∈ X, and F a
filter on the set X. Then the filter F is said to converge on (X,τ ) to x, and
x is said to be a limit in (X,τ ) of F , denoted by x ∈ limF or F → x, if each
neighbourhood in (X,τ ) of x is a member of F . The set of all limit points in
(X,τ ) of F is denoted by limF .

A6.1.20 Remark. Let (X,τ ) be a topological space and x ∈ X. Then the
neighbourhood filter, Nx of x converges on (X,τ ) to x.

A6.1.21 Remark. Let (X,τ ) be a topological space and x ∈ X. A filter F
on the set X converges to x if and only if F is finer than the neighbourhood filter,
Nx, of x. [Verify this.]

A6.1.22 Proposition. Let (X,τ ) be a topological space. Then the
following are equivalent:

(i) (X,τ ) is a Hausdorff space;

(ii) Every filter F on (X,τ ) converges to at most one point;

(iii) Every ultrafilter U on (X,τ ) converges to at most one point.

Proof. Exercise. �
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A6.1.23 Proposition. Let (X,τ ) be a topological space. Then (X,τ ) is
compact if and only if for every filter F on (X,τ ) there is a filter F1 which is
finer than F and converges.

Proof. Recall that, by Proposition 10.3.2, a topological space is compact if and
only if for every family S of closed subsets with the finite intersection property,⋂
Si∈S Si 6= Ø.

Assume that (X,τ ) is compact and let F be any filter on (X,τ ). Then F
has the finite intersection property. Put G = {F : F ∈ F}. Then G has the finite
intersection property too. As (X,τ ) is compact, there exists a point x0 ∈ X, such
that x0 ∈

⋂
Fi∈F Fi. So if Nx0 ∈ Nx0, the neighbourhood filter in (X,τ ) of x0,

then Nx0 ∩ Fi 6= Ø, for all Fi ∈ F . Thus F and Nx0 are filters on (X,τ ) such that
S = {S : S ∈ Nx0 or S ∈ F} has the finite intersection property.. So by Remark
A6.1.7(ii), there exists a filter F1 on (X,τ ) such that F1 is finer than both F and
Nx0. As F1 is finer than the neighbourhood filter Nx0, Remark A6.1.21 says that
F1 → x0. As the filter F1 is also finer than F , this proves the required result.

Conversely, assume that for every filter on (X,τ ) there is a filter which is finer
than it which converges. Let S be a family of closed subsets of (X,τ ) with the finite
intersection property. By Proposition A6.1.4 (ii), there is a filter F on (X,τ ) which
contains S. So by assumption, there exists a point x0 in X and a filter F1 ⊇ F
such that F1 → x0. So by Remark A6.1.21, F1 ⊇ Nx0, the neighbourhood filter
of x0. Thus for each Nx0 ∈ Nx0, Nx0 ∩ F 6= Ø, for each F ∈ F1. In particular,
Nx0 ∩ Si 6= Ø, for every Si ∈ S. Therefore x0 ∈

⋂
Si∈S Si. So (X,τ ) is compact.�
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While Proposition A6.1.23 is a nice characterization of compactness using filters,
its Corollary A6.1.24 is a surprisingly nice characterization of compactness using
ultrafilters.

A6.1.24 Corollary. Let (X,τ ) be a topological space. Then (X,τ ) is
compact if and only if every ultrafilter on (X,τ ) converges.

Proof. Let U be any ultrafilter on (X,τ ). By Proposition A6.1.23, there is a
filter F1 ⊇ U which converges. But as U is an ultrafilter, U = F1. So U converges.

Conversely, assume that every ultrafilter on (X,τ ) converges. Let F be any
filter on (X,τ ). Then, by the Ultrafilter Lemma A6.1.10, there is an ultrafilter
U ⊇ F . By assumption U converges; that is, there is a filter finer than F which
converges, which completes the proof. �
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We now present a proof of Tychonoff’s Theorem 10.3.4 using ultrafilters.

A6.1.25 Theorem. (Tychonoff’s Theorem) Let {(Xi,τ i) : i ∈ I}
be any family of topological spaces. Then

∏
i∈I(Xi,τ i) is compact if and only

if each (Xi,τ i) is compact.

Proof. If
∏
i∈I(Xi,τ i) is compact, then each (Xi,τ i), i ∈ I, is compact as

Xi = pj(
∏
i∈I Xi) and a continuous image of a compact space is compact.

Conversely, assume each (Xi,τ i), i ∈ I is compact. Let U be any ultrafilter on∏
i∈I(Xi,τ i). By Corollary A6.1.24, it suffices to prove that U converges.

By Lemma A6.1.16, pi(U) is an ultrafilter on (Xi,τ i), for each i ∈ I. As
(Xi,τ i) is compact, Corollary A6.1.24 implies that pi(U) converges in (Xi,τ i), for
each i ∈ I. Noting Proposition A6.1.22, we see that pi(U) may converge to more
than one point if (Xi,τ i) is not Hausdorff. Using the Axiom of Choice, for each
i ∈ I, choose xi ∈ Xi such that pi(U)→ xi.

Let Oj be any open neighbourhood in (Xj,τ j) of xj. As pj(U) → xj, Oj ∈
pj(U). Since pj(U) is a filter, (Xj \Oj) /∈ pj(U). Therefore [(Xj \Oj)×

∏
i∈I\{j}

Xi] /∈

U . By Proposition A6.1.14, this implies that [Oj ×
∏

i∈I\{j}
Xi] ∈ U . By Definition

A6.1.1(ii) this implies that if j1, j2, . . . , jn ∈ I, and Ojk is any open neighbourhood
in (Xjk ,τ jk) of xjk , k = 1, 2, . . . , n, then

[Oj1 ×Oj2 × . . . Ojn ×
∏

i∈I\{j1,...,jn}
Xi] ∈ U .

As every neighbourhood, Nx, in
∏
i∈I

Xi of x =
∏
i∈I xi must contain a basic open

set of the form [Oj1 × Oj2 × . . . Ojn ×
∏

i∈I\{j1,...,jn}
Xi], it follows that Nx ∈ U ,

because U is a filter. So U ⊇ Nx, and hence U → x, as required. �
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There are three 15 minute YouTube videos which, together
with Appendix 1, would help put Remark A6.1.26 into
context. The videos are:- Topology Without Tears –
Infinite Set Theory –
Video 2a – http://youtu.be/9h83ZJeiecg,
Video 2b – http://youtu.be/QPSRB4Fhzko, &
Video 2c – http://youtu.be/YvqUnjjQ3TQ

A6.1.26 Remark. It is appropriate for us to say a few words about Set Theory,
on which our study of Topology rests. The standard axioms for Set Theory are known
as the Zermelo-Fraenkel (ZF) axioms. These are named after the mathematicians,
Ernst Zermelo [1871–1953] and Abraham Halevi Fraenkel36[1891–1965]. In 1904,
Zermelo formulated the Axiom of Choice (AC), which says:
For any set {Xi : i ∈ I} of non-empty sets, we can choose a member from
each Xi.
More formally this says:
For any set {Xi : i ∈ I} of non-empty sets, there exists a function
f : I →

⋃
i∈I

Xi such that f(x) ∈ Xi for every i ∈ I.

In language more familiar to readers of this book, we can state the Axiom of Choice
as follows:

For any set {Xi : i ∈ I} of non-empty sets,
∏
i∈I Xi is non-empty.

Zermelo said that the Axiom of Choice is an unobjectionable logical principle. It
is known that the Axiom of Choice is not implied by the Zermelo-Fraenkel axioms,
but is consistent with them; that is, AC is independent of, but consistent with, ZF.
During much of the twentieth century, AC was controversial. Mathematicians were
divided on whether AC is true or false or whether it should be assumed [that is,
added to the ZF axioms] and used. Jan Mycielski [282] relates an anecdote which

36Fraenkel was the first Dean of Mathematics at the Hebrew University of Jerusalem.

http://youtu.be/9h83ZJeiecg
http://youtu.be/QPSRB4Fhzko
http://youtu.be/YvqUnjjQ3TQ
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demonstrates this very well:

The mathematician Alfred Tarski (1902–1983) tried to publish his theorem proving
the equivalence between AC and “every infinite set A has the same cardinality as the
product set A×A” in the oldest extant mathematics journal in the world, Comptes
Rendus, but the mathematicians Maurice René Fréchet (1878–1973) and Henri-Léon
Lebesgue (1875–1941) refused to present it. Fréchet wrote that an implication
between two well known true propositions is not a new result, and Lebesgue wrote
that an implication between two false propositions is of no interest.

In this book we do not hesitate to use the Axiom of Choice. The Axiom of Choice
is equivalent to Zorn’s Lemma 10.2.16 and to the Well-Ordering Theorem [WOT]
10,2,15 (which says that every set can be well-ordered). It is also equivalent to
Tychonoff’s Theorem which says that any product of compact spaces is compact.

However, if you examine the above proof of Tychonoff’s Theorem, you will
see that the special case of Tychonoff’s Theorem which says that any product of
compact Hausdorff spaces is compact Hausdorff, does not require the Axiom of
Choice but only the Ultrafilter Lemma, as pi(U) converges to a unique point in a
Hausdorff space and so no choice is needed. But we did use Zorn’s Lemma in our
proof of the Ultrafilter Lemma. While the Ultrafilter Lemma is implied by the
Axiom of Choice, it is not equivalent to the Axiom of Choice, it is in fact weaker.

In summary, the following four statements are equivalent to each other:
(i) Axiom of Choice (ii) Zorn’s Lemma (iii) Well-Ordering Theorem and (iv)
Tychonoff’s Theorem. Each of these implies, but is not implied by, the
Ultrafilter Lemma. Further, none of these is implied by the Zermelo-Fraenkel
axioms. For deeper discussion of the Axiom of Choice, see Rubin and Rubin [328],
Rubin and Rubin [329] and Herrlich [170]. [The book Howard and Rubin [190] is a
survey of research done during the last 100 years on the Axiom of Choice and its
consequences, and is updated on Howard [189].]
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A6.1.27 Proposition. Let f be a surjective mapping of a topological space
(X,τ ) onto a topological space (Y,τ 1), and for each x ∈ X, let Nx and Nf(x)

denote, respectively, the filter of neighbourhoods of x ∈ (X,τ ) and the filter of
neighbourhoods of f(x) ∈ (Y,τ 1). Then the following are equivalent:

(i) f is continuous;

(ii) for every x ∈ X, Nf(x) ∈ Nf(x) =⇒ f−1(Nf(x)) ∈ Nx;
(iii) for every x ∈ X, f(Nx) ⊇ Nf(x);

(iv) for every x ∈ X and every filter F on (X,τ ), F → x =⇒ f(F)→ f(x);
that is, F ⊇ Nx =⇒ f(F) ⊇ Nf(x);

(v) for every x ∈ X and every ultrafilter U on (X,τ ), U → x =⇒ f(U)→ f(x);
that is, U ⊇ Nx =⇒ f(U) ⊇ Nf(x).

Proof. We begin by noting that Remark A6.1.21 says that a filter F converges
to a point x if and only if F is finer than Nx.

Clearly (i)⇔ (ii)⇔ (iii) and (iii) =⇒ (iv) =⇒ (v).

We shall complete the proof of the Proposition by showing that (v) =⇒ (ii).
Assume (v) is true. Let x ∈ X and U be any ultrafilter finer than Nx. Let
Nf(x) ∈ Nf(x). Then Nf(x) ∈ f(U). By Examples A6.1.13(v), f−1(Nf(x)) ∈ U . By
Proposition A6.1.17, Nx equals the intersection of all ultrafilters containing it. As
f−1(Nf(x)) is in each such ultrafilter, f−1(Nf(x)) ∈ Nx. Thus (v) =⇒ (ii). �
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The same kind of argument used above yields the next Proposition.

A6.1.28 Proposition. Let (X,τ ) be a topological space and O a subset
of X. If Nx denotes the neighbourhood filter of any point x ∈ X, then the
following are equivalent:

(i) O is an open set in (X,τ );

(ii) for every x ∈ O, there exists an Nx ∈ Nx such that Nx ⊆ O;

(iii) for every x ∈ O, O ∈ Nx;
(iv) for every x ∈ O, and every filter Fx → x, O ∈ Fx;
(v) for every x ∈ O, and every ultrafilter Ux → x, O ∈ Ux.

Proof. Exercise. �

The next corollary follows immediately.

A6.1.29 Corollary. Let (X,τ ) be a topological space and C a subset of X.
If Nx denotes the neighbourhood filter of any point x ∈ X, then the following
are equivalent:

(i) C is a closed set in (X,τ );

(ii) for every x ∈ (X \ C), there exists an Nx ∈ Nx such that Nx ⊆ (X \ C);

(iii) for every x ∈ (X \ C), (X \ C) ∈ Nx;
(iv) for every x ∈ (X \ C), and every filter Fx → x, (X \ C) ∈ Fx;
(v) for every x ∈ (X \ C), and every ultrafilter Ux → x, (X \ C) ∈ Ux.
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A6.1.30 Proposition. Let X be a non-empty set and for each x ∈ X, let
Sx be a non-empty set of filters on X such that x ∈ Fxi, for each Fxi ∈ Sx.
Let τ be the set of subsets of X defined as follows:

O ∈ τ if for each x ∈ O, O ∈ Fxi, for every filter Fxi ∈ Sx.

Then τ is a topology on X.
Further, for each x ∈ X and each filter Fxi ∈ Sx, Fxi → x in (X,τ ) and
Nx =

⋂
Fxi∈Sx

Fxi is the neighbourhood filter at x in (X,τ ).

Proof. Exercise. �

A6.1.31 Corollary. Let X be a non-empty set and τ 1 a topology on the
set X. Further let Sx be the set of all ultrafilters which converge to x on
(X,τ 1). Let τ be the topology defined from Sx, x ∈ X, as in Proposition
A6.1.30. Then τ = τ 1.

Proof. Exercise. �

A6.1.32 Remark. We have now seen that a topology τ on a set X determines
convergent filters and convergent ultrafilters, and conversely a set of filters or
ultrafilters determines a topology. We have also seen how filters or ultrafilters can
be used to define continuous functions and compactness. And we have seen that
ultrafilters can be used to give an elegant and short proof of Tychonoff’s Theorem.�
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Exercises A6.1

1. Find all filters on each of the following sets: (i) {1, 2}; (ii) {1, 2.3}; and (iii)
{1, 2, 3, 4}.

2. Let X be a set and for some index set I, let {Fi : i ∈ I} be filters on the set
X. Prove the following statements:

(i) F =
⋂
i∈I
Fi is a filter on the set X; that is, the intersection of any (finite

or infinite) number of filters on a set X is a filter;

(ii) F =
⋂
i∈I
Fi =

{ ⋃
i∈I

Fi : Fi ∈ Fi.
}

[Hint: This curious looking fact follows from the fact that each Fi is a
filter.]

3. Verify that a filter F on a finite set is not a free filter.

4. Prove the statements in Examples A6.1.3 (iii) and (v).

5. Let X be a set with at least two points, τ a topology on X other than the
indiscrete topology, and F = τ \ {Ø}. If F is a filter, then (X,τ ) is

(i) connected;

(ii) extremally disconnected (that is, the closure of every open set is open);

(iii) not metrizable;

(iv) not Hausdorff; and

(v) not a regular space.

6. Let F be a filter on a set X such that for some F ∈ F , F 6= X. If x0 ∈ X but
x0 6∈ F , show that the set X \ {x0} ∈ F . Using this, prove that every free filter
on a set X is finer than the Fréchet filter on X.

7. Let S = {N \ {n} : n ∈ N}. Find the filter on N which is generated by S.

8. (i) Let X be a set and G a family of subsets of X. Prove that there exists a
filter F such that F ⊇ G if and only if G has the finite intersection property.
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(ii) If G is a set of subsets of X and G has the finite intersection property, prove
that the filter generated by G is the coarsest filter F which contains G.

9. Let S be a subset of a set X and F be a filter on X. Find a necessary and
sufficient condition for F1 = {F ∩ S : F ∈ F} to be a filter on the set S.

10. Find all ultrafilters on each of the following sets: (i) {1, 2}; (ii) {1, 2.3}; and
(iii) {1, 2, 3, 4}.

11. Prove the statement in Remark A6.1.9.

12. Let F be an ultrafilter on a set X. If A and B are subsets of X we have seen
that A ∪ B ∈ F implies that A ∈ F or B ∈ F . Extend this result in a natural
way to sets A1, A2, . . . , An where A1 ∪ A2 ∪ . . . An ∈ F .

13. Prove the statement in Remark A6.1.21.

14. Prove the statements in Proposition A6.1.22.

15. Prove the statements in Proposition A6.1.28.

16. Let (X,τ ) be a topological space, x ∈ X and S a subset of X. Prove that x
is a limit point of S if and only if S \ {x} is a member of some filter F which
converges to x.
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17. Let (X,τ ) be a topological space. Prove the following statements:

(i) (X,τ ) is a T0-space if and only if for each x, y ∈ X, such that x 6= y, there
exists a filter Fxy on (X,τ ) such that either x ∈ limFxy and y /∈ limFxy
or y ∈ limFxy and x /∈ limFxy;

(ii) (X,τ ) is a T1-space if and only if for each x, y ∈ X, such that x 6= y,
there exists filters Fxy and Fyx on (X,τ ) such that (a) x ∈ limFxy and
y /∈ limFxy and (b) y ∈ limFyx and x /∈ limFyx;

(iii)* (X,τ ) is a Hausdorff space if and only if each filter F on (X,τ ) has at
most one limit point.

[Hint. If (X,τ ) is not a Hausdorff space, let x, y ∈ X be such that x 6= y

but each open neighbourhood of x intersects each open neighbourhood of
y. Let Fxy consist of all the subsets of X which contain sets of the form
Nx ∩ Ny, for some neighbourhood Nx of x and neighbourhood Ny of y.
Show that Fxy is a filter on (X,τ ), x ∈ limFxy and y ∈ limFxy. So Fxy
has more than one limit point. Conversely, let (X,τ ) be a Hausdorff space
and x, y ∈ X with x 6= y. Then there exists neighbourhoods Nx and Ny of
x and y, respectively, such that Nx∩Ny = Ø. Note that Nx and Ny cannot
both be members of any filter.]

18. Let τ 1 and τ 2 be topologies on a set X. Prove that the topology τ 1 is finer
than the topology τ 2 if and only if every convergent filter on (X,τ 1) also
converges to the same point(s) on (X,τ 2).

19. For each i in an index set I, let (Xi,τ i) be a topological space and let
(X,τ ) =

∏
i∈I

(Xi,τ i), their product space with the product topology. Let pi

be the projection mapping of (X,τ ) onto (Xi,τ i), for each i ∈ I. Further, let
F be a filter on (X,τ ). Prove that the filter F converges to a point x ∈ X if
and only if the filter pi(F) converges to pi(x) in (Xi,τ i), for each i ∈ I.

20. Prove the statements in Proposition A6.1.30.

21. Prove the statement in Proposition A6.1.31.
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A6.2 Filterbases

We have seen that it is often more convenient to describe a basis for a topology than
the topology itself. For example in R, Rn for n > 1, metric space topologies, and
product topologies there are elegant descriptions of their bases but less than elegant
descriptions of the topologies themselves. Similarly, it is often more covenient to
describe a filter basis than the filter itself. Further, we will see that it it is easy to
relate convergent filter bases to convergent sequences.

A6.2.1 Definition. Let X be a non-empty set and G a set of non-empty
subsets of X. Then G is said to be a filterbase (or a filter basis or a filterbasis
or a filter base) if G1, G2 ∈ G implies that there exists a G3 ∈ G such that
G3 ⊆ G1 ∩G2.

A6.2.2 Remarks. Let X be a non-empty set and G a filterbase on X. Then

(i) clearly Ø /∈ G;

(ii) every filter on X is also a filterbase on X;

(iii) G has the finite intersection property;

(iv) the set F = {F ⊆ X : F ⊇ G, G ∈ G} is a filter, indeed it is the coarsest filter,
containing G and it is called the filter generated by G;

(v) if X is a set and x ∈ X, then G = {x} is a filterbase on X;

(vi) if X has more than one point, then F = {{x} : x ∈ X} is not a filterbase or a
filter. Indeed, if x and y are distinct points of X, then a filter or filterbasis F
cannot contain both of the sets {x} and {y}.

(vii) If A is a set of non-empty subsets of X and A has the finite intersection property,
then there exists a filterbase containing A. [Verify this.]
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A6.2.3 Examples.

(i) Let (X,τ ) be a topological space and x any point in X. Let Nx be the set
of all neighbourhoods of x in (X,τ ). Then Nx is clearly a fliterbase. It is the
neighbourhood filterbase of x.

(ii) Let [0,1] be the closed unit interval with the Euclidean topology. Let N =

{[0, 1/n) : n ∈ N}. Then N is a filterbase of open neighbourhoods of the point
0.

(iii) Let X be a set and xi, i ∈ N, a sequence of points in X. For each n ∈ N, let

Gn = {xj : j ∈ N and j > n}.

So each Gn is a subset of X and we define G = {Gn : n ∈ N}. Then G is a
filterbase on the set X. We call G the filterbase determined by the sequence
xi, i ∈ N,.

A6.2.4 Definitions. Let G1 and G2 be filterbases on a set X. Then (i) G1

is said to be finer than G2, (ii) G2 is said to be coarser than G1, and (iii) G1 is
said to be a refinement of G2 if for each set G2 ∈ G2, there exists a G1 ∈ G1

such that G1 ⊆ G2. If G1 is both coarser and finer than G2, then G1 and G2 are
said to be equivalent filterbases.

A6.2.5 Example. Let [0,1] be the closed unit interval with the Euclidean
topology. Let G1 = {[0, 1

2n) : n ∈ N} and G2 = {[0, 1
2n+1) : n ∈ N}. Then G1 and

G2 are easily seen to be equivalent filterbases.

6.2.6 Example. Consider the sequence 1, 1
2 ,

1
3 , . . . ,

1
n , . . . , and let G1 be

the filterbase determined by this sequence as in Example 6.2.3 (iii); that is,
G1 = {G1n : n ∈ N}, where G1n = { 1

n ,
1

n+1 ,
1

n+2 , . . . }. Let G2 be the filterbase
determined by the sequence 1, 1

3 ,
1
6 ,

1
9 , . . . ,

1
3n , . . . . So G2 = {G2n : n ∈ N}, where

G2n = { 1
3n ,

1
3(n+1)

, 1
3(n+2)

, . . . }. Then each G2n ⊂ G1n and so G2 is a refinement
of G1.
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A6.2.7 Definition. Let (X,τ ) be a topological space and G a filterbase
on X. If x ∈ X, then G is said to converge to x, denoted by G → x and x is
said to be a limit point of the filterbase G, denoted by x ∈ limG, if for every
neighbourhood U of x there is a G ∈ G such that G ⊆ U .

A6.2.8 Example. On the Euclidean space R consider the sequence 1, 1
2 ,

1
3 , . . . ,

1
n , . . . ,

where n ∈ N. Let G be the filterbase determined by this sequence, as in Example
A6.2.3(iii). Then clearly G → 0.

A6.2.9 Example. Let (X,τ ) be any topological space and x any point in
X. Let Nx be the set of all neighbourhoods of x in (X,τ ); that is, Nx is the
neighbourhood fliterbase at x of Example A6.2.3(i). Clearly Nx → x

A6.2.10 Remark. Let (X,τ ) be a topological space and let G1 and G2 be
filterbases on X. Further let a be a point in X and G1 a refinement of G2. If
G2 → a, then clearly G1 → a.

A6.2.11 Proposition. Let (X,τ ) be a topological space, S a subset of X,
and a a point in X \ S. Then a is a limit point of the set S if and only if there
exists a filterbase F such that F → a in (X,τ ) where each F ∈ F satisfies
F ⊆ S.

Proof. If a is a limit point of S, then each neighbourhood N of a must
intersect the set S nontrivially. Let FN = N ∩ S. Let N denote the filterbase
of neighbourhoods in (X,τ ) of a. We claim that F = {FN : N ∈ N} is a filterbase.

Each FN is non-empty. Further if N1, N2 ∈ N , then the set N3 = N1∩N2 ∈ N .
But then as a is a limit point of S and N3 is a neighbourhood of a, we also have
FN3

= N3 ∩ S 6= Ø and FN3
= N3 ∩ S = (N1 ∩N2) ∩ S = FN1

∩ FN2
, and so FN is

indeed a filterbase. Further, from the very definition of F , we see that F → a, as
required.
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Conversely, let F1 be a fliterbase such that F1 → a′ ∈ X, and each F ∈ F1,
satisfies F ⊆ S. Let N ′ be any neighbourhood of a′. As F1 → a′, this implies that
N ′ ⊇ F1, for some F1 ∈ F1. Since F1 ∈ F1, F1 ⊆ S, and thus N ′ ∩ S 6= Ø. Hence
a′ is a limit point of S, as required.

A6.2.12 Corollary. Let (X,τ ) be a topological space and S a subset of
X. The following two properties are equivalent:

(i) S is a closed set in (X,τ );

(ii) Let F be a filterbase on (X,τ ) such that F ∈ F implies F ⊆ S. Further,
let a ∈ X be such that F → a. Then a ∈ S for every such F and a.

A6.2.13 Remark. We know that if (X,τ ) is a metrizable topological space,
then a subset S of X is closed if and only if each point a in X such that a is a limit
point of a sequence s1, s2, . . . , sn, . . . where each sn ∈ S, satisfies a ∈ S. Noting
Example A6.2.3 which says that each sequence determines a filterbase, we see that
Corollary A6.2.12 is a generalization of this metrizable space result to arbitrary
topological spaces; that is, filterbases for arbitrary topological spaces fulfil the same
role that sequences do for metrizable spaces.

A6.2.14 Proposition. Let G be a filterbase on the topological space (X,τ )

and a ∈ X. Further, let F be the filter generated by the filterbase G. Then
a ∈ limG if and only if a ∈ limF .

Proof. Exercise.

A6.2.15 Definition. Let (X,τ ) be a topological space and G a filterbase
on X. A point x ∈ X is said to be a cluster point of the filterbase, G, if for
each G ∈ G and each neighbourhood U of x, G ∩ U 6= Ø.
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A6.2.16 Remarks.

(i) Every limit point of a filterbase is a cluster point of that filterbase.

(ii) Consider the sequence 0, 1, 0, 2, 0, 3, . . . , 0, n, . . . , where n ∈ N, in the Euclidean
space R. Let G be the filterbase determined by this sequence as in Example
A6.2.3 (iii). Then 0 is clearly a cluster point of G, but 0 is not a limit point of
G. (Exercise: Verify this.)

A6.2.17 Proposition. Let (X,τ ) be a topological space, a a point in X,
and G a filterbase on (X,τ ). If G has a as a cluster point, then there is a
filterbase G1 on (X,τ ) such that G1 is a refinement of G and a is a limit point
of G1.

Proof. For each neighbourhood U of a and each G ∈ G, let GU = G∩U . Define
the set G1 = {GU : U a neighbourhood of a, G ∈ G}.

Firstly we have to verify that G1 is a filterbase. Let G1 and G2 be in G1. Then
G1 = G′1 ∩ U1 and G2 = G′2 ∩ U2, where U1 and U2 are neighbourhoods of a in
(X,τ ), and G′1 and G′2 are in G. Then

G1 ∩G2 = (G′1 ∩ U1) ∩ (G′2 ∩ U2) = (G′1 ∩G
′
2) ∩ (U1 ∩ U2).

As G is a filterbase, there exists a G′3 ∈ G such that G′3 ⊆ G′1 ∩ G
′
2. Since U1 and

U2 are neighbourhoods of a, U3 = U1∩U2 is also a neighbourhood of a. As G′3 ∈ G,
G′3 ∩ U3 ∈ G1. Thus G1 ∩ G2 contains the set G′3 ∩ U3, which is in G1. So G1 is
indeed a filterbase.

By the definition of G1, it is a refinement of G.
Clearly, also by the definition of G1, G1 → a; that is a is a limit point of G1.
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A6.2.18 Proposition. Let (X,τ ) be a topological space, a a point in X,
and G a filterbase on (X,τ ). If G1 is a filterbase which is a refinement of G and
a is a cluster point of G1, then a is a cluster point of G.

Proof. To prove that a is a cluster point of G, let G ∈ G and let U be any
neighbourhood of a in (X,τ ). We need to show that G ∩ U 6= Ø.

As G1 is a refinement of G, there exists a G1 ∈ G1 such that G1 ⊆ G.

Now a is a cluster point of G1 implies that G1∩U 6= Ø. So G∩U ⊇ G1∩U 6= Ø,

as required.

A6.2.19 Corollary. Let (X,τ ) be a topological space, a a point in X, and
G a filterbase on (X,τ ). Then a is a cluster point of G if and only if there is a
filterbase G1 which is a refinement of G such that a is a limit point of G1.

Proof. This is an immediate consequence of Propositions A6.2.17, A6.2.18 and
Remark A6.2.16(i).

We now show that filterbases can be used to characterize compact topological
spaces.
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A6.2.20 Proposition. A topological space (X,τ ) is compact if and only
if every filterbase on (X,τ ) has a cluster point.

Proof. Firstly assume that (X,τ ) is a compact space and G is a filterbase
on (X,τ ). Then the set G = {G ∈ G} has the finite intersection property by
Remarks A6.2.2(iii). Therefore the set {G : G ∈ G} of closed sets also has the finite
intersection property. As (X,τ ) is compact, Proposition 10.3.2 implies that there
exists a point a ∈

⋂
G∈G

G. So if U is any neighbourhood of a, U ∩G 6= Ø. Thus we

see that a is a cluster point of the filterbase G.
To prove the converse, let (X,τ ) be a topological space for which every filterbase

has a cluster point. We shall prove compactness using Proposition 10.3.2. Let S be
any set of closed subsets of (X,τ ) such that S has the finite intersection property.
We shall prove that

⋂
S∈S

S 6= Ø.

Define A to be the set of all finite interesections of members of S. It suffices
to prove that

⋂
A∈A

A 6= Ø.

Now by Remark A6.2.2(vii), A is a filterbase. So by our assumption, there exists
a cluster point x of the filterbase A; that is, if V is any neighbourhood of x, then
V ∩ A 6= Ø, for each A ∈ A. This implies that x is a limit point of the set A.
Noting that each A ∈ A, being a finite intersection of closed sets, is a closet set,
this implies that x ∈ A, for each A ∈ A. Hence

⋂
A∈A

A 6= Ø, as required.

A6.2.21 Corollary. A topological space (X,τ ) is compact if and only if
every filterbase on (X,τ ) has a refinement which has a limit point.

Next we show that filterbases can be used to characterize continuous mappings.
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A6.2.22 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces and
f a continuous mapping of (X,τ ) into (Y,τ 1). If F is a filterbase on (X,τ ),
then f(F) is a filterbase on (Y,τ 1). Further, if x ∈ X and F → x, then
f(F)→ f(x).

Proof. Firstly we show that f(F) is a filterbase on (Y,τ 1). As F is a filterbase,
every set in F is non-empty and so each set f(F) is also non-empty. Now let
G1, G2 ∈ f(F). Then there exists F1, F2 ∈ F such that f(F1) = G1 and
f(F2) = G2. As F is a filterbase, by Definition A6.2.1 there exists a non-empty set
F3 ∈ F , such that F3 ⊆ F1 ∩ F2. This implies f(F3) ⊂ f(F1) ∩ f(F2); that is, the
set G3 = f(F3) ∈ f(F) and G3 ⊆ G1∩G2. So f(F) is indeed a filterbase on (Y,τ 1.

Now we know that f is continuous and F → x. Let U be any neighbourhood
of f(x) in (Y,τ 1). As f is continuous, f−1(U) is a neighbourhood of x in (X,τ ).
Since F → x, by Definition 6.2.7 there exists F ∈ F , such that F ⊆ f−1(U). So
f(F ) ∈ f(F) and f(F ) ⊆ U . Thus f(F)→ f(x), as required.

We now state and prove the converse of Proposition A6.2.22.

A6.2.23 Proposition. Let (X,τ ) and (Y,τ 1) be topological spaces and f
a mapping of (X,τ ) into (Y,τ 1). If for each x ∈ X and each filterbase F → x,
the filterbase f(F)→ f(x), then f is a continuous mapping

Proof. Let U be any open set in (Y,τ 1). We are required to show that the set
f−1(U) is an open set in (X,τ ).

Let x be any point in the set f−1(U) and Nx the neighbourhood filter at x in
(X,τ ). By Example A6.2.9, Nx → x. By assumption, f(Nx) → f(x). As U is
open, it is a neighbourhood of f(x). So there exists a G ∈ f(Nx) such that G ⊆ U .
However, G = f(N), where N ∈ Nx and thus f(N) ⊆ U . Hence the neighbourhood
N of x satisfies N ⊆ f−1(U).

So we have that the set f−1(U) contains a neighbourhood of x, for each
x ∈ f−1(U). Thus f−1(U) ia an open set, which completes the proof that f is
continuous.
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Exercises A6.2

1. Let F be a filterbasis on a set X and G be a filterbasis on a set Y . Prove that
F × G = {F ×G : F ∈ F , G ∈ G} is a filterbasis on the product set X × Y .

2. Prove the statement in Remark A6.2.10.

3. Verify the claim in Remarks A6.2.12(ii) that 0 is a cluster point but not a limit
point of G.

4. Prove Proposition A6.2.14.

5. Let (X,τ ) be a topological space and U a filterbase on (X,τ ). Then U is
said to be an ultrafilterbase (or an ultrafilterbasis or an ultrafilter base or
ultrafilter basis) if the filter that it generates is an ultrafilter. Prove that U is
an ultrafilterbase if and only if for each set S ⊆ X there exists an F ∈ U such
that S ⊇ F or X \ S ⊇ F .

6. (i) Verify Remarks A6.2.16(ii).

(ii) In the example in Remarks A6.2.16(ii), find a refinement of the filterbase G
which has 0 as a limit point.

7. Verify Corollary A6.2.20.

8. Prove that a metrizable topological space (X,τ ) is compact if and only if every
sequence of points in X has a subsequence converging to a point of X.

9. Let (X,τ ) be a topological space. Prove that (X,τ ) is Hausdorff if and only if
every filterbasis, G , on (X,τ ) converges to at most one point.

[Hint: See Exercises A6.1 #9(iii).]

10. Let G be a filterbasis on the Euclidean space R. Verify that G → 0 if and only
if for every ε > 0 there exists a set G ∈ G such that x ∈ G implies |x| < ε.

11.* Let (Xi,τ i) , for i ∈ I, be a set of topological spaces and G a filterbasis on the
product space

∏
i∈I(Xi,τ i). Prove that the point x ∈

∏
i∈I(Xi,τ i) is a limit

point of G if and only if φi(G)→ φi(x), for each i ∈ I, where φi is the projection
mapping of

∏
i∈I(Xi,τ i) onto (Xi,τ i).
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A6.3 Nets37

In 1922 E.H. Moore and H.L. Smith in their paper, Moore and Smith [273],
introduced the notion of a net as a generalization of a sequence. As we shall
see, this notion is equivalent to the more elegant approach of filters introduced in
1937 by Henri Cartan (Cartan [68], Cartan [69]).

A partial order, 6, on a set was defined in Definitions 10.2.1. A set with a
partial order is called a partially ordered set. §10.2 gives a number of examples of
partially ordered sets.

A6.3.1 Definition. A partially ordered set (D,6) is said to be a directed
set if for any a ∈ D and b ∈ D, there exists a c ∈ D such that a 6 c and b 6 c.

A6.3.2 Examples. It is easily seen that N, Z, Q, and R with the usual partial
order are directed sets. �

A6.3.3 Example. Let (X,τ ) be a topological space and a a point in X. Let
D be the set of all neighbourhoods of the point a. Put a partial order 6 on D

by D1 6 D2 if D2 ⊆ D1, where the sets D1, D2 ∈ D. As the intersection of two
neighbourhoods of a is a neighbourhood of a, it follows that D1 ∩ D2 ∈ D, and
D1 ∩D2 > D1 and D1 ∩D2 > D2, Thus (D,6) is a directed set. �

A6.3.4 Definition. Let (X,τ ) be a topological space and (D,6) a directed
set. Then a function φ : D → X is said to be a net in the space (X,τ ).

It is often convenient to write the net φ above as {xα} where φ(α) = xα ∈ X,
α ∈ D.

37There are two 14 minute YouTube videos which provide an excellent introduction to this section.
They are:- Topology Without Tears – Sequences and Nets –
Video 3a – http://youtu.be/wXkNgyVgOJE &
Video 3b – http://youtu.be/xNqLF8GsRFE

http://youtu.be/wXkNgyVgOJE
http://youtu.be/xNqLF8GsRFE
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A6.3.5 Definition. Let (X,τ ) be a topological space, (D,6) a directed
set and φ : D → X a net in (X,τ ). Then φ is said to converge to a point
a ∈ X, denoted by φ→ a or {xα} → a or a ∈ lim{xα}, and a is said to be
a limit of the net φ, if for each neighbourhood U in (X,τ ) of a, there exists a
β ∈ D, such that φ(α) ∈ U , for every α ∈ D with β 6 α.

If in Definition A6.3.5 the limit of the net {xα} is unique, then we write
lim{xα} = a.

A6.3.6 Proposition. Let (X,τ ) be a topological space. Then it is
Hausdorff if and only if no net in (X,τ ) converges to more than one point.

Proof. Exercise. �

A6.3.7 Definition. Let (X,τ ) be a topological space and {xα} a net in
(X,τ ), where α is in a directed set (D,6). If Y is a subset of X, then {xα}
is said to be eventually in Y if there exists a β ∈ D such that xα ∈ Y for all
β 6 α.

Using Definition A6.3.7 we can rephrase Definition A6.3.5 as follows:

A6.3.8 Definition. Let (X,τ ) be a topological space, (D,6) a directed
set, {xα} a net in (X,τ ), α ∈ D, and a ∈ X. Then {xα} → a if for each
neighbourhood U of a, xα is eventually in U .

A6.3.9 Definition. Let (X,τ ) be a topological space and {xα} a net in
(X,τ ), where α is in a directed set (D,6). If Y is a subset of X, then {xα} is
said to be frequently or cofinally in Y if for each γ ∈ D, there exists a β ∈ D
such that γ 6 β and xβ ∈ Y
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At this point we discuss the equivalence of filterbases and nets.

A6.3.10 Proposition. Let (X,τ ) be a topological space, S a subset of X
and a a point in X. Then a is a limit point of S if and only if there is a net in
S converging to a.

Proof. Firstly let a be a limit point of S. Define a directed set D by

D = {U : U is a neighbourhood of a} where, for U1, U2 ∈ D, U1 6 U2 if U1 ⊇ U2.

As a is a limit point of S, U ∩ S 6= Ø, for all U ∈ D. For each U ∈ D, let aU
be an arbitary point of U ∩ S. Then {aU} is a net. If V is any neighbourhood of a,
then V ∈ D. For every U > V , aU ∈ U ⊆ V . So we have that {aU} → a.

Conversely assume that a ∈ X and {xα} → a, where xα ∈ S, for α in a directed
set D. Let U be any neighbourhood of a. Then there exists a β ∈ D, such that
β 6 γ =⇒ xγ ∈ U . So U ∩ S 6= Ø. Thus a is a limit point of S, as required. �

A6.3.11 Corollary. Let (X,τ ) be a topological space and S a subset of
X. Then S is a closed set in (X,τ ) if and only if no net in S converges to a
point of X \ S.

Proof. Exercise. �

A6.3.12 Remark. Corollary A6.3.11 shows that nets (more precisely, convergent
nets) can be used to describe the closed sets of (X,τ ), and therefore they also
determine which subsets of (X,τ ) are open sets. In short, nets (more precisely,
convergent nets) determine the topology τ on X. This result can be compared
with Corollary 6.2.12 where it was shown that filterbases (more precisly, convergent
filterbases) determine the topology τ on X. �
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A6.3.13 Proposition. Let X be a set and {xα} a net in X, where α ∈ D,
for a directed set D. For each β ∈ D, let Fβ = {xα : β 6 α}. Then
G = {Fβ : β ∈ D} is a filterbasis on X.

Proof. Exercise. �

A6.3.14 Definitions. Let (X,τ ) be a topological space.

(i) Let D be a directed set and {xα}, α ∈ D, a net in (X,τ ). For each β ∈ D,
let Fβ = {xα : β 6 α}. Put G = {Fβ : β ∈ D}. Then G is said to be
the filterbase associated with the net {xα}, α ∈ D. If F is the filter
generated by the filterbase G, then F is said to be the filter associated
with the net {xα}, α ∈ D.

(ii) Let G be a filterbase on (X,τ ) which generates the filter F . Define the
set D = {(x, F ) : x ∈ F ∈ F}. Define a partial ordering on D as follows:
(x1, F1) 6 (x2, F2) if F2 ⊆ F1. Then D is a directed set. Define φ : D → X

by φ((x, F )) = x. Then φ is said to be the net associated with the filter
F and the net associated with the filterbase G.

A6.3.15 Proposition. Let (X,τ ) be a topological space and a ∈ X.

(i) Let {xα}, α ∈ D, D a directed set, be a net on (X,τ ). Let F be the filter
(respectively, filterbase) associated with the net {xα}, α ∈ D. Then F → a

if and only if {xα} → a.

(ii) Let F be a filter (respectively, filterbase) on (X,τ ). Then the net {xα},
α ∈ D, associated with the filter (respectively, filterbase) F . Then F → a

if and only if {xα} → a.

Proof. Exercise. �
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A6.3.16 Definition. Let (X,τ ) be a topological space, D a directed set,
and {xα}, α ∈ D a net in (X,τ ). Then {xα}, α ∈ D is said to be an ultranet
(or a universal net) if for every subset S of X this net is eventually in either S
or X \ S; that is, there exists a β ∈ D such that either xα ∈ S for all β 6 α or
xα ∈ X \ S for all β 6 α

A6.3.17 Proposition. Let (X,τ ) be a topological space, D a directed
set, {xα}, α ∈ D a net on (X,τ ), and F a filter on (X,τ ).

(i) If {xα}, α ∈ D, is an ultranet and F is the filter associated with this net,
then F is an ultrafilter.

(ii) If F is an ultrafilter and {xα}, α ∈ D, is the net associated with this filter,
then {xα}, α ∈ D, is an ultranet.

Proof. Exercise. �

A6.3.18 Proposition. Let X and Y be sets, D a directed set and {xα},
α ∈ D, a net in X. If f is any function of X into Y , then {f(xα)}, α ∈ D, is a
net in Y .

Proof. Exercise. �

A6.3.19 Proposition. Let (X,τ 1) and (Y,τ 2) be topological spaces and
f a function of X into Y . The map f : (X,τ 1)→ (Y,τ 2) is continuous if and
only if for each point a in X and each net {xα} converging to a in (X,τ 1), the
net {f(xα)} converges to f(a) in (Y,τ 2).

Proof. Exercise. �
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Now we define the notion of a subnet, which is a generalization of that of a
subsequence. However, it is slightly more technical than one might at first expect.
This extra technicality is needed in order that certain properties of subnets that we
want will be true.

A6.3.20 Definitions. Let X be a set, D1 and D2 directed sets, and
φ1 : D1 → X and φ2 : D2 → X nets in X. A function θ : D2 → D1 is
said to be non-decreasing if β1 6 β2 =⇒ θ(β1) 6 θ(β2), for all β1, β2 ∈ D2.
The function θ is said to be cofinal if for each α ∈ D1, there exists a β ∈ D2

such that θ(β) > α. The net φ2 is said to be a subnet of the net φ1 if there
exists a non-decreasing cofinal function θ : D2 → D1 such that φ2 = φ1 ◦ θ.

A6.3.21 Remark. In the literature there are two inequivalent definitions of
subnet. As well as that used in Definitions A6.3.20, another definition does not
include that θ is non-decreasing but rather only that it is cofinal. �

A6.3.22 Example. Let D1 = D2 = N with the usual ordering, let θ : N → N
be given by θ(n) = 3n, for n ∈ N, and (X,τ ) any topological space. Clearly θ is a
non-decreasing cofinal map. So if x1, x2, . . . , xn, . . . is any sequence in (X,τ ) then
it is also a net with directed set N and the subsequence x3, x6, . . . , x3n, . . . is also a
subnet. �

A6.3.23 Example. Let D1 = D2 = N with the usual ordering, let θ : N → N
be given by θ(n) = 1 + [n2 ], n ∈ N, where [x] denotes the integer part of
x, for example [5

3 ] = 1, [4.9] = 4, [5] = 5. The map θ is non-decreasing
and cofinal. So the sequence and net x1, x2, . . . , xn, . . . in (X,τ ) has a subnet
x1, x2, x2, x3, x3, x4, x4, x5, . . . , x1+[n2 ], . . . which is not a subsequence. So while
every subsequence of a sequence is a subnet, not every subnet of a sequence is
a subsequence. �
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A6.3.24 Example. Let τ be the discrete topology on the set X of all positive
integers. Consider the directed sets D1 = N and D2 = (1,∞), with the usual
orderings. Let φ1 : N → X be the identity map and θ : (1,∞) → N be given by
θ(x) = [x], the integer part of x, x ∈ (1,∞). Let φ2 : (1,∞) → X be defined by
φ2 = φ1 ◦ θ. Clearly φ1 and φ2 are nets in X and φ2 is a subnet of φ1 by its very
definition.

It is interesting to note that the directed set D1 = N is a countable set, while
the directed set D2 = (1,∞) is an uncountable set. In other words, if we put
xn = φ1(n), n ∈ N and xr = φ2(r), for r ∈ (1,∞), then the uncountable net {xr},
r ∈ (1,∞), is a subnet of the countable sequence (and net) {xn}, n ∈ N. �

A6.3.25 Definition. Let (X,τ ) be a topological space and D a directed
set. The point a is said to be a cluster point of the net {xα}, α ∈ D, if for
each neighbourhood U of a and each β ∈ D, there exists an α ∈ D such that
α > β and xα ∈ U .

A6.3.26 Proposition. Let (X,τ ) be a topological space, D a directed
set, a ∈ X, and {xα}, α ∈ D a net in (x,τ ). If {xα} → a then a is a cluster
point of the net {xα}.

Proof. Exercise. �

The next proposition tells us that a cluster point of a subnet of a net is also a
cluster point of the net.
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A6.3.27 Proposition. Let (X,τ ) be a topological space, D1 and D2

directed sets, a ∈ X, φ : D1 → X a net in (X,τ ) with subnet φ ◦ θ : D2 → X,
where θ : D2 → D1 is a non-decreasing cofinal map. If a is a cluster point of
the subnet φ◦θ : D2 → X then a is also a cluster point of the net φ : D1 → X.

Proof. Exercise. �

A6.3.28 Proposition. Let (X,τ ) be a topological space, D1 a directed
set, a ∈ X, and {xα}, α ∈ D1 a net in (X,τ ). Then a is a cluster point of the
net {xα}, α ∈ D1, if and only if the net has a subnet which converges to a.

Proof. Firstly assume that the net {xα}, α ∈ D1, has a as a cluster point.
Put D2 = {(α, U) : α ∈ D1, U a neighbourhood of a such that xα ∈ U}. Define
a partial ordering on D2 by (α1, U1) 6 (α2, U2) when α1 6 α2 and U1 ⊇ U2. We
claim that D2 is a directed set. To see this let (α1, U1) ∈ D2 and (α2, U2) ∈ D2.
As α1, α2 ∈ D1 and D1 is a directed set, there exists an α3 ∈ D1 with α1 6 α3

and α2 6 α3. Put U3 = U1 ∩ U2, so that we have U1 ⊇ U3 and U2 ⊇ U3. As a
is a cluster point and a ∈ U3, there exist an α4 with α3 6 α4 such that xα4 ∈ U3.
So (α4, U3) ∈ D2. As α1 6 α4, α2 6 α4, U1 ⊇ U3 and U2 ⊇ U3, we see that
(α1, U1) 6 (α4, U3) and (α2, U2) 6 (α4, U3). So D2 is indeed a directed set.

Define a map θ : D2 → D1 by θ(α, U) = α, where α ∈ D1 and U is a
neighbourhood of a. Clearly θ is non-decreasing. Now consider any α ∈ D1. As a is
a cluster point, for any neighbourhood U of a, there exists a γ ∈ D1 with α 6 γ such
that xγ ∈ U . So (γ, U) ∈ D2 and we have θ((γ, U)) = γ and α 6 γ. So θ is also
cofinal. For notational convenience, write φ : D1 → X where φ(α) = xα, α ∈ D1.
Then φ ◦ θ : D2 → X is a subnet of the net {xα}, α ∈ D1.

As a is a cluster point of the net {xα}, α ∈ D1, for each neighbourhood U0 of
a and each α0 ∈ D1, there exists a β ∈ D1, α0 6 β such that xβ ∈ U0. Then by
the definition of D2, for any (α, U) ∈ D2 with (β, U0) 6 (α, U) we have xα ∈ U and
U ⊆ U0. So xα ∈ U0. In other words, φ ◦ θ(α, U) ⊆ U0, for all (β, U0) 6 (α, U) ;
that is the subnet φ ◦ θ converges to a.

The converse follows immediately from Propositions A6.3.26 and A6.3.27. �
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A6.3.29 Proposition. Let (X,τ ) be a topological space. Then (X,τ ) is
compact if and only if every ultranet in (X,τ ) converges.

Proof. This follows immediately from Propositions A6.1.24, A6.3.15 and A6.3.17.
�

A6.3.30 Proposition. Every net has a subnet which is an ultranet.

Proof. Exercise. �

A6.3.31 Proposition. Let (X,τ ) be a topological space. The following
are equivalent;

(i) (X,τ ) is compact;

(ii) Every net in (X,τ ) has a subnet which converges;

(iii) Every net in (X,τ ) has a cluster point.

Proof. Exercise. �

Exercises A6.3

1. Verify that the partially ordered sets in Examples 10.2.3 and Examples 10.2.4
are directed sets.

2. Verify that if (X,τ ) is a Hausdorff space, then a net in (X,τ ) converges to at
most one point.

3. Prove the converse of the result in Exercise 2 above, namely that if (X,τ ) is a
topological space such that no net converges to two distinct points of X, then
(X,τ ) is Hausdorff.
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4. (i) Let S be any infinite set and, using the Axiom of Choice, select subsets
S1, S2, . . . , Sn, . . . , n ∈ N, such that S =

⋃∞
n=1 Sn.

(ii) Using the Well-Ordering Theorem on each Sn, n ∈ N , define a partial
ordering 6 on all of S such that x 6 y if x ∈ Si and y ∈ Sj, where i 6 j.

(iii) Verify that with this ordering, S is a directed set.

(iv) Deduce that for every infinite cardinal number, ℵ, there is a directed set of
cardinality ℵ.

5. Prove Corollary A6.3.11.

6. Prove Proposition A6.3.13.

7. Prove Proposition A6.3.15.

8. Prove Proposition A6.3.17.

9. Prove Proposition A6.3.18.

10. Prove Proposition A6.3.19.

11. Let D1 = D2 = R with the usual ordering. Which of the following maps
θ : D2 → D1 are non-decreasing and which are cofinal?

(i) θ(x) = x2, for all x ∈ R.

(ii) θ(x) = |x|, for all x ∈ R.

(iii) θ(x) = sin x, for all x ∈ R.

(iv) θ(x) = 2x, for all x ∈ R.

(v) θ(x) = 2x3 − 3x, for all x ∈ R.

12. Prove the following:

(i) Every net is a subnet of itself.

(ii) If {xγ}, γ ∈ D3, is a subnet of the net {xβ}, β ∈ D2, and {xβ}, β ∈ D2, is
a subnet of the net {xα}, α ∈ D1, then {xγ}, γ ∈ D3, is also a subnet of
{xα}, α ∈ D1.
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13. Let (X,τ ) be any topological space, where X is an infinite set. Let D1 = D2 =

Q and x1, x2, x3, . . . , xn, . . . a sequence in (X,τ ). Find two subnets of this
sequence neither of which is a subsequence of the sequence x1, x2, x3, . . . , xn, . . . .

14. Using Exercise 4 above and Example A6.3.24, prove that for each cardinal
number ℵ, every infinite sequence x1, x2, . . . , xn, . . . in a topological space
(X,τ ) has a subnet {xα}, α ∈ D, where D has cardinality ℵ.

15. Prove Proposition A6.3.26.

16. Prove Proposition A6.3.27.

17. Prove Proposition A6.3.30.

18. Using Propositions A6.3.29, A6.3.30, and A6.3.28 prove Proposition A6.3.31.

A6.4 Wallman Compactifications: An Application of Ultrafilters

Repeatedly throughout the study of topology we are interested in whether a given
topological space can be embedded as a subspace of a topological space with nicer
properties. In metric space theory we know that not every metric space is complete.
But can every metric space be embedded as a metric subspace of a complete metric
space? The answer is “yes”, and was proved in Proposition 6.3.23.

This was achieved by first recognizing that a metric space is complete if and only
if every Cauchy sequence converges. So a metric space which fails to be complete
must have Cauchy sequences which are not convergent. For example in Q with the
euclidean metric, we easily find Cauchy sequences of rational numbers which do not
converge (to any rational number).

So we need to enlarge the metric space with extra points so that the Cauchy
sequences which did not converge previously now converge to one of the extra
points. In the case of Q, we add what is effectively the irrational numbers, and the
completion is R.

So the “trick” or rather the “technique”, is to identify why the given topological
space fails to have the desired property and then add extra points in such a way that
the topological space with the extra points does have the desired property.
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In 1937 M.H. Stone and E. C̆ech introduced what is now known as the Stone-
C̆ech compactification which is defined in Definition 10.4.1. They showed that a
topological space can be embedded as a subspace of a compact Hausdorff space if
and only if it is completely regular and Hausdorff, that is it is a Tychonoff space.
This is discussed in §10.4.

In 1938 H. Wallman (Wallmani [396]) proved that a topological space can be
embedded as a subspace of a compact T1-space if and only of it is a T1-space.

We shall now describe the Wallman compactification. If we are given a T1-space
which is not compact, how can we enlarge the space to obtain a compact T1-space?
To answer this we find a convenient property for testing compactness. We know
several such properties. We look for one which is most convenient. As indicated in
the title of this section, we shall use ultrafilters.

Note Proposition 10.3.2 states that a topological space (X,τ ) is compact if and
only if for every family F of closed subsets of X with the finite intersection (F.I.P.)
property (see Definition 10.3.1)

⋂
F∈F

F 6= Ø.

So we shall focus our intention on families of closed sets with the finite
intersection property. Now we know that filters and ultrafilters, in particular, have
the F.I.P. But, in almost all topological spaces, families of closed sets cannot form
a filter, since any set which contains a set in the filter is also in the filter.

Therefore we shall modify the notion of an ultrafilter so that the modification
still has all the desired properties of an ultrafilter but can consist of only closed sets.

A6.4.1 Definitions. Let (X,τ ) be a topological space and C the set of all
closed subsets of X. A non-empty subset F of C is said to be a filter in C if
(i) F1, F2 ∈ F implies F1 ∩ F2 ∈ F ;
(ii) F ∈ F and F ⊆ G ∈ C =⇒ G ∈ F ; and
(iii) Ø /∈ F .
A filter U in C is said to be an ultrafilter in C if no filter in C is strictly finer
than U .
An ultrafilter U in C is said to be a free ultrafilter in C if

⋂
U∈U

U = Ø.
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We record some useful facts about ultrafilters in the set of all closed sets, C, on
a topological space (X,τ ).

The proof of Proposition A6.4.2 is analagous to that of The Ultrafilter Lemma
A6.1.10 and Corollary A6.1.12.

A6.4.2 Proposition. Let F be any filter in C, the set of all closed sets,
on a topological space (X,τ ). Then there exists an ultrafilter U in C which is
finer than F .
Indeed if S is a non-empty set of closed subsets of X and S has the F.I.P., then
there is an ultrafilter U in C such that S ⊆ U .
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A6.4.3 Proposition. Let U be an ultrafilter in C, the set of closed sets in
a topological space (X,τ ).
(i) F ∈ U and F ⊆ G ∈ C =⇒ G ∈ U ;
(ii) Let F1, F2 ∈ C. Then F1, F2 ∈ U ⇐⇒ F1 ∩ F2 ∈ U ;
(iii) Ø /∈ U ;
(iv) F1, F2 ∈ U =⇒ F1 ∩ F2 6= Ø;
(v) {F : F ∈ U} has the F.I.P.;
(vi) Let A,B ∈ C. Then A ∪B ∈ U ⇐⇒ A ∈ U or B ∈ U ;
(vii) Let A ∈ C. Then A ∈ U ⇐⇒ A ∩ F 6= Ø, for all F ∈ U ;
(viii) Let U and U ′ be ultrafilters in C. Then

U 6= U ′ ⇐⇒ there exist sets A ∈ U and B ∈ U ′ such that A ∩B = Ø;
(ix) Let A ∈ C. Then A /∈ U ⇐⇒ A ⊆ X \ F, for some F ∈ U ;
(x) Let O ∈ τ . Then X \O /∈ U ⇐⇒ F ⊆ O, for some F ∈ U .

Proof. (i), (ii), and (iii) follow from Definitions A6.4.1 (i), (ii) and (iii),
respectively, while (iv) is a consequence of (1) and (iii) and (v) is a consequence of
(iv).

In (vi) =⇒ is proved analogously to Proposition A6.1.13. The converse follows
from (i) above.

In (vii) =⇒ follows from (iv). The proof of the converse in (vii) is analogous
to the second paragraph of the proof of Proposition A6.1.13.

(viii) follows from (vii) and (iv).

(ix) follows from (vii).

(x) follows from (ix). �
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If U is any ultrafilter in C, then it has the finite interesection property. If U is
a free ultrafilter, then (X,τ ) is not compact by Proposition 10.3.2. Let F be the
set of all free ultrafilters in C. We shall expand the space (X,τ ) by adding extra
“points” using these free ultrafilters.

Let ωX be the set X ∪ F.

A6.4.4 Remarks. So each point in ωX is either a point in X or a free ultrafilter
in C. At first sight this might appear strange, but a set is just a collection of objects.
In this case there are two kinds of objects in ωX, namely points and free ultrafilters
in C.

Our task is to define a topology on ωX in such a way that it has (X,τ ) as a
subspace, and that with this topology ωX is a compact T1-space.

For each open subset O of (X,τ ), define the subset O∗ of ωX by

O∗ = O ∪ {U ∈ F : X \O /∈ U}. (1)

Then X∗ = X ∪ {U ∈ F : Ø /∈ U} = X ∪ F = ωX and O∗ = Ø ⇐⇒ O = Ø. (2)

For each closed subset A of (X,τ ), define the subset A∗ of ωX by

A∗ = A ∪ {U ∈ F : A ∈ U}. (3)

Then X∗ = X ∪ {U ∈ F : X ∈ U} = X ∪ F = ωX and A∗ = Ø ⇐⇒ A = Ø. (4)

Noting that (X,τ ) is a T1-space, for x ∈ X, {x} is a closed set in (X,τ ) and
so

{x}∗ = {x} ∪ {U ∈ F : {x} ∈ U} = {x} ∪Ø = {x} (5)

We shall show that B = {O∗ : O ∈ τ} is a basis for a topology τω on ωX
and that this topological space (ωX,τω) is a compact T1-space which has
(X,τ ) as a subspace.
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We claim that for any O ∈ τ

O∗ = ωX \ (X \O)∗ . (6)

Proof of (6).

ωX \ (X \O)∗ = (X ∪ F) \ ((X \O) ∪ {U ∈ F : X \O ∈ U}), by (3)

= (X \ (X \O)) ∪ (F \ {U ∈ F : X \O ∈ U})
= O ∪ {U ∈ F : X \O /∈ U}
= O∗ , by (1), which completes the proof. �

Similary for any closed set A in (X,τ ), we can show that

A∗ = ωX \ (X \ A)∗ . (7)

We claim that for any A1, A2 ∈ C,

(A1 ∩ A2)∗ = A1∗ ∩ A2∗ . (8)

Proof of (8).

A1∗ ∩ A2∗ = (A1 ∪ {U ∈ F : A1 ∈ U}) ∩ (A2 ∪ {U ∈ F : A2 ∈ U}), by (3)

= (A1 ∩ A2) ∪ {U ∈ F : A1, A2 ∈ U}
= (A1 ∩ A2) ∪ {U ∈ F : A1 ∩ A2 ∈ U}, by Proposition A6.4.3(ii)

= (A1 ∩ A2)∗ , by (3), which completes the proof �

Similarly we can show that

(A1 ∪ A2)∗ = A1∗ ∪ A2∗ . (9)

We claim that for O1, O2 ∈ τ

(O1 ∪O2)∗ = O1
∗ ∪O2

∗ . (10)

(10) follows from (6) and (3) and so its proof is left as an exercise.

We also leave the proof of (11) as an exercise.

(O1 ∩O2)∗ = O1
∗ ∩O2

∗ . (11)
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As a consequence of (8) and the second part of (4) we obtain

Let A1, A2, . . . , An ∈ C. Then
n⋂
i=1

Ai = Ø ⇐⇒
n⋂
i=1

Ai∗ = Ø. (12)

It follows immediately from (12) that for Ai ∈ C, i ∈ I, any index set,

{Ai : i ∈ I} has the F.I.P. ⇐⇒ {Ai∗ : i ∈ I} has the F.I.P.. (13)

Now by Proposition 2.2.8, (11) and (2) imply that the set B = {O∗ : O ∈ τ} is
indeed a basis for a topology τω on ωX. So every open set in (ωX,τω) is a union
of members of B. Every closed set in (ωX,τω) is therefore an intersection of closed
sets A∗, where A is closed in (X,τ ).

A6.4.5 Definition. Let (X,τ ) be a T1-space.Then the topological space
(ωX, τω) is called the Wallman compactification of X.
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A6.4.6 Theorem. Let (X,τ ) be a T1-space. Then its Wallman
compactification (ωX,τω) is a compact T1-space that contains (X,τ ) as a
dense subspace. Further, every continuous map of (X,τ ) into a compact
Hausdorff space (K,τ 1) extends to a continuous map of (ωX,τω) into (K,τ 1).

Proof. The fact that (X,τ ) is a subspace of (ωX,τω) follows immediately from
the definitions of ωX, B, τω, and O∗, for O ∈ τ . That X is dense in (ωX,τω)

follows immediately from the the definition of the basic open sets O∗, O ∈ τ , as
each (non-empty) O∗ intersects X non-trivially.

Next we shall prove that (ωX,τω) is a T1-space, that is each point is a closed
set. We know that there are two kinds of points in ωX, namely x ∈ X and U ,
where U ∈ F. By (4) above each {x} = {x}∗ and so is a closed set in (ωX,τω).
Noting that if U ,F ∈ F are distinct ultrafilters, there exists A ∈ U such that A /∈ F ,
because otherwise F would be a finer filter in C than U , which contradicts U being
an ultrafilter in C. Therefore⋂

A∈U
{F ∈ F : A ∈ F} = {U}. (14)

Using (14), the fact that U is a free ultrafilter in C, and (3) which says that
A∗ = A ∪ {F ∈ F : A ∈ F} we obtain that

⋂
A∈U

A∗ =

 ⋂
A∈U

A

⋃ ⋂
A∈U
{F ∈ F : A ∈ F}

 = (Ø) ∪ ({U}) = {U}.

Thus U is the intersection of the closed sets A∗, A ∈ U , and so is a closed set. So
we have that every {x} and every U is a closed set in (ωX,τω). Thus (ωX,τω) is
indeed a T1-space.

Finally, we need to show that (ωX,τω) is compact. Let I be an index set and
{Ci : i ∈ I} a set of closed subsets of ωX with the F.I.P. We are required to prove
that

⋂
i∈I

Ci 6= Ø.

As noted earlier, each Ci =
⋂
j∈J

(Aij)∗, for some index set J , where each Aij

is a closed subset of X. Therefore {(Aij)∗ : i ∈ I, j ∈ J} has the F.I.P.. By (12)
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this implies that {Aij : i ∈ I, j ∈ J} has the F.I.P.. So by Proposition A6.4.2 there
exists an ultrafilter U in C containing {Aij : i ∈ I, j ∈ J}.

If
⋂
U∈U

U 6= Ø, then there exists an x ∈ X with x ∈
⋂
U∈U

U . This implies

x ∈
⋂
i∈I

⋂
j∈J

Aij and so x ∈
⋂
i∈I

⋂
j∈J

(Aij)∗. Thus
⋂
i∈I

Ci 6= Ø, as required.

If
⋂
U∈U

U = Ø, U is a free ultrafilter in C. Now each Aij ∈ U and so, by (2),

U ∈ (Aij)∗. Therefore U ∈
⋂
i∈I

⋂
j∈J

(Aij)∗ =
⋂
i∈I

Ci. Thus
⋂
i∈I

Ci 6= Ø, as required.

So in both cases,
⋂
i∈I

Ci 6= Ø. Hence (ωX,τω) is compact.

Let φ : (X,τ ) be a continuous map of (X,τ ) into (K,τ 1). We shall apply
Proposition 10.3.53 to obtain the required result. So let C1, C2 be disjoint closed
subsets of (K,τ 1). As φ : (X,τ ) → (K,τ 1) is continuous, φ−1(C1) and φ−1(C2)

are disjoint closed subsets of (X,τ ). So by (8) and (2), [φ−1(C1)]∗ and [φ−1(C2)]∗
are disjoint closed subsets of (ωX,τω). As [φ−1(C1)]∗ is a closed set containing
φ−1(C1) and [φ−1(C1)]∗ is a closed set containing φ−1(C2), the closures in ωX of
φ−1(C1) and φ−1(C2) are disjoint. By Proposition 10.3.53, φ : (X,τ ) → (K,τ 1)

has a continuous extension (ωX,τω)→ (K,τ 1), which completes the proof of the
theorem. �
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A6.4.7 Proposition. Let (X,τ ) be a T1-space. The following conditions
are equivalent:

(i) The Wallman compactification (ωX,τω) is a Hausdorff space;

(ii) (X,τ ) is a normal space.

Proof. (i) =⇒ (ii): If (ωX,τω) is a Hausdorff space, it is compact Hausdorff
which, by Remark 10.3.28, implies that it is a normal space. Now let C1 and C2 be
disjoint closed subsets of (X,τ ). Then by Remarks A6.4.4 (8) and (2), (C1)∗ and
(C2)∗ are disjoint closed sets in the normal space (ωX,τω). So there exist disjoint
O1, O2 ∈ τω, such that (C1)∗ ⊆ O1 and (C2)∗ ⊆ O2. Then the disjoint sets O1∩X
and O2∩X are open sets in (X,τ ) which respectively contain C1 and C2. So (X,τ )

is a normal space.

(ii) =⇒ (i): Assume (X,τ ) is normal. We need to show that if z1, z2 ∈ ωX =

X ∪ F , then there are disjoint open sets containing z1 and z2 respectively. So we
need to consider the cases: (a) z1, z2 ∈ F ; (b) z1 ∈ X and z2 ∈ F ; (c) z1, z2 ∈ X.

(a): Let U1,U2 ∈ F be distinct. By Proposition A6.4.3 (viii), there exist closed
subsets A1 and A2 of (X,τ ) such that A1 ∈ U1 and A2 ∈ U2 and A1 ∩A2 = Ø. As
(X,τ ) in normal, there exist disjoint open sets U1, U2 in (X,τ ) such that A1 ⊆ U1

and A2 ⊆ U2. By (11), U∗1 and U∗2 are disjoint open sets in (ωX,τω). By Proposition
A6.4.3 (x), this implies that X \ U1 /∈ U1 and X \ U2 /∈ U2. By (1) these imply
U1 ⊆ U∗1 and U2 ⊆ U∗2 , which complete the proof for case (a).

(b): Let x1 ∈ X and U2 ∈ F . As U2 is a free ultrafiler in C, there exists A2 ∈ U2

with x1 6∈ A2. Put A1 = {x1}. As in (a), there exist disjoint open sets U1, U2 in
(X,τ ) containing A1 and A2 respectively, such that U∗1 and U∗2 are disjoint open
sets in (ωX,τω) with x1 ∈ U1 and U2 ∈ U2. This completes the proof of case (b).

(c): Let x1, x2 ∈ X. Then there exist disjoint open sets U1, U2 in (X,τ ) which
contain x1 and x2, respectively. Then U∗1 and U∗2 are disjoint open sets in (ωX,τω)

which contain x1 and x2, respectively. This completes the proof of case (c) and of
the proposition. �
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A6.4.8 Corollary. The following conditions are equivalent:

(i) (X,τ ) is a normal Hausdorff space.

(ii) The Wallman compactification ωX is the Stone-C̆ech compactification βX.

Proof. Exercise. �

A6.4.9 Corollary. Let X be any unbounded subset of a normed vector
space and τ be the subspace topology on X. Then

βX = ωX and card (βX) = card (ωX) > 2c.

In particular, for non-negative integers a, b, c, and d with a + b + c + d > 0,
card (ω(Na ×Qb × Pc × Rd)) = 2c.

Proof. Exercise. �

A6.4.10 Corollary. If (X,τ ) is a discrete space of infinite cardinality m,
then card (ωX) = 22m.

Proof. Exercise. �

A6.4.11 Proposition. If X is any infinite set of cardinality m, then it has
22m distinct ultrafilters.

Proof. Put the discrete topology on the set X. Then ωX = X ∪ F , where F
is the set of free ultrafilters. (On a discrete space every free ultrafilter is a free
ultrafilter on the closed sets.) So, by Corollary A6.4.10, F must have cardinality m.

The proof that X cannot have more than 22m ultrafilters is left as an exercise.�
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Exercises A6.4

1. Let (X,τ ) be a completely regular Hausdorff space.

(i) Verify that there exists a continuous mapping of the Wallman compactification
ωX onto the Stone-C̆ech compactification βX.

[Hint. Use the last part of the statement of Theorem A6.4.6.]

(ii) Deduce from (i) that card (ωX) > card (βX).

2. Using Theorem A6.4.6, verify Corollary A6.4.8.

3. Prove Corollary A6.4.9.

[Hint. Use Corollary A6.4.8 and Proposition 10.4.17.]

4. Prove Corollary A6.4.10.

[Hint. Use Corollary A6.4.8]

5. Verify that a set of infinite cardinality m cannot have more than 22m ultrafilters.



Bibliography

[1] N.H. Abel. Mémoire sur une classe particulière d’équations résolubles
algébriquement. J. reine und angewandte Mathematik, 4:131–156, 1829.

[2] Alexander Abian. The theory of sets and transfinite arithmetic. Saunders.,
Philadelphia, 1965.

[3] Victor S. Adamchik and David J. Jeffrey. Polynomial transformations of
Tschirnhaus, Bring and Jerrard. ACM SIGSAM Bulletin, 37:90–94, 2003
https://tinyurl.com/ybazbzx3.

[4] Colin C. Adams. The knot book: an elementary introduction to the
mathematical theory of knots. Freeman and Co., New York, 1994.

[5] J. Frank Adams. Lectures on Lie Groups. University of Chicago PressPress,
Chicago, 1969.

[6] J. Frank Adams. Algebraic topology: a student’s guide. Cambridge University
Press, Cambridge, England, 1972.

[7] G.N. Afanasiev. Topological effects in quantum mechanics. Kluwer Academic
Publishers, Dordrecht, Boston, 1999.

[8] M.A. Aguilar, S. Gitler, and C. Prieto. Algebraic topology from a homotopical
viewpoint. Springer, New York, 2002.

[9] Paul S. Alexandroff and Heinz Hopf. Topologie. Springer-Verlag, Berlin, 1935.

[10] Algebraic and Geometric Topology. http://www.maths.warwick.ac.uk/agt, 2001–
. a refereed electronic journal.

711

https://tinyurl.com/ybazbzx3
http://www.maths.warwick.ac.uk/agt


712 BIBLIOGRAPHY

[11] R.D. Anderson and R.H. Bing. A completely elementary proof that Hilbert
space is homeomorphic to the countable product of lines. Bull. Amer.
Math.Soc., 74:771–792, 1968.

[12] Charilaos N. Aneziris. The mystery of knots: computer programming for knot
tabulation. World Scientific Publishers, Singapore; River Edge, N.J., 1999.

[13] S.A. Argyros, P. Dodos, and V. Kanellopoulos. Unconditional families in
banach spaces. Math. Ann., 341:15–38, 2008.

[14] Alexander Arhangel’skii and Mikhail Tkachenko. Topological Groups and
Related Structures. Atlantis Press/World Scientific, Amsterdam and Paris,
2008.

[15] A.V. Arhangel’skii, editor. General Topology II. Springer-Verlag, Berlin etc.,
1995.

[16] A.V. Arhangel’skii, editor. General Topology III. Springer-Verlag, Berlin etc.,
1995.
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collectionwise, 244
dimension, 528
Felix, 525

Hausdorff space, 93, 132, 195, 284, 300,
570

Hausdorff topological group, 582
Hausdorff, Felix, 486
Hausdorff-Besicovitch measure, 525
Heine-Borel Theorem, 181

Converse, 182
Generalized, 183

Heisenberg group, 552
hemicompact space, 303

hereditarily separable, 300
Hewitt-Marczewski-Pondiczery Theorem,

288
Higgs boson particle theory, 547
Hilbert cube, 229, 262, 263, 273, 282,

284, 298
Hilbert’s 13th problem, 391
Hilbert’s fifth problem, 553
Hilbert, David, 389, 483
Hofmann, Karl Heinrich, 540
homeomorphic, 95

locally, 107
homeomorphism, 95

local, 107
homogeneous, 570
homogeneous coordinates, 546
homomorphism, 549

continuous, 574

I, 54
identification mapping, 342
identification spaces, 342
identity component, 563, 578
identity matrix, 548
identity of a group, 413, 548
if and only if, 55
image

inverse, 41
imaginary numbers, 405
increasing sequence, 149
indiscrete

space, 26
topology, 26
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induced topological space, 130
induced topology, 90, 130
induction

transfinite, 477
inf, 84
infimum, 84
infinite, 449

countably, 449
infinite extension, 416
initial ordinal, 478
initial segment, 475
initial segment topology, 30
injective, 40
injective limit, 588
Int, 82, 163
integer, 54
integral domain, 415
interior, 82, 163, 581
interior point, 163
Intermediate Value Theorem, 118
intersection of topologies, 45
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inverse

function, 40
image, 41

inverse element in a group, 413, 548
inverse mapping system, 588
invertible, 415
invertible matrix, 548
involution, 387
irrational number, 54
irreducible mod m, 419
irreducible polynomial, 419
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isometric, 136, 154

embedding, 154
isometry, 136, 154
isomorphic

order, 471
topologically, 551, 574

isomorphic as a C∗-algebra, 387
isomorphism, 549

order, 471
topological, 574
topological group, 574

iterate, 492

Jerrard, George Birch, 411
jointly continuous, 607

K, 350
k-space, 302
kω-space, 298
kernel, 549
Killing, William, 561
Klein bottle, 350
Klein, Felix, 540
Knuth, Donald, 6, 9
Kolmogorov, Andrej Nikolajewitsch, 391
Kolmogorov-Arnol’d-Kahane-Lorentz-Sprecher

Theorem, 392
Kronecker’s Theorem, 438
Kronecker, Leopold, 438
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LaTrobe University, 560
Lagrange, Joseph-Louis, 411
lattice, 378
LCA-group, 578

compactly generated, 636
least element, 84
least upper bound, 378
Least Upper Bound Axiom, 84
Lebesgue measure, 517, 525, 582
left uniformity, 606
Leibniz, Gottfried Wilhelm, 405
Lemma

Abel’s, 437
Embedding, 237, 273, 276
Urysohn’s, 277
Zorn’s, 178, 268, 268, 270, 271, 317

Lie group, 551
compact, 551
simply connected, 561

limit, 668
injective, 588
projective, 562, 588

limit of a net, 690
limit ordinal, 476
limit point, 72
limit point of filterbase, 682
Lindelöf space, 297, 298
Lindelöf’s Theorem, 242
Lindelöf degree, 311
Lindemann, Ferdinand, 541

Lindenbaum, Adolph, 489
line

projective, 545
Sorgenfrey, 83, 178, 196

linear functional, 313
linear group, 568
linear operator, 315
linear order, 267, 470
linear transformation, 580
linearly independent, 270
linearly ordered set, 267–271, 470
Lipschitz, Rudolf Otto Sigismund , 540
local

homeomorphism, 107
locally

compact, 188, 206
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euclidean, 139
homeomorphic, 107

locally kω-group, 642
locally compact subgroup, 576, 581
locally connected, 251, 300
locally convex space, 209, 210, 264
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locally finite, 305
locally isomorphic, 602
logistic function, 499
Lorentz group, 547, 552
lower bound, 84, 378
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lower complete, 311
lower semicontinuous, 171
Luzin, Nikolai Nikolaevich, 488
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Benoit, 525
manifold

Cauchy-Riemann, 139
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CR-, 139
differentiable, 139, 366, 551
Riemannian, 139
smooth, 139
topological, 139
topological with boundary, 139

MAP, 653
map

bijective, 40
conjugate, 521
evaluation, 237
injective, 40
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one-to-one, 40
onto, 40
quadratic, 506
surjective, 40

Maple, 542
mapping

closed, 185, 197, 339
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contraction, 160
evaluation, 261, 276, 326, 328
identification, 342

lower semicontinuous, 171
open, 168, 185, 197, 339, 578
quotient, 337
upper semicontinuous, 171

Marczewski, Edward, 284
market

stock, 496
mathematical induction, 472
mathematical proof, 24
matrix

identity, 548
invertible, 548
nonsingular, 548
orthogonal, 568
unitary, 568

matrix group, 549
maximal, 268, 268–272
maximally almost periodic, 653
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Robert L., 516
Mazurkiewicz, Stefan, 488
meager, 165
Mean Value Theorem, 162
measure

Hausdorff-Besicovitch, 525
Lebesgue, 525, 582

metacompact, 309
metric, 123
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discrete, 124
equivalent, 131
euclidean, 124, 124
Post Office, 244
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bounded, 133
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metrizable, 133
-σ, 298
completely, 152

metrizable space, 262, 263, 298
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monic polynomial, 415
monothetic, 634
monotonic sequence, 149
Morris, Sidney A., 560
Morse

Harold Calvin Marston, 517

N, 92
N, 25
n-cube, 229
n-sphere, 204
natural numbers

Sarkovskii’s ordering, 511
neighboourhood

symmetric, 570
neighbourhood, 80
neighbourhood filter, 661
neighbourhood filterbase, 681
net, 689

convergent, 690
universal, 693
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net associated with filterbase, 692
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network weight, 245

Neumann, Carl, 540

neutral fixed point, 497

Newton, Sir Isaac, 428

no small subgroups, 564

non-decreasing, 694

non-discrete Hausdorff group topology,
586

nonsingular matrix, 548

norm, 127, 210

operator, 315

sup, 369

uniform, 369

normal space, 136, 186, 276, 277, 278,
282–284, 297–300

normal subgroup, 413, 548, 581

normed algebra, 376

normed vector space, 127

quotient, 319

nowhere dense, 164

NSS-group, 564
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irrational, 54

ordinal, 473

prime, 54

transcendental, 453, 541

numbers
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imaginary, 405
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O(n), 568
ω-narrow, 573, 583
ω, 473
ω1
CK, 478

object, 109
odd permutation, 414
one-to-one, 40
one-to-one correspondence, 448
onto, 40
open

ball, 128
covering, 176
mapping, 168, 185, 197, 339
sequentially, 145
set, 31

open covering, 176
open mapping, 578
Open Mapping Theorem, 167

for Locally Compact Groups, 590
open subgroup, 575
operator

bounded linear, 315
linear, 315

operator norm, 315
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as used in matheamtics, .6
orbit, 492
order

linear, 267, 470
partial, 264, 377
strict linear, 267, 470
strict total, 267, 470

order diagram, 266–269

order isomorphic, 471
order isomorphism, 471
order type, 471
ordering

Sarkovskii’s, 511
ordinal

Church-Kleene, 478
countable, 478
initial, 478
limit, 476
predecessor, 476
successor, 476

ordinal number, 473
orthogonal

matrix, 568
orthogonal group, 549, 568

special, 568

P -based topological space, 312
P, 54, 92
P(S), 456
paracompact, 308
paradox

Banach-Tarski, 482
parallelotope, 595
partial derivative, 367
partial order, 264, 265, 270, 271, 377
partially ordered set, 264, 265, 267–269,

377, 664
partition of unity, 307
path, 117
path-connected, 117, 208
pathwise connected, 117
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period doubling bifurcation, 508
Period Three Theorem, 510
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eventually, 495
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permutation, 414
even, 414
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perspective, 543
Peter, Fritz, 556
phase portrait, 496
Plücker, Julius, 540
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textbf, 545
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attracting fixed, 497
attracting periodic, 507
boundary, 163
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fixed, 119, 160
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neutral fixed, 497
peak, 149
repelling fixed, 497
repelling periodic, 507
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Polish space, 153
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Principal Structure Theorem for LCA-

Groups, 650
Principle of the Excluded Middle, 484
pro-Lie group, 562, 603
product, 193, 223, 259, 299
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weak direct, 584
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product of two ordinals, 474
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projective mapping system, 588
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real, 349
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if and only if, 55
mathematical, 24
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separation, 48
fixed point, 119
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pseudo-ring, 415

Q, 53, 92, 264
quadratic equation, 403
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quadrature of the circle, 541
quartic equation, 409
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quotient group, 549, 578, 580
quotient mapping, 337
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quotient normed vector space, 319
quotient space, 337
quotient topology, 578

R, 30, 50, 264
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P2, 349
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Pn, 349
rationally dependent, 593
real projective plane, 349
real projective space, 349
real trignometric polynomial, 383
reduced cone, 346
reduced suspension, 346
reducible polynomial, 419
refinement, 305, 681
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reflexive, 96, 632
reflexive Banach space, 314, 320, 321
reflexive binary relation, 96, 264, 377
reflexivity of dual Banach space, 320
regular, 196
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space, 94

regular space, 279, 282, 283, 297, 299
relation

equivalence, 108, 156, 448
relative topology, 90
relatively compact, 187
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repelling fixed point, 497
repelling periodic point, 507
restricted direct product, 584, 630
retract, 292

Riemannian
manifold, 139

right uniformity, 606
rigid motion, 547
ring, 415

commutative, 415
polynomial, 415
topological, 417

ring with identity, 415
Risch, Henery, 542
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Rotkiewicz, Andrzej, 489
Royal Society, 516
Ruffini, Paolo, 412
Russell, Bertram, 483
Ruziewicz, Stanislaw, 488

SL(n,C), 568
Sn, 414
ΣX, 346
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Sn, 349
Sn−1, 343
s-dimensional outer measure

Hausdorff , 527
S1, 204
S1, 139
Sn, 204
Saks, Stanislaw, 489
Sarkovskii’s ordering, 511
Sarkovskii’s Theorem, 511

converse, 512
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240
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seed, 492
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lower, 171
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semidirect product, 550
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separable, 82, 153, 196, 235
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Separable Quotient Problem, 322
separable space, 262, 263, 284, 298, 300
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261
separation property, 48
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Cauchy, 147
convergent, 140, 189
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346

sequentially closed, 145
sequentially compact, 189
sequentially continuous, 146
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Fσ, 54, 169
Gδ, 54, 169
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67
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analytic, 153, 488
bounded, 159
Cantor, 221
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convex, 166, 208
countable, 449
denumerable, 449
derived, 169
directed, 689
finite, 449
first category, 165
infinite, 449
linearly ordered, 267–271, 470
meager, 165
of integers, 53, 92
of irrational numbers, 54, 92
of natural numbers, 25, 92
of positive integers, 25, 92
of rational numbers, 53, 92
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Smith
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T3, 279, 280
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σ-metrizable, 298
k-, 302
kω, 642
kω, 298
Tychonoff, 326
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Baire, 164
Banach, 157, 264, 580
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Cantor, 221
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278, 283, 298, 325, 671, 686
compactly-generated, 302
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completely regular, 273–275, 299
connected, 85, 297, 300
cosmic, 246
countable-closed, 146
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discrete, 25
door, 46, 93
Dowker, 306
dual, 313
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297–300
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perfect, 169, 223
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product, 193, 223, 259, 260, 273,

297
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quotient, 337
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regular, 94, 196, 279, 282, 283, 297,

299
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separable, 82, 153, 196, 235, 262,

263, 284, 298, 300
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sequential, 145, 302, 340, 341, 346
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stronglysσ-metrizable, 298
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Suslin, 153
T0, 44
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T2, 93, 132
T3, 94, 298
T4, 136, 276, 278
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2
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T
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2
, 297, 299, 325

T
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, 273

topological, 24
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Tychonoff, 273, 274–276, 278, 297,

299, 325, 328
uniform, 606
WCG, 321

space of bounded linear operators, 315
space-filling curve, 252, 488
space; compact, 325
span, 316
special

unitary group, 568
orthogonal group, 568

special linear group, 568
special relativity, 547
spread, 311
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squaring the circle, 541
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Stone, Marshall Harvey, 353
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331, 334
Stone-Weierstrass Theorem, 381, 382
strict linear order, 267, 470
strict total order, 267, 470
strong topology, 314
strongly σ-metrizable, 298
Studia Mathematica, 482
Sturm sequence, 436
Sturm, Jacques Charles François , 436
subalgebra, 376
subbasis, 68
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finite, 176
subfield, 415
subgroup, 413, 548

commutator, 581, 588
locally compact, 576, 581
normal, 413, 548, 581
open, 575

subgroup topology, 572
sublattice, 378
subnet, 694
subordinate, 307
subsequence, 149
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dense, 77
everywhere dense, 77
proper, 36

subspace, 90
subspace topology, 90
successor ordinal, 476
sum of cardinal numbers, 464
sum of ordinal numbers, 474
sup, 84
Sup norm, 369
supercompact, 187
support of a function, 369
suppose

proof by contradiction, 52
supremum, 84
surface, 205
surjective, 40
Suslin space, 153
suspension, 344

reduced, 346
symmetric binary relation, 96
symmetric group, 414
symmetric neighbourhood, 570
symmetric polynomial, 429

elementary, 429
symmetry, 547
system

dynamical, 518
systems

conjugate dynamical, 521

TEX, 6
T0-space, 44
T1-space, 43, 196
T2-space, 93, 132
T3-space, 94
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Complex Stone-Weierstrass, 382
Contraction Mapping, 161
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textbf, 369
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Freyd Adjoint Functor, 325
Fundamental Theorem of Algebra, 216,

417
Gelfand-Naimark Representation, 387
Generalized Heine-Borel, 183, 203
Hahn-Banach, 317, 320
Heine-Borel, 181
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Kronecker’s, 438
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Pontryagin van-Kampen Duality, 649
Pontryagin-van Kampen Duality for
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Pontryagin-van Kampen Duality for

Discrete Groups, 630
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650
Sarkovskii’s, 511
The Period Three, 510
Tietze Extension, 293
Toruǹczyk, 255
Tychonoff, 202, 258, 264, 272, 671
Tychonoff’s, 270, 659
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Urysohn Metrization, 283
Urysohn’s, 239, 284



INDEX 765
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Tietze Extension Theorem, 293
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ω-narrow, 573
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cofinite, 38
compact-open, 607
countable closed, 44
discrete, 25
Euclidean, 661
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Toruǹczyk Theorem, 255
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transpose of a matrix, 549
triangle
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ultrafilter in C, 700
Ultrafilter Lemma, 664
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Urysohn’s Lemma, 277, 300
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well-ordering, 470
Well-Ordering Theorem, 268, 268, 673
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Wikipedia, 9
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