Rayleigh Surface Wave
Example from the PscFunctions package
With the help of routines of the PscFunctions package one can visualize some types of waves
.
Rayleigh has shown that in elastic half-space there can be special waves called as surface.
At the beginning we create the equation of the undeformed half-plane
x(u,v), y(u,v)
. Then we create equation of the Rayleigh surface wave
U(x,y,t), V(x,y,t)
. Coordinates of points after deforming are determined by functions
X(u,v,t),Y(u,v,t)
. The following example shows a graphical representation of such wave in some point of time.
> | restart; with(PscFunctions): x:=(u,v)->u: y:=(u,v)->QR(v,0): a:=0.8475: b:=0.3933: c:=0.5753: d:=1.732: p:=1: C:=1: # Rayleigh surface wave equation U:=(x,y,t)->C*(-exp(-a*y)+c*exp(-b*y))*sin(x+p*t): V:=(x,y,t)->C*a*(exp(-a*y)-d*exp(-b*y))*cos(x+p*t): # deformed half-plane equation X:=(u,v,t)->x(u,v)+U(x(u,v),y(u,v),t): Y:=(u,v,t)->y(u,v)+V(x(u,v),y(u,v),t): plot3d([X(u,v,0.5),Y(u,v,0.5),0],u=-5..5,v=-2..5,grid=[31,26],style=HIDDEN,color=BLACK,labels=["X","Y","Z"],axes=BOXED,view=[-4..4,-2..4,-1..1],orientation=[90,0],scaling=CONSTRAINED); |
The following animation shows visually this wave.
> | plots[animate](plot3d,[[X(u,v,t),Y(u,v,t),0],u=-5..5,v=-2..5,grid=[31,26],style=HIDDEN,color=BLACK,labels=["X","Y","Z"],axes=BOXED,view=[-4..4,-2..4,-1..1]],t=0..2*Pi,orientation=[90,0],scaling=CONSTRAINED); |