Airplane outline

Example from the PscFunctions package

The CPscHermite  routine computes a parametric equation of a   piecewise-cubic interpolating Hermite polynomial  of degree 3. This Hermite polynomial  approximates 2D or 3D set of points. Coordinates of two ending points and tangent vectors to them uniquely determine segments of the curve. In some nodes left-hand and  right-hand tangent vectors can not coincide.
The most of the following example contains a code of input data preparation.

>    with(PscFunctions):
Lxy:=[[1,0],[1,2],[4,0],[4,2],[1,4],[2,12],[12,10],[12,12],[2,16],\
      [2,22],[0,26],[-2,22],[-2,16],[-12,12],[-12,10],[-2,12],\
      [-1,4],[-4,2],[-4,0],[-1,2],[-1,0],[1,0]]:
Lt:=[0,2,5,7,10,18,28,30,40,46,50,\
     54,60,70,72,82,90,93,95,98,100,102]:
DER:=[[0,1],[[0,1],[3,-2]],[[3,-2],[0,1]],[[0,1],[-3,2]],\
     [[-3,2],[1/2,1/2]],[[0,1],[5,-1]],[[5,-1],[0,1]],\
     [[0,1],[-5,2]],[[-5,2],[0,1]],[0,1],\
     [[-1,1],[-1,-1]],[0,-1],[[0,-1],[-5,-2]],[[-5,-2],[0,-1]],\
     [[0,-1],[5,1]],[[5,1],[0,-1]],[[1/2,-1/2],[-3,-2]],\
     [[-3,-2],[0,-1]],[[0,-1],[3,2]],[[3,2],[0,-1]],\
     [[0,-1],[1,0]],[1,0]]:
xe,ye:=CPscHermite(Lxy,param=Lt,t,tanvectors=DER):
pp:=plot([xe,ye,t=0..102],thickness=2,color=BLACK,scaling=CONSTRAINED,numpoints=1000):
pnts:=plots[pointplot](Lxy,symbolsize=20):
plots[display](pnts,pp);

[Maple Plot]

Here is a parametric equation of this curve.

>    'X'=xe;
'Y'=ye;

X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...
X = -50+1/2*t+(79/18-17/9*t+2/9*t^2)*abs(t-2)+(-37/18+11/9*t-2/9*t^2)*abs(t-5)+(-349/18+37/9*t-2/9*t^2)*abs(t-7)+(16771/1152-2029/576*t+1033/4608*t^2)*abs(t-10)+(82457/3200-791/400*t+487/12800*t^2)*abs...

Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...
Y = 1/2*t+(-185/54+34/27*t-4/27*t^2)*abs(t-2)+(101/54-22/27*t+4/27*t^2)*abs(t-5)+(671/54-74/27*t+4/27*t^2)*abs(t-7)+(-17131/1728+4211/1728*t-1051/6912*t^2)*abs(t-10)+(-40391/8000+2389/8000*t-131/32000*...