Moebius Strip
Example from the PscFunctions package
With the help of routines of the PscFunctions package it is possible to obtain parametric equations of regions with boundaries
.
For creation the equation of the Moebius strip we need to know how to create the equation of a segment. At the segment displacement and rotation around of a closed curve we can obtain a strip surface. For produce the equation of the segment we use
PR(x
,
a
,
w
)
function of the
PSCFunctions
package.
> | with(PscFunctions): R:=3: # radius of directing circle N:=1: # number of turns (for mobius band it should be odd) H:=2: # width of the band x0:=t->R*cos(t): y0:=t->R*sin(t): z0:=t->0: lx:=u->cos(u/(2/N))*cos(u): ly:=u->cos(u/(2/N))*sin(u): lz:=u->sin(u/(2/N)): x:=(u,v)->x0(u)+lx(u)*(H*PR(v,0,H)-H/2): y:=(u,v)->y0(u)+ly(u)*(H*PR(v,0,H)-H/2): z:=(u,v)->z0(u)+lz(u)*(H*PR(v,0,H)-H/2): ps:=plot3d([x(u,v),y(u,v),z(u,v)],u=0..2*Pi,v=0..H, grid=[51,8],scaling=CONSTRAINED,orientation=[-45,30]): plots[display](ps); 'X'=x(u,v); 'Y'=y(u,v); 'Z'=z(u,v); |
> | N:=3: # number of turns ps:=plot3d([x(u,v),y(u,v),z(u,v)],u=0..2*Pi,v=0..H, grid=[51,8],scaling=CONSTRAINED,orientation=[-45,60],axes=BOXED): plots[display](ps); |